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This paper aims to review on body sensor networks (BSNs) for sports from performance monitoring point of view with some new
thoughts. The focus of the paper is to show that wearable sensor is more efficient than cameras in measuring sport performance
and thereby video data and video based systems can be replaced by wearable sensors. Here, the current state-of-the art in BSNs

are mainly introduced relating to sports performance instead of physical activity and health/safety related issues for sports and to
the best of our knowledge, this has not been done yet for different types of sports rather than a particular sport. Although the
progress in BSN for sports performance is in early stage, the ultimate goal is to develop a complete training/match analysis tool

using wearable sensors and various analyses techniques to monitor as well as improve performances in sports.
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1. INTRODUCTION

The recently proposed body sensor networks (BSNs) incor-
porate context aware sensing for increased sensitivity and
specificity. To facilitate the performances in sports, the recent
developments in BSN are presented here. In general, with its
low power, flexible and compact design, the BSN provides
a versatile environment for wireless sensing research and
development.!!] For instance, a comparison between wear-
able sensor and camera is shown in Ref.?! for performance
measurement in swimming. The paper concludes that wear-
able sensor based measurements of swimmer’s acceleration
profiles have the capability to provide significant advances
in coaching technique over the camera based measurements.
Moreover, the importance and effectiveness of a wearable
sensor for the water-skiers to reduce the lower back injuries

have been investigated and explained but a measurement er-
ror has also been reported when obtaining the data using high
frequency camera in Ref.[*! Furthermore, the effectiveness
and advantages of using wearable sensors over the wearable
camera have been investigated in Ref.¥! The paper highlights
that using wearable cameras can cause occlusion effects, the
correspondence issues, higher processing cost and storages
whereas using smaller inertial sensors can be used within or
beside the objects and it does not include occlusion.

In sports, BSN systems can be categorized into three groups
by considering whether they are related to physical activ-
ities (e.g. limb movements during gymnastics), or health
and safety (e.g. stress level during car racing), or sports
performance (e.g. cycle mean velocity during swimming).
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One review on BSN related to physical activities for sports is
presented in Ref.,'! while another review on BSN referring
to health and safety issues during sports is reported in Ref.[%!
This article presents the recent state-of-the-art of BSN for
performance in various sports rather than a particular sport
(e.g. swimming).!”-®

2. ILLUSTRATIVE CONCEPTUAL

WORK ON BSN IN SPORTS
In this section, an overview of BSN architecture followed by
human body movement representation (i.e. the real move-
ment of human body) with the typical sensing data in sports
are illustrated. The relationship between the three inertial sen-
sors (accelerometer, gyroscope and magnetometer) data from
BSN and the human back movements is presented through
the computation models (i.e. Euler angles, quaternions as
well as rotation matrix for 3D rotations, and Kalman filtering
for inertial tracking) and the measurement framework of the
three inertial sensors.

FRAME-

2.1 Overview of BSN architecture

Figure 1 contains the overall architecture of the BSN net-
work containing different types of sensors e.g. EEG sensor,
visual sensor, EMG sensor, respiration sensor, ECG sensor,
blood pressure sensor, temperature Sensor, pressure sensor,
accelerator, gyroscope, magnetometer, sink node etc., could
be placed in different body parts or locations to obtain the
physical data and carry out initial processing. All the data are
accumulated by the sink node and then passed on to the base
station and then send out to the cloud/internet so that the data
can be shared on various health care systems, sports learn-
ing systems, navigation systems, augmented reality systems,
industrial quality control, robotics, social welfare, patient’s
devices, diagnosis tools and others."’

Figure 1. Overall architecture of BSN network including
different types of sensors [/
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2.2 Human back movement

To determine the 3D bending and twist of the human back
movement, Zhang et al. 2011 in Ref."%! proposed an up-
dated method, where five BSN sensor nodes have been placed
on the back of the human body, each containing a 3-axial
accelerometer, a gyroscope and a magnetometer. This ar-
chitecture in Figure 2 is used to demonstrate the motion
reconstruction structure. After that, Euler angles have been
identified to symbolize the orientation of back segments.
Consequently, kinematics for the Euler angle has been esti-
mated and then an unscented Kalman filter (UKF) is used to
find the Euler angles.

Figure 2. Placement of sensor nodes on the back of the
human body 1%

2.2.1 Euler angle

The sensor nodes have been placed on the on the left shoulder,
right shoulder, upper spine, middle spine, and lower spine,
as illustrated in Figure 2. During the experiment, the prime
focus has been to determine the rotational movement of the
human back and hence orientation has been incorporated in
the state vector. Euler angles have been chosen to define
orientation of the segmentation of human back in terms of
®, 6, U which denotes roll, pitch and yaw correspondingly,
representing positive rotation in z, y and 2z axes of the body
in that order. The change from the global coordinate frame
to the body coordinate frame have been represented using
three consecutive rotations.!’!

R(®,6,) = R.(V)R, ()R, (®)

where,
1 0 0
R, (®)=| 0 cos(®) —sin(P)
0 sin(®) cos(P)
cos(f) 0 sin(6)
R,(0) = 0 1 0
—sin(d) 0 cos(6)
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and
cos(¥) —sin(¥) 0
R, (¥)=| sin(¥) cos(¥) O
0 0 1

If w(t) is the angular rate then the Euler angle integration

wg (t) D (t) 0
wy@) | =] 0 | +R(2) | 6(1)
w,(t) 0 0
and then we can get:
1 sin(®(t)) tan(8(t))  cos(®(t)) tan(6(t))
wW(T)=1| 0 cos(®(t)) —sin(®(t))
0 sin(®)/cos(0(t))  cos(®(t))/ cos(A(t))

2.2.2 Quaternion

It is one of the methods to derive the rotation matrix and in
the field of mathematics it is mainly utilized for expanding
the complex equations. The basic equation for the quaternion
can be defined by

q=qo+ qi+ q2j + g3k,

cos(6) + u2(1 — cos(h))
Uylg (1 — cos(8)) + u, sin(0)
uz Uz (1 — cos(f)) — uy, sin(0)

R =

where R is an orthogonal matrix, where the inverse matrix
is identical to its transpose form, such as RRT=RR =T
and u = [ug, Uy, u.] is a unit vector with u2 + u? +u2 = 1.
The determinant of R can be defined: det(R)=1 and three
eigenvalues of R can be defined as: 1, cos(6) + isin(f) and
cos(6) — isin(6). Further details can be found in Ref.1'!]

In comparing the Euler angle, quaternions and rotation ma-
trix; the Euler angle contains three self-governing variables
and there are no redundant variables. However, the disadvan-
tage for Euler angle is vital as it restricts smooth tracking
in all directions because of the discontinuities. Although
rotation matrices are suitable for computing but the nine el-
ements of the rotation matrix contain three self-governing
variables which cannot express the rotation clearly. On the
other hand, quaternions can overcome the drawbacks of the
Euler angle and rotation matrix. They are much easy to ap-
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Uzly (1 — cos(8)) — u, sin(0)
cos() 4 uz (1 — cos(6))
Uz Uy (1 — cos(8)) + ug sin(0)

kinematics can be derived from the formula"!

