
www.sciedu.ca/air                                                                                                         Artificial Intelligence Research, 2013, Vol. 2, No. 2 

                                        ISSN 1927-6974   E-ISSN 1927-6982 28

ORIGINAL RESEARCH 

A connection between discrete individual-based and 
continuous population-based models: A forest 
modelling case study 

Pablo Gómez-Mourelo, Marta Ginovart 

Departament of Applied Mathematics, E.T.S. Ingenieros Industriales, Universidad Politécnica de Madrid, Spain 

Correspondence: Marta Ginovart. Address: Department of Applied Mathematics III, Universitat Politècnica de Catalunya, 
Campus Baix Llobregat, Esteve Terradas 8, 08860 Castelldefels (Barcelona), Spain. Telephone: 34-935-521-133. Email: 
marta.ginovart@upc.edu. 

Received: July 2, 2012  Accepted: September 13, 2012  Online Published: February 18, 2013 
DOI: 10.5430/air.v2n2p28             URL: http://dx.doi.org/10.5430/air.v2n2p28 

Abstract 
Modelling is perceived as a way of dealing with real life activities. The aim of this work is to compare two approaches to 
study forest dynamics, namely discrete individual-based and continuous population-based models, in order to contribute to 
an improvement in their use among researchers. An analysis of the strengths, weaknesses, opportunities and threats of the 
two different approaches, jointly with a mention of the state-of-the-art, allows us to illustrate this discussion. We will also 
provide a bridge or connection between these two modelling methodologies. This link will be developed in detail in a 
particular study case. Firstly, an individual-tree based model to deal with dynamics of forests is presented. Secondly, this 
model is scaled up to a system of partial differential equations, which represents the limiting behaviour of the individual- 
based model.  
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1 Introduction  
To represent, analyse and discuss aspects or ideas related to biological systems from a general perspective modelling is a 

necessary tool. With this in mind, teaching science and doing research based on the elaboration of models is widely 

accepted in the academic community. 

The discussion among theoretical biologists on reductionism versus holism has been featured in many publications. 

Reductionists break systems down to their smallest blocks of interest, trying to recover large-scale phenomena from small- 

scale mechanisms. Those with a holistic view prefer to deal with aggregated properties of systems first, and then add 

complexity by considering the inner structure of the system. These different views of theory construction are mirrored in 

any research field; there are those who would rather build highly simplified models first, adding later new variables in 

order to increase the realism, while others prefer to start by including every aspect of the system, perhaps eventually 

discarding many of them as the modelling process proceeds [1-4]. The alternative views may thus converge towards similar 

models but not necessarily.  
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For instance, most of the population biology theory arose from very simple differential equations where a single variable 

represents population density; solutions of these are analyzed mathematically, and potentially compared to abundance 

estimates from field or lab observations [5, 6]. Although these models have had a great influence on ecological theory, their 

aggregated form is particularly difficult to relate to observational biology. As this aggregated view of a population is 

highly simplified, many extensions have been made to incorporate (1) size, age or physiological structure (leading to 

coupled systems of differential equations); (2) space (leading to metapopulation models in which a population is broken 

down into distinct patches, or in the case of continuous space to partial differential equations); (3) discrete generations 

(leading to difference equation models and matrix models); (4) stochastic effects (leading to birth and death processes and 

stochastic differential equations). As extensions are added, the models become less analytically tractable and considerably 

harder to analyze except numerically, and not always with enough confidence and success [7, 8]. However, the use of such 

extensions may well be required, to ensure the models are sufficiently realistic to be applicable to specific problems in 

managing natural systems. Modern theory construction should not be bound by the limits of analytical mathematics. The 

new field of computational ecology is an attempt to combine more realistic models of ecological systems with the often 

large data sets available to aid in managing these systems, utilizing techniques of modern computational science to manage 

the data, visualize model behaviour, and statistically analyze the complex dynamics which arise [9-12]. This often involves 

the use of Geographic Information Systems to provide underlying static or dynamic maps of abiotic and biotic factors, 

which are of importance in the natural system for specific interest [13]. Computational ecology will further intensify as a 

necessary way to analyze complex problems of natural system management involving the coupling of detailed, spatially- 

explicit ecological models with physical models for abiotic components and the attendant effects on the system of human 

actions. 

One reductionist approach in ecology analyses systems based upon the actions of individuals. Modelling the behaviour of 

individuals and testing whether this behaviour leads to realistic system-level properties is a natural idea. Individual-based 

models (IBMs) track the behaviour, growth, reproduction and death of individuals, from which they build up the dynamics 

of aggregated units such as populations and communities. IBMs were developed sporadically and independently as soon 

as adequate computers were available. In fact one of the early models that was very influential and contributed 

significantly to the establishment of IBMs was a forest model [14, 15]. Giacomini et al. [16] pointed out that traditionally, the 

dynamic of community assembly was analyzed by means of deterministic models of differential equations, and despite the 

theoretical advances provided by such models, they are restricted to questions about community-wide features.  

Understanding the collective behaviour of communities and populations in terms of individual performance is one of the 

main goals of theoretical ecology. For instance, the dynamics of tree populations are determined by birth, death, the 

change in the state of trees (individuals), and the interactions between them, and also by exogenous events such as natural 

or human disturbances. Individuals (trees) differ with respect to their properties or states, mainly size or age, and they may 

experience spatially heterogeneous living conditions, such as nutrient supply or physical environmental conditions 

(intensity of light, humidity, temperature, among others). They may also be affected differentially by random events. 

These differences among trees lead to a variability in the population which can strongly influence its overall dynamics. 

IBMs offer an opportunity to link bionomic features to patterns at the community scale, allowing us to understand how 

trait-based assembly rules can arise by dynamical processes [16]. 

Many existing forest models can be classified by specific criteria. We can distinguish between empirical (phenome- 

nological) models, which mathematically describe specific behaviour, and theoretical (mechanistic) models with a 

biological basis, which search for the underlying mechanisms driving already observed phenomena. We can also 

distinguish between primary, secondary and tertiary models, by examining their treatment of the effects of external factors 

and constraints on the tree population under study. 