I (t) = W(I'(t))w(t)
where W (T'(¢)) is the Jacobian matrix, which is linked with
the absolute rotation angle T'(t)=[®(¢) 6(t) ¥(¢)]* to the

angular rate w(t)=[w, (t) wy(t) w.(t)]T. The correlation be-
tween Euler angles and the angular rate can be expressed:!!"’

which is a 4D vector with the above real numbers, i2=j%=k?=
ijk=-1, and [|q||l2 = /@2 + ¢ +¢3 + ¢3=1. Itis to be
noted that, quaternion equation can be defined in terms of

Euler angle equations. Further details on quaternion can be
found in Ref.!'!!

2.2.3 Rotation matrix

A rotation matrix is expressed in terms of a matrix to com-
plete a rotation in Euclidean space. The rotation matrix for
the 2D space can be expressed!!!! as

cos(f) —sin(6)

R(9) = sin(f)  cos(6)

For the 3D space, the equation can be expressed''!! as

Uz (1 — cos(f)) + u, sin(0)
Uy, (1 — cos(f)) — ug sin(0)
cos() + u2(1 — cos(0))

ply and elude the gimbal lock. Moreover, they have better
numerical steadiness than the rotation matrices and contains
only four elements. As a result, recent studies utilize quate-
nions to execute numerical analysis in computer graphics
and motion analysis to represent the rotation in 3D space.[!!!

2.2.4 Measurement framework

The wearable sensor unit offers three types of measurements,
such as acceleration, magnetic field and angular rate. The ba-
sic measurement equation h can be defined by the following
expression:[1?

2 Ui
Zt = Ztm = h,(il't) + vy = h(xt) + ’Uln
2 vf

where, z;=[['(t) w(t)]T with T(t)=[®(t) 6(t) ¥(¢)]7,
wt)=lwe (t) wy(t) w.(t)]F, v, is considered to be zero-
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mean additive white Gaussian noise with covariance matrix
V,aswell as 2 , 2/, and ztg are the acceleration, magnetic
field and angular rate measurements, respectively.

Since the movement of the human back is fairly constant,
the three axis accelerometer has been used to determine the
gravity field vector relating to the global coordinate system.
By characterizing g= [g, g, g.]7 as the vector of the gravita-
tional field determined in the global coordinate framework,
the final acceleration equation can be defined as Ref.!!!

a,:

t

= | 2" | = RIR(D(1),0(t), ¥(t)g + v

a,z
2

where v{ denotes the acceleration measurement noise, R%
stands for the offset for sensor bias.

The magnetometer determines the magnetic field and it can
be defined by the conversion of the global magnetic field
to the local sensor coordinate frame. The magnetometer
measurement formula is very similar to the accelerome-
ter’s measurement framework and it can be represented by
m=[mz, m,, m,]T as the vector of the magnetic field deter-
mined in the global coordinate framework. The final magne-
tometer’s equation can be defined by Ref.[1%!

m,r

= RPR(®(1),0(t), U(t))m + v

S

where v;" denotes the magnetic measurement noise.

Subsequently, gyroscopes are used to estimate the angular
velocity in the local coordinate system for the sensors. The
angular velocity w(t) is incorporated in state vector and
hence the final gyroscope equation can be defined as Ref.!'*!

g,z
2t

where H = [0 I3x3] and v{ denotes the angular rate mea-
surement noise.

2.2.5 Kalman filtering

Usually, the Kalman filter works on a probability distribu-
tion of state vector, which can be represented by the first
and second order statistical parameters, such as mean and
covariance. However, a limiting factor for the Kalman filter
is that, it can only handle linear and Gaussian factors but the
measurement equations are non-linear. In order to solve this
issue, an upgradation to the general Kalman filter, defined as
UKEF can be used which can solve the non-linearity as well.
Further details related to the mathematical models and the
estimations can be found in Ref.['% I Therefore, in general,
Euler angles have been determined to characterize the direc-
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tion of the human back, kinematics analysis for the Euler
angles have been done and then UKF has been further used
to obtain the Euler angles.

Forward Bend Side Bend Back Twist

Figure 3. The three fundamental human back movements

Figure 4. The global coordinate system

Using the above methods and formulas, an experimental
study has been conducted to determine and investigate the
Forward Bend, Back Twist and Side Bend as displayed in
Figure 3. In order to perform the forward bending test, the
participant has been requested to bend his body forward
few times, where the rotational back movement has been in
the z-axis in the global coordinate system (i.e. yaw angle)
as shown in Figure 4. Based on the results, the roll and
pitch angles for the spine and shoulders have been found to
be of zero value as the participant moving forward, which
reflects the real time scenario. Consequently, to perform
the back twist the participant has been requested to twist
his body left and right few times where the rotational back
movement has been in the x-axis in the global coordinate
system (i.e. roll angle). From the results, the pitch and yaw
angles for the spine and shoulders have been found zero and
it is similar to the real time situation. Similar to the previous
steps, the participant has been asked to bend his body left
and right few times to perform the side bending test, where
the rotational back movement has been in the y-axis in the
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global coordinate system (i.e. pitch angle). From the results,
the pitch angles for the upper spine, left and right shoulders
have been the same, due to the upper part of the back shifts
all together as the participant bends for the test. Also, the
movement of the upper spine compared to the lower spine
has been found to be much higher.'”l Moreover, Sheng,
2012 investigated and analyzed the upper limb movements
in the 3D space.!'!]

3. Bopy SENSOR NETWORK (BSN) FOR
PERFORMANCE MONITORING IN SPORTS

* Importance of BSN in sports:

Existing camera-based systems to determine sports
performance require a complex setup and calibration
procedure. In contrast, wearable (e.g. inertial!®!)
sensor-based methods can provide similar information
with a low-cost and easy maintainable sensor setup.
For example, inertial sensors, such as accelerome-
ter, gyroscope, magnetometer, provide both low- and
high-order parameters in performance monitoring for
spor’[s.[s]

* General framework for BSN in sports:

The general structure of the BSN in sports is shown in
Figure 5, where the role of BSN in the performance
analysis for sports is highlighted. The performance
monitoring in sports by wearable sensors is involved
with perfornance quantification, performance assess-
ment as well as performance prediction as indicated
in Figure 5. The two other roles of BSN in sports are
related to physical activities (such as running, walking,
etc.) as well as health and safety (such as heart rate
variability, fatigue, etc.) which are not the scope of
this paper.

BSN for Sports

I ]

Physical Activity|| Healthand Safety || Performance

Figure 5. The general framework for BSN in sports
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4. RECENT DEVELOPMENTS ON BSN FOR
SPORTS PERFORMANCE

In Ref.,['? three EXLs3 IMU sensors (each sensor consists
of 3-axis accelerometer, 3-axis gyroscope and 3-axis mag-
netometer working at sampling rate of up to 200 Hz) are
used and they are integrated with the tennis racket as well
as left and right shoes of a tennis player. In order to do the
movement analysis of an individual tennis player, different
types of shots (e.g. forehand and backhand with topspin and
slice, smash) and footsteps (shot steps and side steps) are
detected and classified during training/play. The results are
obtained using a small dataset from four subjects. The detec-
tion accuracy of 76% and classification accuracy of 95% are
obtained for the steps, while classification rate is reported as
high as 94% for various shots. Note that a segmentation algo-
rithm is used for detection, while classification is performed
using SVM classifiers. Using this BSN system, an expert
player or a trainer of an amateur player is able monitor the
timing analysis of the racket as well as foot movements to
improve the performance in tennis. However, the system is
user dependent and needs to be robust (i.e. user independent)
perhaps by using a large dataset with more subjects.

In Ref.,['3] the data from a 3-axis accelerometer as well as a
gyroscope are collected and stored to assess the swimmer’s
performance for 200 m individual medley (IM), since it has
all official strokes, i.e. butterfly, backstroke, breaststroke
and freestyle. The breathing patterns are adopted as follows:
in butterfly, breathe every two strokes for the first 25m and
every stroke for the second 25 m; in freestyle, breathe every
two strokes during the first length and every three strokes
in the second length of the swimming pool. The breathing
data of 3 orthogonal accelerations and angular velocity com-
ponents are filtered using a moving average filter with size
20 samples and can be applied to calculate the parameters
such as stroke type, lap time, lap count, stroke frequency and
distance per stroke, to quantify the performance of a swim-
mer. The block diagram of the corresponding BSN system
for swimming is presented in Figure 6.

Accelerometer Gyroscope
SPI
Micro-
controller SPI
Memory i |
device
Transceiver

Figure 6. A system to evaluate and identify swimming
parameters
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In Ref.,l'Y BSN systems are presented for skating and ice
hockey using three EXLs3 IMU sensors. Eight skating mo-
tions (i.e. accelerating, breaking, narrow curves, wide curves,
forward-backward turns, backward-forward turns, backward
skating, and jumps) are analyzed and recognized as the sen-
sors are clipped to the shoelaces of the skate. Using accel-
eration and rotation velocity data, the skating motions are
detected and then recognized from the features using timing
characteristic and maximal acceleration for power strokes,
foot’s orientation at specific time. Two approaches of fea-
tured based classification and template matching are used.
For classification, a sliding window with 12.5% overlapping
is used on the raw data to extract different temporal (mean,
standard deviation, min, max, number of zero crossings,
etc.) and spectral (fast Fourier transfer coefficients) features,
feature selection is done based on mutual information and
Random Forest classifier is used for classification. In tem-
plate matching, input three-dimensional accelerometer and
gyroscope data are fused into a one-dimensional sequence
using k-means clustering algorithm and the similarities be-
tween training template and test data is calculated using
a wrapping algorithm as well as compared with a thresh-
old to recognize different skating actions. Two sets of data
are used for evaluation - one dataset (S7) is with an ama-
teur skater and the second set (S5) consists of data from
six skaters with different skills. Note that video recordings
are used for conventional reference. For S, the overall F1
score (i.e. the weighted average of Precision and Recall, see
at Wikipedial!>!) of all activities is found 0.92, while it is
decreased to 0.65 for S most probably due to the large vari-
ations in speed and intensity among the participant skaters.
The block scheme of the above mentioned BSN system for
skating is depicted in Figure 7.

Detection of skating
motion & action
(feature-based
classification and
template matching)

IMU
sensors

Provide
feedback

—

Figure 7. Simplified block scheme for detection of skating
motion and actions

For ice hockey, the BSN system introduced in Ref.'*! anal-
yses the wrist and slap shots using sensorized hockey stick
and the data from the IMU sensor (placeed at player’s upper
body and both wrists) which is sampled at 100 Hz. The anal-
ysis of the recorded shots are performed in two stages: In
stage one, the system detects/classifies into wrist or slap shot
using a rule-based classification algorithm based on stick
orientation information. In stage 2, the system extracts a
set of characteristic features for each shot, such as the max-
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imum, minimum and mean rotation velocities of the stick
in all three axes during the shot, acceleration and timing
characteristics (e.g., duration between maximum wind up
and ice contact), the maximum flexion of the stick, the hand
positions, etc. for training a Support Vector Machine (SVM)
classifier that assesses players skill level based on their shot
execution. The results are obtained using the data from 11
amateur and 8 professional players and the extracted features
of the selected shots from the players are used to train a SVM
classifier which can differentiate the shots for the beginners
and the professional players. The Sequential Forward Se-
lection (SFS) algorithm is used for feature selection which
shows that the minimal rotation velocity in shooting direction
(around y-axis), the duration of the pre-swing phase, and the
maximum flexion of the stick, are the most relevant features
for slap shots. For wrist shots, the selected features are also
related to the lower hand position, the minimal and maximal
rotation velocities around the - and z-axes, and the summed
up rotation around the z-axis. Using leave-one-out cross
validation, SVM classification algorithm gives an accuracy
of 92.9% for slap shots and 88.5% for wrist shots. The block
scheme of the corresponding BSN system for ice hockey is
shown in Figure 8.

Frequency Analysis of Trovide
IMU 2 S feedback
sonsore :> sa mpl}eidzm 100 re:lll);ied ::) using SVM

classifier

Figure 8. Monitoring shots with modified hockey stick to
provide feedback to the players

Moreover, another BSN system is proposed in Ref.!'¥l by
integrating three IMU sensors placed on the gloves and upper-
body protector of an athlete to monitor various game events
(e.g. slap shots, wrist shots, hits, turns, time in motion,
breaks) during the game play. Feature-based classification is
performed using combined statistical and spectral features
from three wearable sensors by multiple Random Forest clas-
sifiers. The acceleration and rotational velocity data from
three IMU sensors and four hockey player are sampled at
100 Hz providing the following results: F} score for event
detection is 70%, classification rate to recognize whether a
player on the ice or not is 86%. In fact, due to large vari-
ations in hockey motions (specially the direction of turns)
among the hockey players, the results may be deteriorated.
It is expected that the results can be improved by perform-
ing training with large number of recordings during actual
hockey games.

In Ref.,!'8 3-axis acceleration and rotational velocity data
from wearable sensors are used to characterize different
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states of a golf swing among amateur and professional golf
players. Sensors are mounted in different parts of the body
(left wrist, solar plexus, right knee, head) and different steps
of the golf swing consist of backswing, downswing, im-
pact, and follow-through, are featured as well as compared
between a beginner and an experienced player. For exam-
ple, the acceleration data of z-axis from solar plexus and
the acceleration data of y-axis from wrist are found useful
to differentiate the performance between the beginner and
experienced players and can assist for enhancing the perfor-
mance of the beginners by automatically providing advice
to them. In future, it needs to incorporate machine learning
tools (e.g. SVM) to automatically distinguish a beginner
from an experienced player and provide more proper advice
to the beginners.