Over the last decades significant IBMs have been widely used in mathematical biology [15, 17, 18]. IBMs are used to simulate, 

study and analyse biotic populations. The use of spatially explicit IBMs has extended in ecology. The ability and 
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computational capability in tracking single individual trees makes this modelling methodology valuable in forest studies. 

At the same time, the treatment of the space has a very important role in the dynamics of tree populations [19]. Spatially 

explicit IBMs are bottom-up approaches to tree communities or forests that build links between the description of the trees 

at a unit level and macroscopic observations at a community level. Berec’s study [20] was the first attempt to collect and 

synthesize detailed information about four different frameworks in which spatially explicit IBMs could be defined. 

Classic mathematical models used in forest dynamics studies usually describe the population of trees through a top-down 

approach (population-based models). They deal with continuous equations that are applied to the whole population (or to 

fractions of the population in more structured models) and reflect essential tree mean (or median) properties. The variables 

taken into account by these kinds of models represent macroscopic quantities and averaged (or typical) individual 

attributes. The input parameters stand for measurements performed on the whole collective system. Individual activity is 

implicitly inferred from the overall observed behaviour of the system. 

An IBM is based on a population description at the individual level, approach called Lagrangian, as opposed to the 

population-level framework, called Eulerian (which takes an average of the individual features). A significant number of 

published forest models containing IBM or PDE strategies to deal with the dynamics of tree populations can facilitate the 

presentation of features and properties of these two methodologies and illustrate the ideas presented in this study. For 

example, the articles Kohyama [21-23], Kohyama & Shigesada [24], and Kohyama & Takada [25] are particular cases of the use 

of PDEs. On the other hand, for instance, SORTIE is a well-known published IBM to deal with forests in the north-east of 

United States and was introduced by Pacala et al. [26] and Pacala & Deutschman [27], and some tasks were performed in the 

visualization of the simulation results achieved with this complex model [28]. The papers written by Pacala & Tilman [29], 

Pacala et al. [30], Bolker & Pacala [31], Lischke et al. [32], and Moravie & Robert [33] describe IBMs along the same lines as 

those used in this study. In recent years, other IBMs have been presented by diverse authors on account of a significant 

increase in the use of this methodology [34-36]. 

The general aim of this paper is first the assessment and comparison, followed by the connection of these two approaches 

to study forest dynamics, namely individual-based and population-based models. If we intend to weigh up the charac- 

teristics of these two methodologies, which are currently being used and developed in forest studies, it is convenient to 

have a wide mental representation and avoid excessively detailed pictures. Therefore, with a general overview of 

modelling forest dynamics, and in order to evaluate these two types of models, an analysis of these methodologies is 

carried out following the ideas of a successful strategic planning method used in other research fields, the SWOT analysis. 

Moreover, a way to attain a deeper understanding of these methodologies is to investigate the connections between both 

formulations. For this reason, guidelines for constructing an individual tree based model and specific points of attention in 

the individual-based modelling cycle are provided in a pedagogic style example to illustrate this framework. With the 

design of this general forest IBM, the procedure to obtain its corresponding Partial Differential Equations (PDEs), the 

equivalent continuous population-based model or the PDE counterpart, is described in detail. The resulting PDEs are 

equivalent to this IBM in a way that needs to be clarified and discussed throughout the paper. Because each model is built 

in response to a particular question and with different purposes, understanding the relative capabilities and possible links 

between these two approaches is interesting for system modellers and simulators. 

The paper is organized as follows. Section 2 includes the SWOT analysis of the two modelling strategies: IBMs and 

population-based models. Section 3 contains some biological information on the evolutions of tree populations to be 

incorporated in whatever model we wish to build up, IBM or PDE. Section 4 includes a description and formulation of a 

general IBM for a tree population to be used in the following section, which builds up its corresponding continuous 

version. In Section 5 the basic ideas to develop a set of PDEs specifically applied to the IBM prepared are presented. 

Section 6 mentions some forest models, IBMs and PDEs, to consider and illustrate the ideas of the preceding sections. 
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2 A SWOT analysis for discrete individual-based models 
versus continuous population-based models  
in the study of tree populations 
In general, SWOT analysis involves specifying the objective of a project and identifying the internal and external factors, 

both favourable and unfavourable, to achieving that objective. The purpose of any SWOT analysis is to assess these key 

factors. That is, it is a strategic planning method used to evaluate the Strengths (S), Weaknesses (W), Opportunities (O) 

and Threats (T) involved in a project. Although SWOT analysis is generally employed in business and resource 

management, it can also be used in a knowledge-based non-profit context [37]. The objective is the construction of a model 

to study forest dynamics. SWOT analysis groups key pieces of information into two main categories: i) internal factors, the 

strengths and weaknesses internal to the model and, ii) external factors, the opportunities and threats presented by the 

external background. The analysed features of a model can be classified into “Strengths” and “Weaknesses”. 

“Opportunities” cover the current and potential applications of each method to specific real systems, and also account for 

those factors aiding their further development, and “Threats” describe the risks and limitations of each method. The 

SWOT analysis is often used in academia to highlight these positives and negative factors, being particularly helpful in 

identifying expansion areas. The adaptation of this analysis method to assess modelling strategies has already been used. 

For instance, Ferrer and co-authors [38] applied this analysis to evaluate the use of individual and population based models 

in the field of predictive food microbiology. SWOT analysis is not just one method of categorization; but may be useful to 

persuade modellers to think about what is actually important in achieving objectives. The internal factors may be viewed 

as strengths or weaknesses depending upon their impact on model objectives.  

To deal with the connection between IBMs and population-based models to study forest dynamics it is compulsory to 

recognize and distinguish their features. SWOT analysis of these two different approaches will be helpful for an overall 

discussion, after the passage from discrete to the continuous formulation, in order to identify what is being lost and/or 

gained. Tables 1 and 2 show the characteristics of both approaches and a tentative classification of their strengths, 

weaknesses, opportunities and threats in a forest modelling context. These tables should be considered as ‘dynamic’; they 

try to summarize our analysis, but it is not possible to circumvent that some of the reflected facts depend on the specific 

forest application under study and may vary in the near future with the progress of both approaches. On the other hand, the 

SWOT analysis can be used as input for the creative generation of possible strategies by asking and answering each of the 

following four questions: i) How can we use and capitalize on each “Strength”?, ii) How can we improve each 

“Weakness”?, iii) How can we exploit and benefit from each “Opportunity”?, and iv) How can we mitigate each 

“Threat”?. They are not easy questions to answer; nevertheless, the answers depend on the specific purposes and 

applications that drive the development of a model. 