In Ref.,['7 wearable sensors attached to swimmer’s back
(Horizontally) are used to design a biofeedback control sys-
tem for freestyle swimming based on trunk rotation measure-
ment. Four recreational swimmers have swum 200 m with
and without feedback. A nine-degree-of-freedom inertial
sensor MPU-9250 is placed horizontally to swimmers back.
The instantaneous feedback on rotation status is sent to a
swimmer to improve swimmers kinematics/key performance
index (e.g. lap time, stroke rate) by informing the swimmer
whether the medial-lateral rotation angle is <40, or within
40°-50°, or >50° meaning no vibration, or one vibration, or
two burst vibrations, respectively. Vibratory feedback is sent
to the swimmer to adjust the roll angle (i.e. trunk rotation) if
the rotation angle lies between 40° and 50°. The results show
that BSN based biofeedback mechanism improves swimmers
performance by reducing average lap time by 4.5% due to in-
crease of stroke rate and can assist a swimmer during regular
training for fitness maintenance. The block diagram of the
respective BSN system for swimming is depicted in Figure
9.

Inertial Sensor

MPU-9250
LiPo Battery 11
J Microcontroller
Vibration
Motor

o Memory

Transceiver S

Device

Figure 9. Wearable biofeedback control system
demonstration for swimmers

In Ref.,['81 an IMU sensor is attached to the skis to determine

Published by Sciedu Press

the orientation angle (i.e. the angle of attack) during ski
jumping. The angle of attack is defined by the ski orientation
and the horizontal plane. For each time ¢ of the jump, the cur-
rent ski orientation can be found by projecting the gyroscope
data at time ¢ into x-z plane and simply calculating the angle
from z- and z-components of the velocity/gyroscope data.
The results obtained from 3 ski jumpers give rms errors of
2¢ for right ski and 9.3° for left ski using the video camera-
based results as conventional reference. The block diagram
of the respective BSN system for ski jumping is shown in
Figure 10.

Predicts the
Gyroscope Angle orientation
IMU :> E :> calculation :> angle and
sensors « :a;:m,) fromx-z provide
P components immediate
feedback

Figure 10. Block diagram for monitoring the performance
of ski jumpers

In Ref.,["! an IMMU (inertial-magnetic measurement unit)
sensor is placed in the front of snowboard to classify different
tricks for freestyle snowboarding using a two-stage method.
In the first stage, the grind tricks are detected from high mag-
netometer signal variance, while air tricks are detected from
low accelerometer signal variance and the remaining tricks
are categorized as no-tricks or incorrectly detected tricks.
In the second stage, different classifiers (e.g. Naive Bayes
[NB], C4.5, k-NN, SVM) are used to classify grinds into
board slide/front slide grinds and airs into broad slide/front
slide airs using different rotational features obtained from
the gyroscope data. Using a total of 745 tricks with different
categories, the overall detection and classification accura-
cies are achieved for more than 90% for all categories of
tricks. However, this BSN system is yet to be implemented
in real-time.

In Ref.,1?"! a single IMU sensor is attached to the front end
of a table tennis racket handle to detect and classify vari-
ous stroke types (drive, push, block and topspin for both
forehand and backhand) among amateur and professional
players. Kinematic data of acceleration and angular velocity
are collected to detect stroke events and classify basic stroke
types using pattern recognition algorithms. The strokes are
detected based on the energy of the accelerometer data fol-
lowed by peak detection algorithm. The stroke classification
is done in the following steps: 1) annotate strokes based
on stroke intervals around the detected peaks, 2) extract all
stroke signals, 3) calculate 60 different features including
statistical moments (mean, standard deviation, skewness, kur-
tosis), signal characteristics (minimum, maximum, energy,
median, interquartile range), heuristic features (x-y,x-z,y-z
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correlations) for all data components, 4) classify different
types of strokes using a SVM classifier. The overall mean
F-measure score of 96.9% and classification rate of 96% are
found for stroke detection and classification, respectively,
among 10 players (3 professional and 7 amateur). The intent
of this study is to develop a wearable device which could be
attached to the body using a wristband or integrated invisibly
into the table tennis racket. The block scheme of the above
discussed BSN system for table tennis is presented in Figure
11.

=
Stroke Acceleration

Detection Stroke

Classification

Stroke
Intervals

3D Angular
Velocity

I

>

Figure 11. Simplified stroke detection system for table
tennis

In Ref.,1?!l the feasibility of accelerometer and GPS sensors
are studied to quantify kinematics variables in swimming,
such as stroke rate, velocity, etc. The sensors are mounted on
the head of the participant for 100 m freestyle, breaststroke
and butterfly swimming in 50 m swimming pool. There are
21 participants (12 males and 9 females with different ages)
for evaluation. The accelerometer and GPS data are used to
calculate the stroke count and the velocity. It is found that
stroke count and velocity measures from accelerometer/GPS
sensors are highly correlated to the measures from the refer-
ence video data. Therefore, this BSN system can be benefi-
cial to the swimmers and trainers to find kinematic measures
of performance such as velocity, acceleration, stroke rate,
stroke length, stroke count, etc.

A detailed study for measuring kinematic variables in front
crawl swimming using multiple accelerometers (attached to
swimmer’s wrist) is reported in Ref.?”l The analysis has
shown how lap time, velocity, stroke count, stroke duration,
stroke rate, phases of the stroke are calculated and why they
are promising to quantify the swimmers performance after
validating with video-based results.

Using a single wearable IMU sensor placed on the sacrum,
breaststroke swimming velocity is estimated in Ref.[>} from
velocity and acceleration data based on statistical (Bayesian)
approach. Bayesian linear regression (BLR) is applied to
estimate model parameters of a velocity model iteratively
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based on maximum posteriori (MAP) criterion and thereby,
calculates the cycle mean velocity (CMV). The results are ob-
tained for a total of 658 cycles collected from 15 participants
(both well-trained and recreational) providing precise and
more consistent results for different velocity-range among
various participants compared to the results in Ref.**! ob-
tained by Gaussian process regression (GPR) model, which
is computationally more demanding.

Using a single IMU sensor (accelerometers) and an opti-
cal wireless transmitter (mounted on wrist) as well as opti-
cal wireless receiver (mounted on the goggles), a real-time
BSN system is proposed in Ref.!>! for generating swim-
ming feedback to improve swimmers performance. A male
recreational swimmer is asked to swim in a 50 m pool with
different swimming styles including freestyle, backstroke,
breaststroke and butterfly. From the raw acceleration (y-axis)
data, the maximums algorithm at the transmitter calculates
the stroke rate by detecting the peaks. The stroke rate and the
time difference between strokes are then sent to the receiver
to activate a RGB LED and the swimmer is instructed to alert
accordingly, i.e. red color for too slow stroke rate, green
color for correct pace, and blue color for too fast stroke rate.
The block diagram of the corresponding BSN system for
swimming is shown in Figure 12.

Stroke rate,
Time
difference
between
strokes at the
transmitter

Il

Stroke
Time
difference
received at
the receiver

Raw
acceleration
data

Maximums
v algorithm

7

|

RGE
LED

Decision

Aware the
C: algorithm

swimmer

Figure 12. Transmitter and receiver’s algorithm of the BSN
used by swimmers

In Ref.,”®! a single IMU sensor, which is attached to the
sacrum, is used to generate a lap velocity profile for freestyle
swimming. The 3-axis acceleration data from 17 swimmers
(8 junior and 9 retired persons) and 15 laps at three different
efforts (5 laps comfortable, 5 laps training and 5 laps race
pace) are used to derive swimmer’s velocity profiles at differ-
ent efforts and show a good match with the velocity profiles
obtained from a tethered velocity meter.

A real-time BSN system for performance monitoring in
swimming using a 3 axes accelerometer is presented
in Ref.?] A wrist worn device is developed to estimate
the performance parameters, such as stroke count, lap
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time/count/speed, total swimming time/distance, swimming
efficiency in backstroke, breaststroke and front crawl swim-
ming. Using the data from 13 different swimmers consists
with 646 laps and 858.78 min duration, the iterative method
gives high accuracies such as > 99% for precision/sensitivity
for lap detection and > 92% for style classification.

The work in Ref.?8! deals with automatic arm stroke phase
detection for front-crawl swimming using three IMU sensors
to replace video-based system for temporal phase detection
during swimming. The three sensors are attached to the left
arm, right arm, and sacrum. The timing of pull, push and
recovery phases for both arms as well as index of coordina-
tion (IdC) parameter are tracked by Kalman filtering using
3D acceleration and 3D angular velocity data. The change
of slope, orientation and peak information are used to track
the different phases showing high accuracies.

In Ref.,?”! 3-axial acceleration and 3-axial gyroscope data
from wearable IMU sensors are used to track the phases of
canoe stroke into propulsion phase and recovery phase for
performance assessment in canoe. The sensors are attached
to rower’s body (upper arm, forearm, leg, chest, abdomen).
A time-series segmentation algorithm is used for phase iden-
tification as follows: Firstly, three types of features are cal-
culated by using normal distribution of the data. Secondly,
the phase labels are predicted by training the features using
a SVM classifier. Finally, phase reconstruction is performed
for reducing the false predicted labels by extracting adaptive
time threshold and magnitude threshold.

In Ref.,B% 19 different types of golf swing (straight, pull,
push, slice, draw, hook, fade, etc.) are classified using accel-
erator, gyroscope and strain gage sensors (attached to golf
club) based on various representative convolutional neural
networks, i.e. deep convolutional neural networks (DCNN).
The CNN architectures used to classify the golf swing data
are Vanila CNN, VGGe-like CNN, Inception-based CNN,
Residual-block-based CNN are adopted and their implemen-
tational details are presented as well as the classification
results are compared with the SVM classifier.

An IMMU (Inertial Magnetic Measurement Unit) sensor
based landing momentum determination approach is pre-
sented in Ref.3!! for ski jumping. The sensors are attached
to both skies. The IMMU data is preprocessed followed by
velocity calculation for the landing analysis. The IMMU
based landing momentum is obtained by multiplying the ath-
lete’s mass with the vertical landing velocity. For testing,
four ski jumpers are participated who jumped from an as-
signed hill, while three of the four jumping give less than
10% error when comparing the results with the force mea-
surement reference system.

Published by Sciedu Press

The study in Ref.[3?! analyses the motion between a horse
and its ride based on inertial measurement system where
the sensors are attached to rider’s body (head, chest, pelvis,
arms, thighs and calves). This motion varies due to the sitting
position of a professional rider and beginner. A kinematic
analysis of different riders’ posture depending on the sitting
position is done based on the BSNs. It can identify the level
of skill of a rider and give feedback accordingly to an eques-
trian. The rider’s poster is estimated by combining the gra-
dient descent algorithm with a human biomechanical model
to track the ride’s motion. Analysing the exercise intensity
of pelvis in two horse gaits (walking and rising trot), the
difference between skill levels of the riders is distinguished.

In Ref.,1’3! various badminton strokes are recognized based
on BSN. The system contains wireless inertial sensor nodes,
wireless receiving node and an operating system (PC). Each
wireless inertial sensor node is comprised of an accelerom-
eter and gyroscope attached to player’s body (both wrists,
waist, and right ankle). At first, the strokes are detected from
the non-strokes motions using the preprocessed acceleration
and gyroscope data sampled at 100 Hz. Then a two-layer
HMM (Hidden Markov Model) classifier is used to recog-
nize 14 different strokes after feature extraction and feature
selection from the segmented data obtained by the proposed
window segmentation method named as WCSP (window
with containing the stroke points). The classification ac-
curacy is evaluated by considering all the possible sensor
combinations. The block scheme of the corresponding BSN
system for badminton is presented in Figure 13.

Wireless
inertial sensor
node placed on :>
different parts

of the body

Wireless
receiving
node

Operating
system

ZigBee

module

= =)

Figure 13. Overview of the system platform considered in
badminton

5. TYPES OF SPORTS, WEARABLE SENSORS,
MEASURED DATA, FEATURES/VARIABLES,
DATA ANALYSIS, BASIC CLASSIFIER MOD-
ELS, AND THE RESULTS OF EVALUA-
TION/PERFORMANCE OF THE SENSOR FA-
CILITATED BY BSN AS WELL AS THE
PROBLEMS RELATED TO THE STUDIES TO-
GETHER WITH SOME NOTES

We have tabulated in various types of sports facilitated by
BSN, such as swimming, tennis, table tennis, ski jumping,
ice hockey, skating, golf , badminton, horse riding, canoe as
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presented in Table 1. Most of the studies have been done for
swimming.

Table 1. Types of sports facilitated by BSN and the
corresponding references

with classification as shown in Table 3. Various types of
accuracies including different statistical errors, correlation,
significance test, etc. are used in different studies as shown
by Table 4.