Some researchers believe that IBMs are characterized by an intuitive design and appearance and are relatively easy to 

implement in a computer. Many scientists use them to avoid PDEs, mathematical formulations requiring an exact 

analytical solution or an approximate numerical solution, because they consider the computer simulations more 

straightforward. In contrast, others think in another way, only giving credibility to a PDE system and its numerical 

resolution (or its analytical solution, which exists in rare cases). These latter researchers avoid the discrete visualization of 

the tree community that a forest modeller has when using an IBM. On the other hand, IBMs usually include randomness, 

because knowledge of phenomena they model usually includes some uncertainty. The stochasticity within IBMs makes 

them yield different outcomes in different executions of the simulation. Individual based, stochastic models have the 

potential to realistically describe population dynamics. However, they are not mathematically transparent [32]. This event 

can leave scientists insecure over the results and accuracy of the model. Alternatively, IBMs incorporate more biological 

complexities for tree behaviours and their interactions than classical and continuous state variable models. In some cases 

the IBM approach can be less general, applied to more specific situations than those used by classical models. The 
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apparent simplicity of some IBMs is compensated for by their greater level of biological details when the species to be 

simulated are well known. Then, changing model parameters is essentially changing environmental or individual features. 

Table 1. List or scheme of “Strengths” or favourable internal factors, “Weaknesses” or unfavourable internal factors, 
“Opportunities” or favourable external factors, and “Threats” or unfavourable external factors for discrete IBMs to be used 
in a forest study 

Bottom-up approach HELPFUL HARMFUL 

INTERNAL ORIGIN 

STRENGTHS 
 A relatively simple structure easy to 

understand for non-mathematicians 
 Explicitly relate the variability of the global 

response to the spatial and temporal 
variability of individual trees 

 Biological basis of the parameters defined 
at an tree level 

 Holistic knowledge of the system: 
assessment of how collective behaviour 
arises from the assumptions stated at tree 
level 

 Capacity to study separately the different 
tree factors may cause particular forest 
behaviour 

 Can easily deal with small number of trees 
that can have an important effect over the 
overall community 

WEAKNESSES 
 Lack of standard methodologies to detailed guide 

model building and to assess its reliability 
 Usually slow to implement and often require high 

computing capacity 
 Habitually excessively data-hungry 
 Some individual tree parameters difficult to 

measure with current experimental 
methodologies 

 Different and big temporal and spatial scales 
covered with difficulty 

 Uncertainty of such single tree-based models at 
the stand level is hardly assessable (the error 
propagation from the tree to the stand level is 
intricate) 

 Not amenable to analytical methods such as 
stability analyses or closed-form solutions 

EXTERNAL ORIGIN 

 
OPPORTUNITIES 

 The way to track the connection between a 
population-level defined law and the 
biological basis supporting it 

 An efficient framework for including and 
integrating factors operating at different 
spatial and time scales 

 Structurally realistic can be used as a 
virtual laboratory to experiment and 
improve the understanding of processes 

 Chance to guess tree parameters that are 
difficult to measure or indirectly calculate 
from experimental observations 

 Appropriate tool to compile the 
information found in databases at a tree 
level and make it usable for continuous 
models 

 Statistical advances and increasing 
computing power enable a better estimation 
of the prediction errors 

 
THREATS 

 Difficulty in the analysis of IBMs may hinder the 
extraction of synthetic understanding 

 Complex structure and non-standard variables 
and parameters may impede their development, 
understanding, comparison and communication 

 Difficulty in assessing error propagation and the 
degree of confidence of a simulation result may 
cloud the distinction between coincidence and 
cause 

 The validation of an IBM does not ensure that the 
proposed mechanism is the real cause of the 
behaviour studied 

 Comparing a tree-based model with others is 
difficult, because the context, the approach and 
the complexity are specific to each model 
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Table 2. List or scheme of “Strengths” or favourable internal factors, “Weaknesses” or unfavourable internal factors, 
“Opportunities” or favourable external factors, and “Threats” or unfavourable external factors for continuous and 
population-based models to be used in a forest study. 

Top-down approach HELPFUL HARMFUL 

INTERNAL ORIGIN 

STRENGTHS 
 Widely employed and accepted formalism 
 Standardized methodologies in the process 

of building, implementing and testing 
models 

 Easily usable by other researchers when it 
is already programmed by experts 
numerical researchers 

 Rapid and effective in the framework of 
forest dynamic in certain institutions of 
management or conservation 

WEAKNESSES 
 Sometimes neglect individual variability and 

local interactions, or at least, is difficult to 
implement and to manoeuvre 

 Need translation to gain insight into trees 
 Hinder biological interpretation of the model’s 

parameters 
 An extra unwarranted parameter may improve 

the model’s likelihood but not its reliability 
 Existing information at a tree level that cannot 

easily be integrated at the population level 

EXTERNAL ORIGIN 

OPPORTUNITIES 
 New models that incorporate existing 

standardized models may be developed 
 Models developed in the framework of 

vegetal production may be exported to 
other fields and vice versa 

 Easily provide the criteria for monitoring 
and analyzing real systems in the 
framework of natural resources 

 Data from databases referring to real 
systems are easily incorporated 

THREATS 
 Choice of system-level assumptions may 

eventually lead to misunderstanding of the tree 
individual-causes of an observed phenomenon 

 The difficulty in specifying the scope of validity 
of a certain assumption may lead to incorrect use 
of a model outside its domain 

3 Some basic biological features on forest evolution 
Below we present a few ideas about forest evolution that will help put in context the assumptions made in this work and 
shared by many other models [9]. Some of those ideas are explicitly incorporated in the model presented in the next section. 
In general, the establishment, growth and mortality of individual trees can be modelled and simulated as a function of 
biotic and abiotic factors. Here we do not consider forest functions that deal with biogeochemical cycling of carbon and 
nitrogen, or the flow of water through the ecosystem, or competition-interaction with other life forms. On the other hand, 
the mortality of a large tree produces a gap in the forest, leading to the release of suppressed trees and increased tree 
recruitment rates, both of which drive forest succession.  