Sports ‘ References Table 3. Types of classifiers used as well as the
Swimming (13],[17].[21],[22],23],[24][25],[26],[27] 28] classification results/performance of the sensor in
SKLJEIHE [18],31] performance monitoring for various sports and the
- [14] corresponding references
Skating [14] Referencj Classifier ‘ Contribution Classification Subjects
A
Golf [16].[30] oy
[14] Random Forest Recognize eight skating 92%
Table tennis [20] motions in skating 19 (11 amateur
Tennis [12] [14] Support Vector Recognize a shot to 92.9% fz 8 professional)
. N Machine (SVM) assess a player’s skill
Snowboarding [19] T e—
Canoe [29] [20] SVM Classify basic stroke 96.7% 10
Horse riding (Equestrian sports) [32] type in table tennis
[12] | Longest Common For shot classification 94%
Badminton [33] Subsequent (LCSS in tennis 4
[12] SVM For step classification 95%
in tennis
Table 2 presents a list of wearable sensors as well as the (19] SVM. For grind classification 90.3%
. . . in snowboarding 4
measured data to monitor the performance in various sports [19] kNN For air classification 93.3%
where all studies are facilitated by the accelerometer. Iysnovboartie _
[29] SVM For motion phase classification  Not described 2
in canoe
Table 2. Types of sensors used for BSN systems in Deep Convolutional For swing Vanila CNN: 95%,
performance analysis for various sports and the [30), || -Neural Networks classification VGG CINN: 975%; 4
. (DCNN ) in golf Inception CNN: 97%
corresponding references ResNet CNN: 92%
Reference | Sensors ‘ Measured data [33] | HMM(Layer two) For stroke recognition 97.96% 12
[13] Accelorometer, Gyroscope 3-axial accelerations and angular velocities it ud it G
[17] Accelorometer 3-axial acceleration data
[21] Accelorometer, GPS GPS and 3-axial acceleration data .
22 T Se— %oavial ascclerstion fata Table 4. The results of evaluation/performances of the
23] Accelorometer, Gyroscape Swimming inertial data sensors for the references other than in Table 3 (RMSE:
24 Accelorometer, Gyroseope Swimming inertial data Root-mean square error, r: Correlation coefficient, p:
[25] Accelorometer Acceleration data . . .
25 P E—— il sccelaraiion A5t Significance, MAE: Maximum absolute error, CMV: Cycle
27 Accelorometer 3-axial acceleration data mean velocity, d: Input space dimension for Bayesian
[ Accolorometer, Gyroscope Swimming inertial data regression estimation, ICC: Intra-class correlation)
[18] Accelorometer, Gyroscope Jump data in ski jumping
[14] Accelorometer, Gyroscope Motion data of the players Rcfcrcucc‘ Performance/Results of Evaluation | Subjests
[16] Accelorometer, Gyroscope 3-axial accelerations and angular velocities [13] Not described 1
[20] Accelorometer, Gyroscope Basic table tennis stroke data [16] Not described 1
[12] Accelorometer, Gyroscope, Locomotion and [17] Session time improvement: 10.1% (Max.); 4
Magnetometer tennis shot movement data Swimmer’s rotation improvement:18.5% (Max.)
[19] Accelorometer, Gyroscope, Jumper’s trick events [18] Orientation angle(left ski) RMSE: 9.3 & std dev.: 1.8 3
Magnetometer (Grind and Air) data Orientation angle(right ski) RMSE: 2.0 & std dev.: 2.0
[29] Accelorometer, Gyroscope Player’s motion data [21] High correlation (between 0.98 and 1) 21 (12 male
[30] Accelorometer, Gyroscope, Golf swing data for stroke count detection & 9 female)
and Strain gage and golf club shaft bend data 1=0.97, p=0.00 for lap times
[31] Accelorometer, Gyroscope, Sky jump data =0.94, p=0.00 for stroke count
Magnetometer, Temperature sensor and temperature [22] r=0.92, p=0.00 for stroke rate 12
[32] Accelorometer, Gyroscope, Rider’s attitude =0.63, p=0.00 for stroke duration
Magnetometer and motion data MAE: 0.06 5, 0.07 5, 0.06 5, 0.08 5
[33] Accelorometer, Gyroscope Badminton motion data for phase durations (Entry, Pull, Push, and Recovery)

Several papers have investigated performance monitoring in
various sports using different classifiers as shown in Table
3. However, most of the papers mainly focus on the use of
Support Vector Machine (SVM) classifier providing higher
performance than most of the other classifiers used.

In Table 4, the performances of the sensors or the results
of evaluation are presented for the references not involved
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CMYV error= 0.0+13.6 (d=5)

[23] CMYV error= 0.3+11.1 (d=T7) 15
CMYV error= 0.1+9.6 (d=9)

[24] CMV error=-0.7+6.8 20 (13 male
& 7 female)

[25] Percentage of highest error-free received data=60.3% 1

[26] Lap velocity distribution errors: mean skewness=0.96+0.47 17

mean kurtosis=2.93+1.12

[27] Average relative error<1.2% for stroke count 13

[28] ICC(1,1)=0.94 7(5 male
& 2 female)

[31] Average momenta accuracy=85% 1

[32] 1=0.61,0.94, and 0.51 for 3 joint angles in walking 10 (5 professional

r=0.14, 0.12, and 0.11 for 3 joint angles in rising trot riders & 5 beginners)
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Table 5. Types of features/variables, data analysis used for BSN systems in performance monitoring for various sports
and the corresponding references

Refer. Features Data Analysis
(131 Stroke type, Lap time, Lap count, Moving Average filtering of acceleration and
stroke frequency and Distance per stroke gyroscope data to find breathing pattern
17 Lap time, Rotation status, Stroke rate Raw acceleration data
(21 Stroke counts for front-crawl, Raw acceleration data; Calculate Pearson’s correlation coefficient
breaststroke, backstroke (correlation between 0.98 and 1)
(22] Lap time, Velocity, Stroke count Calculate Kolmogorov-Smirnov test, z-Test, Pearson’s correlation coefficient,
Stroke duration, Stroke rate, Stroke phases Different types of errors
(23] Breast stroke velocity Bayesian algorithm, estimate velocity model parameters iteratively using
maximum posteriori (MAP) criterion and calculate cycle mean velocity (CMV)
(24] Front crawl velocity Gaussian process (GP) regression framework or parameter learning
to calculate cycle mean velocity (CMV)
(251 Stroke rate Maximums algorithm to calculate stroke rate and the time difference between strokes
261 Stroke rate Lowpass filtering of raw acceleration data to find highpass data; Total acceleration
Mean velocity data by summing the data in z, y, z axes; Velocity profile by integrating
total acceleration data (using trapezoidal rule) over time
(271 Lap count, Stroke count, Lap time, Iterative algorithms in an ample-by-sample basis, Speed per lap, Total swam distance,
Total swimming time, Swimming efficiency State-machine and spectral analysis, Decision graph of depth two
(281 Stroke phases Temporal phase detection algorithm based on slope tracker by Kalman filtering, adaptive
Inter-arm coordination slope change detection using CUSUM, orientation estimation and peak detection
(18] 3D orientation of left and right skies, Initial sensor calibration; Initial rest vector, gravity vector alignment
Angle of attack Descent trajectory, rotation vector alignment; Quaternion-based
integration of gyroscope data
Power strokes, Breaking, Turns, Jumps Feature extraction and template matching for skating action detection,
(141 and Curves for skating Warping LCSS algorithm for classification of staking action
Slap and wrist shots for shooting in ice hockey Feature extraction (maximum, minimum, mean rotational velocities)
followed by recognition of shoot types using Random Forest classifier
(161 'Backswing, Downswing, Impact, Follow-through Raw acceleration and gyroscope data
(201 | drive, push, block, and topspin with forehand Event detection algorithm based on energy calculation, highpass filtering,
drive, push, block, and topspin with backhand negative masking and peak detection for stroke detection; SVM with
RBF kernel provides the best result for stroke type classification
(12 | Forehand and Backhand with Topspin and Slice, K-means clustering, Similarity measure and non-maximum suppression
Smash, Footsteps (Shot steps and Side steps) for segment detection and LCSS classifier for shot classification;
SVM classifier for step recognition
(191 Grind tricks, Air tricks Preprocessing, threshold analysis for trick event detection, and
classification of trick category using different types of classifiers
(291 Canoe sprint phases Time series segmentation, feature extraction for describing motion
phases, and SVM classification for motion phase
1301 | Different types of golf swing(straight, pull, push, Preprocessing by data augmentation, data shuffling, and data
slice, draw, hook, fade, push-slice, pull-hook, etc. standaridization followed by classification with customized deep CNN's
(311 Landing momentum Preprocessing the data by a sensor calibration and alignment; Landing velocity
calculation to measure the momentum of landing phase
(321 Horse gaits (Walking, Rising trot) Sensor error calibration; Calibration of equestrian poster based on A-POS;
for horse riding (Equestrian sports) Quaternion update based on gradient descent algorithm; Equestrian motion
tracking based on quaternion; Analysis of riding poster based on Equestrian
133] Different strokes (serve, clear, push, Sample set generation by wavelet denoising, badminton stroke detection, window
lob, chop, rushing, hook for fore- segmentation, feature extraction and selection; classification by a two layer HMM classifier
hand & backhand) in badminton (Layer 1: verify if the activity is a stroke, Layer 2: multiclass classification of the strokes)
Published by Sciedu Press
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In Table 5, the features/variables used in various sports to-
gether with the data analysis are summarized. As we see,
the data analysis are mainly involved with signal processing
(e.g. denoising, segmentation, detection, estimation, data
alignment), pattern recognition including feature extraction,
feature selection, and machine learning algorithms.

In Table 6, sampling rates used in sports performance moni-
toring are demonstrated, where it can be seen that the sam-
pling frequency of 100 Hz is mostly used for the wearable
Sensors.

Table 6. Sampling rate used in sports performance monitor
studies

100
[13,14,18,21,29,32,33]

200
[12,18]

1000
[20,30]

Sampling rate (Hz) 10 50
[17,27] | [16]

References

In Table 7, the problems associated with various studies to-
gether with some corresponding notes are presented. As we
see, various issues like data transmission, sensors positions,
sensors fusion, complexity, flexibility, etc. can be drawn into
our attention.

General remarks

From Table 2, it can be seen that only few studies have used
three sensors (accelerometer, gyroscope, and magnetometer),
i.e. IMU-unit. The use of the three sensors together could
provide improvements of the BSN for sports performance.
Based on the results in Table 3, the works involved with
limited number of subjects do not give high classification
accuracy and vice versa. So, the number of participants
(including male, female, professional and amateur players)
should be sufficient, or the data size needs to be large enough
to achieve better performance by any BSN system. As it
can be seen in Table 4, the type error used is either RMSE
or MAE for performance evaluation. It would be preferable
to consider different types of errors or at least more than
one type error for more convincing performance evaluation.
From Table 3, it can be seen the work like in,’% for example,
has shown the body movement representation or kinematic
analysis. However, it should be interesting to incorporate this
type of analysis to make the study more intuitive. Also, one
BSN system is dedicated to only one type of sport except the
work in,'*! which can be used for multiple sports, i.e. both
for ice hockey and skating. This versatility of a BSN system
can be an important consideration in method development.
From Table 7, it is found that all studies have not addressed
the computational complexity even the detailed papers with
no other problems have missed only the computational com-
plexity (e.g. in®*¥). This is an important issue to take into
account for real-time implementation of a BSN system be-
sides its performance. Also, some studies are involved with
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wireless communication need to be more efficient and se-
cure with less error free data transfer (e.g. in!'3?). In such
case, Bluetooth (BT) technology can be used for wireless
data transmission, or a cloud assisted BSN system can be
proposed. The optimization in terms of sensors positions is
another important issue, which is missing in all studies. Then
a method or a system can be generalized in terms of appli-
cations, for example a BSN system can be used for all types
of swimming styles (i.e. free-crawl, backstroke, breaststroke
and butterfly), unlike some methods (e.g.**28). Moreover,
some systems are useful for either indoor or outdoor games
(e.g. in?!1). The systems need to be designed so that they are
useful for both types of competitions. Further, the studies
can improve their performance by sensors fusion like the one
demonstrated in.!*!

6. VIDEO CAMERA BASED SYSTEMS USED
IN VARIOUS SPORTS FOR ILLUSTRATIVE
COMPARISON

In,* a study is done to monitor golf-swing performance

using 8 video cameras. Three different swing phases, i.e.

backswing, downswing, and follow-through, are measured

and cross-correlation analysis of time-series signals are per-
formed between joints and the club during the full golf swing
using a 3D motion capture system. The quality of the fore-
hand smash in badminton is measured in**! using a video
camera based system consists of 10 cameras. The trunk
rotation (X-Factor) is shown to be an important parameter
which is found to be vital to maximize the release speed of
the shuttlecock. In,3®! the rowers’ movements is captured
using an optical system using 8 video cameras. The rowers
performance is monitored on the ergometer over a distance
of 500 m by measuring time(s)/100 m, time(s)/500 m, num-
ber of drags (strokes) per min, and power (W). The work
in”! estimates the stroke rates of the swimmers by detect-
ing the swimmers and their poses using video data in the
swimming pool. The approach is evaluated at a wide variety
of swimmers including male/female and various age group
with different swimming speeds using nine videos with the

lengths vary from 20 to 60 seconds and are recorded at 50

frames per second.

An investigation has been made on the precision and reliabil-
ity using a new optical player tracking system to determine
the displacement of the football players. The participant’s
positions in the field have been determined on a 105 mx 68
m playing area using eight immobile high-definition video
cameras (Legria HF R38, Canon, Tokyo, Japan). Moreover,
two video cameras consisting 20 m of height have been setup
in four corners of the field and that permit continuous and
clear vision of the area.l*®
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Table 7. Types of problems associated with notes and the corresponding references