Tree diameter at breast height (DBH) is a commonly used variable, with its growth treated as a deterministic process. A 
tree’s height is obtained through an allometric function of DBH. The optimal growth function of a tree depends on the 
diameter and is basically limited by the influence of available light, the stand basal area considered and the annual 
degree-day sum (the climatic influence) fundamentally.  

Leaf Area Index (LAI) must be known to reproduce light competition because it is a key measurement for understanding 
energy and materials exchange rates between forest canopies and the atmosphere, and can be related to the tree diameter. 
Theoretical and empirical linkage between LAI and light interception, among other processes, is well established [39]. This 
LAI is defined as the ratio of total upper vegetation leaf surface and surface land area where vegetation grows. It is a 
dimensionless value, typically ranging from 0 for bare ground to 6 (or to 8) for a dense forest. From tree height and leaf 
area at the top of each tree, light extinction within the canopy is predicted using the Beer-Lambert law [39] which allows the 
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calculation of the relative light availability for the tree. Its relative growth performance will depend on this value (due to 
the relationship with photosynthesis) and its shade tolerance level. The paper of Pacala et al. [30] is especially illustrative as 
a way to model light influence. In this work we are not considering other resources such as water, nutrients or 
environmental heterogeneity, because we focus here on the relevance of light as a resource for tree growth. Roughly, tall 
trees cast shadows and reduce the light intensity received by smaller ones, and light intensity increases the speed of 
growth. Trees grow and develop bigger and thicker cups, casting shadows over their neighbours. If a tree dies, a gap 
appears in its location, leading to a new race for light. All these phenomena generate feedback and forest dynamics.  

4 A generic IBM to study forest dynamics 
There are several ways to construct IBMs [15]. The purpose here is to mention the basics of a spatially explicit forest model. 
Some type of spatial grid can be set up; otherwise, a continuum treatment of the space is performed [20]. There are two basic 
methods to track time sequences of individual behaviour in these models. One of them has a fixed underlying time step 
where all individuals are taken into account, considering changes in behaviour or state variables for each of them. If this is 
done sequentially, care must be taken to randomize the order of acting individuals to avoid bias. Otherwise, event-based 
models take each individual to determine when next behaviour or state variable change occurs, and ignores that individual 
until this time is reached. Such event-driven approaches may be more computationally efficient, as not every individual 
needs to be investigated each time period. Parallelization methods for IBMs have been developed and indicate that basic 
model assumptions made for sequential versions may need to be modified in order to use parallel algorithms. The 
assumptions that could be modified concern the ordering of interactions between individuals and parallel implementations 
may well handle these in a more realistic manner than sequential implementations. 

The implementation of the model structure is influenced by the programming language [40]. Conventionally, object- 
oriented software platforms (e.g., Java and C++) are chosen to implement IBMs. The object-oriented paradigm’s main 
advantage is that the code resembles the system being modelled. For example, each individual in a population is 
represented by an object. Other times procedural languages (e.g., C and FORTRAN) are used and are usually chosen for 
speed. Due to recent advances, object-oriented programming languages can perform equally well as procedural languages. 

4.1 To create a spatial IBM for tree populations 
Key questions in developing an IBM involve setting appropriate spatial and temporal scales, deciding which individual- 
level state variables should be included and how to model them, how to formulate growth processes, reproduction, seed 
establishment, and mortality of the trees. These are not independent issues as setting the scales affects all these aspects of 
the model. The appropriate spatial scale would depend upon the activity pattern of a tree over the shortest time period of 
interest, accessibility of spatially-explicit information on spatial components affecting tree behaviour, and availability of 
information to accurately model the behaviour of the trees. 

Mono-species spatial models can be used in sophisticated evaluations of planting, spacing and harvesting schemes in 
commercial forests. Vital attributes considered at this point are the modes used by a tree in the establishment, persistence 
at a site, availability of a method for perseverance at different life stages, and longevity of trees. On account of the level of 
detail needed, these models synthesize great amounts of data that are usually only available for commercial species, so it is 
difficult to extend these models to mixed species forests. On the contrary, mixed-species spatial models can be developed 
to deal with theoretical studies and virtual experiments, which help comprehension of their computational behaviour, and 
some specific applications with real data. These models can explore the consequences of theories and assumptions on the 
nature of ecological successions based on the attributes of the species involved. Nevertheless, and for a general case of 
study, the basic IBM chosen and presented in this paper will be a mono-species spatial model. 
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4.2 A case of study: an IBM for a generic forest 
The present model follows some general tendencies of IBMs designed to study community dynamics. 

In order to present the IBM developed for this work, the ODD standard protocol, widely accepted for describing this type 
of modelling, is used [18, 41]. The acronym ODD stands for the three blocks of elements used: ‘Overview’, ‘Design 
concepts’ and ‘Details’, which contribute to further unification of the formulation and implementation of IBMs. This 
protocol combines a general structure for describing IBMs (making a model’s description independent of its specific 
structure and manner of its implementation) and the language of mathematics (separating verbal considerations from a 
mathematical description of the equations, rules and schedules that constitute the model). The sequence that is used in the 
presentation of this forest IBM consists of seven elements: Purpose, State variables and scales, Process overview and 
scheduling (‘O: Overview’), General concepts underlying the design (‘D: Design concepts’), Initialization, Input, 
Sub-models (‘D: Details’).  

4.2.1 Overview 

Purpose 

This model was developed for analysing generic single-species forest dynamics affected by light, environmental setting, 
and intra-specific competition. The forest consists of several mono-species trees within a square-shaped area. 

State variables and scales 

This model has two hierarchical levels: individual trees and simulated area. At the individual level, tree establishment, 
growth, mortality and competition for light are considered. At the spatial level it defines a homogeneous area with 
non-limiting abiotic conditions such as water or nutrient availability. An individual tree is described by its stem position in 
the continuous spatial domain, its age and its DBH (see Figure 1). The size of the simulation area can be arbitrarily 
attributed, a typical size being 1 hectare. The simulation time step corresponds to one month.  

 

Figure 1. The scheme of the system considered 

Process overview and scheduling 

The tree life cycle is described by three biological sub-models operating at monthly time steps. The first sub-model 
predicts the stem increment of the trees depending on their current stem diameter and light availability. The second 
simulates tree mortality depending on the age and light absorbed. The third sub-model considers recruitment. Newborn 
trees settle around the parent tree in a number proportional to the parent’s fertility (itself depending on its DBH). The 
seedling stage is skipped in this sub-model, so that new trees start their life with an initial height H0 and a stem diameter 
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DBH0. The biological sub-models are based on information from specialized literature [42] and other models [9]. Each time 
step, a sequence of processes is operated following the three biological sub-models: establishment, growth and mortality 
of trees. 

4.2.2 Design concepts 

Emergence 

We explicitly model the growth of each tree depending on surrounding conditions in the search for light, and the resulting 
mortality. Emergent system dynamics include the size of tree population (with control of dead trees), total biomass 
evolution, size structure of the forest (DBH classes), distribution of light availability, and spatial location of trees and 
canopy zones. 

Interaction 

Trees compete for light resources. Space is a critical feature of this competition, as long as trees cast shadows over 
neighbouring trees. This competition is phenomenologically described using the philosophy of “zone of influence  
models” [32, 43]. According to this approach, each tree has a circular, size-dependent zone around its stem position where the 
tree influences its neighbours and is influenced by them. The strength of competition depends on the size and leafiness of 
the trees. Each tree is assumed to be shadowed by all the taller trees in its neighbourhood (a tree’s neighbourhood is seen as 
a circle of a certain radius around the tree).  

Sensing 

Through their leaves, trees perceive light intensity conditions. Individual trees are “informed” about the light conditions at 
their stem position and the local neighbourhood situation via zone influence overlapping. 

Stochasticity 

This model includes stochastic processes. Firstly, newborn trees are established at random positions near the parent tree. 
Secondly, trees die according to random variables, where the probability distributions of these variables take into account 
environmental factors and individual features. All these stochastic elements collect all other factors either unknown or not 
explicitly used in our model. The simulation uses a pseudorandom number generator yielding different outcomes in 
different executions. 

Observation 

This simulator continuously records the state variables such as tree positions, DBHs, and the available light received by 
each tree. The output files can easily be imported onto a spreadsheet for analysis and visualization. Statistical procedures 
with stem diameters‚ tree biomasses, or tree heights (from their allometric relation with DBHs) provide further capabilities 
to analyse forest development. 

4.2.3 Details 

Initialization 

The initial number of trees is one of the input parameter of the simulation. They are distributed randomly in the domain. 
Their DBH is also chosen randomly and different probability functions for that variable are provided, namely Gaussian, 
uniform, and exponential. One of the future goals of IBM simulations is first, to test the population dynamics under 
different rules and initial distributions, and second, to compare these evolutions with the dynamics shown in nature. 
Therefore, the initial conditions can be defined without using the real distribution observed in the field data, and it is likely 
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that heterogeneities will emerge from those initial conditions, as occurs in nature. So, different initial conditions could be 
tested in simulation studies. 

Input 

Although the dynamics of forests are driven by certain environmental conditions which vary over space and time (seasons, 
years, rainfall patterns, soil nutrient gradients…), we do not impose any kind of dynamics for these external variables in 
this study. Only the source of light is considered. The available light above the canopy of the trees is assumed constant 
through the whole simulation throughout the domain. 

Sub-models 

Tree growth 

The growth speed of each tree depends on its DBH ݀  and the light ݈  received. How to model this growth speed, 
particularly its dependence on light intensity, is a key issue because our main goal is to understand the relationship 
between light and forest height density profile. We chose the following profile:  

ሺ݀ሻܩ ൌ
۔ۖەۖ
1.2			ۓ െ 0.5 ቀௗିଷ଴ଷ଴ ቁସ ,																																					0 ൑ ݀ ൏ ௠௔௫1.2ܦ0.3 െ 0.5 ቀௗିଷ଴ହ଴ ቁସ ௠௔௫ܦ0.3																				, ൑ ݀ ൏ 0.7				௠௔௫ܦ0.8 െ 0.7 ௗି଼଴ଶ଴ ௠௔௫ܦ0.8																																	,	 ൑ ݀ ൑ 	,	௠௔௫ܦ

                                 (1) 

where ܦ௠௔௫ is the maximum DBH considered. The new diameter computed for the tree is ݀௡௘௪ ൌ ݀௢௟ௗ ൅  may be understood as the growth speed under optimal light conditions. The final increment is then reduced by a ܩ ሺ݀ሻ݈.                                                                             (2)ܩ
correction factor l considering light availability at the stem position. There is no difference in using height instead of 
diameter in the previous code, because of the fact that both are equivalent through an allometric relationship. 

The computation of light availability is based on asymmetric competition and Beer’s law. Roughly speaking, the light 
availability for each tree can be computed from the basal area above, i.e., the sum of cup areas of trees present in the 
neighbourhood. Distant trees cast no shadow over the tree considered, hence are not computed, and this results in: ݈ ൌ 0.1 ൅ 0.9exp	ሺെ݈݂݂݁ܽ ൉  ሻ                                                                       (3)ܫܣܮ

where ݈݂݂݁ܽ is a constant representing the specific leafiness and LAI is ܫܣܮ ൌ ∑ 0.0006	݀௜ଶ௜                                                                                  (4) 

where the summation includes only the trees in the neighbourhood of the focused tree. LAI, as defined previously, is the 
ratio of total upper leaf area divided by land surface area.  