Reference Problems Notes
[13] Wireless communication is off line and not robust. Bluetooth (BT) can be used for wireless data
transmission due to its pervasiveness and low-power
consumption in real-time wearable system.
17 Not sufficient accuracy for feedback Needs more participants, more accurate
information to the swimmers. time keeping as well as more appropriate
swimming techniques for real-time feedback.
(211 Stroke count in free style swimming using head mounted Integrated accelerometer and GPS technology
accelerometer is not accurate. is not suitable not for indoor swimming.
(221 Single sensor system (e.g. sacrum mounted) is not able to
determine or infer the phases of the stroke with Needs to incorporate multiple sensor systems.
sufficient accuracy.
(231 Wireless data transfer and real-time implementation of the The real-time monitoring of the velocity can be useful
system need to be considered. for swimming pattern anomaly detection that is
very important to improve open-water swimming safety.
(241 Useful only for front-crawl swimming in Unlike camera-based system or tethered device,
cycle mean velocity (CMV) estimation. the system does not have limited capture volume which
is suitable to use in open water.
(231 The highest error free received data is only 60.3%. The experimental results are limited.
(261 The method works well for only freestyle swimming. The results depend on the swimming style of the swimmer.
(271 The system does not work for butterfly swimming style. Providing high accuracy for the swimming activities in
backstroke, breaststroke and front crawl swimming styles.
(281 Applicable in temporal phase detection Needs to show also the applicability
only for front crawl swimming. for other swimming styles.
(s8] Results are evaluated using RMS only. The method is simplified as it does not require additional
calibration. However, further improvement can be achieved
by increasing the angle determination accuracy.
(141 The performance of the prototype gameplay
tracking system is not high giving only 70% The system can be used for both ice hockey and skating.
accuracy during ice hockey game.
el The method is not automatic. Preliminary results are presented.
1201 The system does not have real-time ability. Provide high recognition accuracy and has potential to
use the system as a training device.
12l More training data is required. The system can automatically give recommendations
on the timing of the tennis player.
(191 Preliminary studies are done in tricks classification for The method is promising and needs to be implemented
freestyle snowboarding. in a real-time capable system.
(291 Only a single classifier (SVM) is used. Cloud assisted BSN approach can be exploited to solve
real-time remote data transmission to provide
an on-line motion monitoring system.
1301 The computational complexity is not addressed. Representative Deep CNN-based advanced
classifiers are used.
(311 Limited subjects are considered. The method leads to be an unobtrusive and low-cost ski
landing analysis system. However, more subjects are
to be considered for better results.
1321 Comparative such as Kalman filter based tracking Multiple sensors are used and detailed statistical analysis
results are not presented. is presented. Most importantly body movement (kinematic)
analysis is shown based on quaternion.
[33]

Complexities of the proposed window

segmentation method is not compared.

Detailed results by sensors fusion are presented.

Published by Sciedu Press
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Subsequently, wearable sensors have also been utilized to
determine the corroboration of the bowling action, both for
arm flex measurement and release point detection in cricket.
It can help both the players and the match officials to find out
if the bowlers are bowling within the guidelines whereas the
setup cost is very cheap. However, to determine the faults
or checking bowling actions, a motion analysis system is
needed which should contain at least 12 high speed cameras,
causing the arrangements highly expensive.!*!

From the above illustration, it is found that a typical video
based system would consist of as many as 8 cameras for
which the system is expensive and the set up as well as
processing are time-consuming.

7. CONCLUSION AND OPEN ISSUES

In this paper, we have overviewed the recent progress which
have been made on BSN for performance analysis in sports.
Various sports were considered and a compatibility between
sports, sensors, features, data analysis and classifiers as well
as their results of evaluation/performance is shown. The BSN
systems with inertial sensors are replacing the video-based
systems for performance monitoring in sports and removes
considerably the burden of demanding camera installation
and calibration procedure as well as the time consuming
video processing. One key feature is to design a BSN system
as an embedded system with less memory and computational
power to develop a small wearable device. Thereby, competi-
tion matches can be more efficiently analyzed, while amateur
players can use it as a training device to improve their own
skills and share their performances with other professional
players. However, most of the used sensors record the data
in a memory and then post processing can be applied. There-
fore, it requires to provide real-time solutions for the existing
BSN systems in sports.

One new issue is to replace Umpire Decision Review System
(UDRS or DRS) in the sport of cricket!*”! by proposing a
BSN system for decision making during the match. The
current DRS is a video-based system which requires expen-
sive installation or setup cost and also time consuming to
make a decision by the third Umpire. The BSN system, on
the other hand, can be much less expensive and fast. More
importantly, it could provide more correct decisions than the
current video-based DRS due to multi-modal motion analysis
of the incoming ball using 3D acceleration and 3D rotation
data from multiple wearable inertial sensors. Thereby, an
automatic and instant feedback can be sent to the Umpire
about the decision (e.g. leg-before-wicket [LBW], caught
behind, etc.). The decision of LBW can be made by using the
wearable sensors in the pads. The 3D trajectory of the cricket
ball can be calculated by 1D Kalman filtering!*!! of each
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acceleration data in the © — y — 2z axis and check whether the
ball would hit the wicket(s) after hitting the pad in front of
the wickets. If yes, the Umpire will confirm the decision for
LBW. The decision of caught behind can be facilitated by the
wearable sensors in the cricket bat. The accelerations in the
r — y — z axis can be measured using a 3D accelerometer to
find out whether there is a sudden increase in the acceleration
values. If it happens, the Umpire will confirm that the ball
has touched the bat as well as the caught behind decision.

The context-aware BSNs can be another future insight to han-
dle diverse dataset due to different positions of the sensors.
In this case, the position of a body sensor attached to may be
an important property in the sensor profile.[*?! If the dataset
is not annotated (or data labels are unavailable), a method to
encode the background knowledge, like the sensor profiles,
is required. Such design can facilitate each sensor in the
source-domain dataset to match its counterpart in the target
domain. In such case, the IMU consisting of accelerometer,
gyroscope, magnetometer together with a position sensor
providing the contextual information about the position of
the body sensor attached, can be used together. The other
future aspect is to look for collaborative BSNs!*?! where dif-
ferent BSNs able to collaborate with each other to fulfill a
common goal. For example, under multisensor data fusion
schema, a BSN system monitoring sports performance and
a BSN system capturing health/safety attribute (e.g. dehy-
dration,stress level) can be fused. These context-aware and
collaborative BSNs can be useful for long-term performance
monitoring using big sports data. The measured data of the
multiple sensors from the two BSN systems can be weighted
using the estimation equations in!**! for data fusion. The
output would be then used to monitor a more sophisticated
sports performance for a span of time. For example, the
stroke rate calculated from peaks of the acceleration data
and the heart-rate variability from angular velocity of the
gyroscope data can be fused for long-term monitoring of the
swimmer’s performance at different stress level over a period
of time.

Another open issue is to explore BNS systems for predicting
future performance in sports referring to an initial study
in.[** The performance rating for every player of the current
game is predicted in'*¥ using individual models of every
player, average model adapt to the mean performance of
all players, the performance of every player in previous
games. Multitask ridge regression and multitask support
vector regression (SVR) are proposed for learning the model
parameters by minimizing the objective function (i.e. mean
absolute error) to predict the future performance rating of
the soccer players. The proposed multitask generalizations
of ridge regression and support vector regression provide
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efficiently learning player-specific models. Many informa-
tive features (e.g. players identity, features from preceding
games, such as goals, passes, dribbles, offense, defense,
etc.) and feature selection using a modified recursive feature
elimination strategy are used for optimization. A player’s
number of goals and dribbles, for instance, correlates pos-
itively with good grades, whereas the number of opponent
shots correlates negatively with player scores. By predicting
the ratings of every selected candidates, it could assist the

main coach, main selectors, and captain in sports like cricket
or soccer to select the final 11 players before the game.
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