Tree mortality 

At each simulation step, the computer must decide whether each tree survives or dies. A tree is assumed to die for one of 

these reasons, insufficient light intensity (ܯ௟) or great age (ܯ௔). Also, a constant probability of mortality due to other 
uncontrolled reasons such as events caused by random effects, anthropogenic disturbances, logging, lightning or 
hurricanes is included. The probability for a certain tree to die between step t and t+1 is 
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ܯ ൌ 0.002 ൅ܯ௟ ൅ ௔ܯ െܯ௟ܯ௔	                                                                     (5) 

where 

௟ܯ ൌ 0.02 ቀ1 െ ௟ି଴.ଵ଴.ଽ ቁ                                                                              (6) 

௔ܯ ൌ 0.02 ቀ ௔஺೘ೌೣቁ଺                                                                               (7) 

Where Amax is a reference value for the maximum tree age. This treatment keeps the maximum tree age within a reasonable 
limit.  

We assume that M depends only upon the present situation and not on previous history of the tree. However, it would also 
be reasonable for future versions to include some influence of previous history, because long-term light scarceness can 
induce the death of a tree [9].  

Tree recruitment 

At each simulation step, each tree spreads seeds in its neighbourhood. It is a known fact that only a fraction of the seeds 
generated by a tree, in the end, turn into young trees as many seeds die before achieving this stage. These early dead seeds 
have no influence in further evolution of the forest, so they are omitted in this study; only ‘effective’ seeds are tracked. 
This does not lead to any loss of information or generality. Each ‘effective’ seed produces a new tree. Newborn trees start 

their development (in the simulation) with a height randomly chosen between ܫ஽	 and ܫ஽ ൅ 0.1ሺܦ௠௔௫ െ ܽ ஽ሻ, and ageܫ ൌ 1; only trees with a DBH ݀ ൐   .௠௔௫ are fertile treesܦ	0.2

These sub-models presented are enough to illustrate the aims of this work, but in future research each tree history should 

be considered, among other individual features or environmental factors. The precise form of the functions ܩ ൌ ܯ ሺ݀ሻ andܩ ൌ ,ሺ݈ܯ ܽሻ is arguable; it is not our intention at the moment to discuss particular functions but to obtain global ideas for 
these processes. The input values of fertility, leafiness, seed dispersal radius and neighbourhood radius are user-chosen. 

4.3 Implementation of this forest IBM developed 
A tree is modelled as the following object: 

 struct tree {   
    float x; !  x position in the 2D terrain 
    float y; !  y position in the 2D terrain 
    float diameter; !  tree’s diameter 
    float age;  !  tree’s age 
    float light; !  light received by tree 
 }   

Computationally speaking, a forest is seen as an array of tree structures. Each different tree is assigned an integer number 
called index (in the array). This index designs a unique tree along the whole simulation and each tree is assigned one sole 
index. Newborn trees acquire a new index, not previously used, and any index used by a dead tree is not re-used later. The 
value index is used to access/read/modify/delete data on the tree throughout the simulation. The ‘terrain’ of the simulation 
is a rectangle domain_width x domain_height. Trees will be situated in this 2D space at coordinates (x,y). IBMs are 
time-discrete simulations, that is, time is divided in time steps ∆t. As previously remarked, the main processes taken into 
account are growth, death and recruitment. Space is considered, as trees are influenced by their neighbourhood. With all of 
this, the forest is a set of trees evolving (growing, dying and being born) on a 2D continuous domain (the space is not 
discretized). A general IBM for forest succession may be structured in different blocks or parts.  
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Initialization 
for time=1 to time=number_iterations 
   tree_growth 
   tree_death 
   seed_dispersal 

end_for 

The main blocks of this IBM are tree_growth, tree_death, and seed_dispersal. Of course, these main blocks include sub- 
blocks such as computing light intensity, adding trees, deleting trees, aging tress, and others that are more technical 
(manage computer memory, write data to an output file, compute histograms and statistical data, etc.). 

The initialization block is to ‘draw’ or prepare the initial scenario of the simulation with trees placed in a certain 2D 
domain, with pre-set ages and heights. A rectangle 2D domain can be considered as the natural scenario of the simulation. 
At time t = 0, trees are randomly placed in the domain, following pre-established density distributions.  

For instance, a piece of the computer code to calculate the size of the neighbourhood to be used in the growth model must 
be specified elsewhere in the simulation as follows: 

basal_area_above(tree): 

sum=0 
for tree_counter=1 to tree_counter=trees_number 
   dist = distance(tree, tree_counter) 
   if (dist < neighb_radius) AND (height(tree) < height(tree_counter)) 
   Then 
     sum = sum + area(tree_counter) 
   end_if   
end_for 
basal_area_above = sum 

Another code part of the simulator to decide whether a certain tree survives or dies at a specific time step is as follows. 

death_decision(tree):  

rn = random_number(0,1) !  generates a random number between 0 and 1. 

M = mortality_rate(tree)    !  computes mortality rate 
if (rn < M)   
   delete(tree)  
end_if  

5 Obtaining a PDE equivalent to the forest IBM 

5.1 General considerations 
According to Capasso [44] and Oelschlaeger [45], under certain conditions, there exist Partial Differential Equations (PDEs) 
approximately equivalent to the IBM. For instance, the way to obtain this equivalent PDE from a particular IBM has 
already been explained in two different cases: a cancer tumour invasion in a healthy surrounding tissue [46], and a yeast 
population growth in a liquid medium [47].  
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A brief, general overview of the ideas below this passage or connection between PDEs and IBMs is presented in this 
section, but mathematical details are omitted. For detailed knowledge the interested reader may refer to the previously 
cited works or specialized literature (s.e. [48-50]), in addition to some examples of application (e.g. [51]). Later on we apply 
these ideas in a study case: a forest succession model, using the IBM explained in the previous section.  

The mathematical description of any IBM needs to distinguish between two kinds of processes: continuous and point 
processes. By continuous processes we mean those being produced at every time t at a certain rate (such as migration, 
growth and aging), whilst point processes include those induced by qualitative changes (such as birth, death and mutation). 

We assume an IBM whose individuals are tagged by integer numbers k=1,.., N. The state of particle k at simulation step t 

is represented as the ‘generalized position’ d-dimensional vector ܲ௞ሺݐሻ ൌ ൫ݔଵ௞, ,ଶ௞ݔ … ,  ൯. The components of this vector	ௗ௞ݔ

not only include the spatial position, but also the relevant state variables such as age and diameter (height). Individual k can 
experience the two types of processes mentioned earlier. 

As such, the whole configuration of the system at a certain time t is described by the so-called empirical measure  

ேܲሺݐሻ ൌ ଵே∑ ௉ೖሺ௧ሻே௞ୀଵߜ                                                                        (8) 

Where ߜ௨ represents the Dirac measure at point u. 

We assume that PN(t) converges, as N goes to infinite, to a process with density ߩ ൌ ,ଵݔሺߩ ,ଶݔ … ,  ሻ. Under this	ௗݔ
assumption and with the requirements set out below the density ρ is the solution of the PDE  

డఘడ௧ ൌ െ׏ሺݒߩሻ ൅ ߩܾ െ  (9)                                                                    ߩ݀

Where b is the recruitment rate, d death rate and v generalized speed under suitable boundary conditions. 

It is important to make some remarks about the limitations of this passage from IBMs to PDEs. This passage is not 
infallible in all cases; it is not expect to be applicable to all-type of IBMs, only to those including motion and demography. 
For example, IBMs considering communication between individuals or other complex features are untranslatable into 
PDE terms. Furthermore, as stated in previous paragraphs, the limiting procedure assumes several hypotheses, such as 
N→∞. Obviously, we are not modelling an infinite set of trees. We are not claiming that an exact and precise IBM/PDE 
equivalence is being presented; we are simply assuming that the IBM is reasonably similar to the limiting PDE formulation 
obtained. These limitations are relevant and must be kept in mind at all times.  

5.2 Application to the case of study of the forest IBM developed 
The forest model presented takes into account some hypothesis, i.e. the growth process is treated as continuous in time 
with a rhythm function of light intensity, whilst death and reproduction are punctual phenomena that happen only at 
certain times. There is no transition between species, and parent trees give birth to daughters of the same species (no 
mutations).  

According to these assumptions, the mathematical description of the IBM is as follows. The state of the k-th tree at instant 

t is the 4-dimensional vector ܲ௞ሺݐሻ ൌ ሺݔ௞, ,௞ݕ ݄௞ሺݐሻ, ܽ௞ሺݐሻሻ. The pair ሺݔ௞,  ሻ represents the 2-dimensional position on	௞ݕ

the domain, the component ݄௞ሺݐሻ	 stands for tree height, and ܽ௞ሺݐሻ	 for tree age. The height varies with time and growth 

rate 	݃ሺ݈ሺݔ௞, ,௞ݕ ݄௞ሺݐሻሻ; ܽ௞ሺݐሻሻ, where ݃ሺ݈; ܽሻ stands for growth speed of tree with age a that it is receiving a light 

intensity l; ݈ ൌ ݈ሺݔ, ,ݕ ݄) is the light intensity received at position (x,y) and height h. Aging evolves at ݀ܽ௞ ൌ  simply) ݐ݀

time passing). Birth and death are two point processes, because birth accounts for seed generation at rate ܾ, whereas death 

accounts for trees disappearing at rate ݀. 
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As noted in the previous section, all newborn trees have age a=0, so the birth term b will not appear in the evolution 
equation but in the boundary condition. Building up all these ideas, the reaction-diffusion PDEs system equivalent to the 
IBM is 

డఘడ௧ ൌ െ డሺ௚ఘሻడ௛ െ డఘడ௔ ൅ ߩܾ െ  (10)                                                                  ߩ݀

Where ߩ ൌ ,ݔሺߩ ,ݕ ݄, ܽሻ  stands for tree density, with initial conditions ߩሺݐ ൌ 0ሻ ൌ ∗ߩ  and appropriate boundary 
conditions (which must be obtained and discussed for the particular domain and forest to be modelled). 

 

Figure 2. Scheme of flow chart of the IBM simulator 

6 Discussion 
In the previous section we have written a PDE inspired by the biological phenomenon under study. We started from a 
biological description, and then wrote an IBM, and after that obtained the corresponding PDE description. We have 
attained a classical PDE approach for the same phenomenon. The particular forms of the growth function, shade tolerance, 
effectiveness of light use, thresholds for tree establishment, mortality rates, among others, are species-specific. So far we 
have considered a virtual ideal species whose function forms have been chosen in order to be able to reproduce qualitative 
trends rather than quantitative results. We obviously know that species have very complex and different particularities, but 
for simplicity it is a good strategy to assume that the features of the species are described well enough by the following 
four aspects: birth rate function, mortality rate function, growth speed function and tolerance to shade. Light competition 
and shade tolerance are considered key factors of forest stand structure and dynamics.  

Knowing the connection between both levels of description is useful to understand how properties emerge at the PDE level 
and also to keep the advantages of both: the PDE level for analysis and the IBM level for an intuitive and easy design. The 
passage for this connection is already well-known for independent particles, but not so well-known when there are 
interactions between them, as is the case in most biological models, as long as individuals tend to relate between 
themselves. The question whether the IBM and the PDE obtained are equivalent arises. At first sight, this question may be 
unessential, because all the steps have a rigorous mathematical nature under certain conditions. However, the fact that the 
IBM is like a “discretisation” of the differential equations involved in this construction might have introduced some 
differences between the two models. Another reason may be the different nature of the continuous and discrete 
approaches; the limit when the number of trees approaches infinity is considered in this connection in order to achieve a 
continuous description. This passage is intuitively clear, but differences could exist between the finite and infinite cases. 
The limiting process we used to derive a PDE approach assumes that the number of trees involved in the IBM is 
sufficiently large, and this can be a reasonable explanation for differences between the outcomes of both approaches. For 
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instance, this assumption could not be sufficiently satisfied for the initial stages of the simulation where few trees were 
handled or after a natural “disaster” where only a small number of trees were alive. The level to which these disparities 
would arrive could be a motivation for future implementations of these two approaches in order to obtain quantitative 
results. Another source of dissimilarities could be the stochasticity associated with, or intrinsic to, the rules or updates that 
take place in the IBM. In the case developed in the previous section, stocasticity has been little used but could be used in a 
more extended way, for example in the tree growth or in the calculation of light received, but it is not the case with the PDE 
(stocasticity would not be included in that sense). Many of the features of the IBM are naturally represented by integer 
values leading to discontinuous jumps along the simulation, and random variables are used in order to introduce variability 
in the system's evolution and composition. However, the PDE approach cannot reproduce these behaviours accurately, as 
it yields continuous, deterministic, smooth results and diagrams. The optional addition of a diffusive term in the PDE may 
be understood as the PDE-scale consequence of individual-scale random events or factors not controlled by the model. 

Implementation of the forest IBM designed in a suitable framework to carry out simulations and the numerical resolution 
of the PDE obtained, would allow us to compare quantitative results. As the IBM includes randomness, the comparison 
between both approaches should be statistical. This is an interesting point to consider. On one hand, we deal with a 
deterministic tree density depending on time ρ(x, y, h, a), a numerical solution of the PDE formulated, and on the other 
hand we can handle a set of trees with their own characteristics from the IBM constructed, and those values must be 
compared. For every time t, both distributions should be similar. To test this similarity we could imagine that the tree 
density depending on time ρ(x, y, h, a), was taken as the ‘theoretical’ distribution, while a specific configuration of the 
IBM was taken as the ‘empirical’ one. In this line, two previous studies in the area of biology can be cited to illustrate 
quantitative results in the comparison of IBMs and PDEs, comparisons of the observed macroscopic and microscopic 
behaviour of an IBM with the corresponding differential equation counterpart of this IBM were shown. The first study is 
about an application to the upstream movement of elvers [52] and the second is a study on yeast populations [47]. These types 
of works provide a further insight into the possibilities of both modelling tools and their connections.  

The numerical resolution of a PDE proves daunting beyond some spatial dimensions, and when studying biological 
systems, many individual features are usually considered. In the case of the trees further properties or individual features 
could be added easily, as well as variables related with memory, or previous history of the tree, or individual energy 
reservoir, which can determine future individual behaviours. While we thought of including a corresponding term in the 
PDE, it increased the complexity far too much. As roughly each individual feature yields another spatial dimension in the 
PDE counterpart, the resulting PDE soon becomes intractable. While it is quite simple to add new attributes into the IBM 
computer code, the same strategy proves unfeasible in the PDE counterpart. The ease of implementation of some 
individual actions also differs from one approach to the other. While they may be easily included in the IBM, they can 
correspond to twisted, hard-to-analyse terms in the PDE. It is necessary to use a simplified version of a forest continuous 
model in order to keep the PDE counterpart reasonable and tractable. 

As IBMs are computational models, the forest IBM developed has to be implemented in a computer code and executed in 
a convenient framework in order to be able to analyse the simulation results or outcomes. It is also true that a forest IBM 
can carry high computation costs when dealing with many trees which interact and evolve in a changing environment The 
possibility of having convenient computerized frameworks to deal with IBMs would greatly facilitate this task and may 
help in the efficient production of  the forest simulator. Among other options, such as constructing the computer code with 
an object-oriented programming language or procedural language, the use of specific platforms prepared to work with 
IBMs is an alternative. For instance, NetLogo (among other agent or individual-based simulation toolkits) is a good option 
for this implementation and it is a free tool accessible on the Web (http://ccl.northwestern.edu/netlogo/). The resolution of 
the PDE with boundary conditions needs numerical recipes and mathematical software when analytical resolution is not 
possible (in fact, this is only possible with rather simple PDEs). The proper use of these mathematical tools is not trivial. 
IBMs do not require a profound mathematical knowledge and can be very helpful for non-experts, or those who have 
previously worked with some kind of discrete modelling, being more accessible and intuitive. However, IBMs are less 
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standardized than PDEs as a scientific tool. The game-like appearance of IBM simulations is still considered by some 
scientists to be a mark of the lack of scientific rigour, something never discussed regarding any PDE approach (although it 
is true that nowadays, in the biological arena, this feeling is disappearing).  

Other kinds of approximations can use different modelling approaches leading to new constructions. The combination of 
discrete and continuous modelling strategies is a good alternative in some cases, depending on the focus of the problem, 
combining the strengths of both PDE and IBM models. Lischke et al. [53] present “TreeMig”, a spatially explicit, 
grid-based and spatially linked forest-landscape model. This model is hybrid: within-cell dynamics evolve according to 
certain height-structured models, whilst inter-cell dynamics are assumed to follow Poisson distributions.  

7 Conclusions 
In this work we have considered the study of the evolution of tree populations in a spatial domain by using two approaches: 
one, a computational individual-based perspective; the other, a partial differential equations perspective reproducing the 
same phenomena.  

In general, the model type used in the study of forest dynamics or tree populations is based on the problem under 
consideration, the data available, and the aspiration to develop a malleable model widely adaptable to diverse scenarios. It 
is desirable that these models could be flexible enough to be used in constantly changing environments, or heterogeneous 
planted tree genetics, or when external perturbations take place in the forest. One of the purposes of computational 
researchers, where the generators of IBMs can be included, is to explore modelling techniques in order to achieve a more 
mechanistic approach, with a better understanding of tree growth and forest yield. IBMs seem to be better prepared to give 
these answers than PDEs. For instance, the introduction of some of those ideas of changing environments, heterogeneous 
trees or external perturbations are processes that could not be introduced in the variables and equations of PDEs 
constructed straightforwardly, in counter-position to the intuitive incorporation of those ideas in the procedures that made 
up the computer codes of IBMs. We believe IBMs to be valuable, but their limitations must be known and appreciated.  

Strengths, weaknesses, opportunities and threats (SWOT) analysis of these two different approaches in the forest context, 
IBMs and PDEs, has been made to give an overall idea of the possibilities of discrete modelling and continuous modelling 
dealing with a populations of trees evolving along the time. 

The individual-based approach assumes more explicitly the inherent complexity of individuals that the PDEs do. We 
believe that IBMs can yield better results in specific systems than PDEs. The use of IBMs in forest succession has 
increased in recent years, perhaps due to the intuitiveness of their modelling and representation. IBMs can now represent 
the complex interplay between the local environment and each individual tree in the community. Nevertheless, complexity 
is also the major liability of IBMs as it becomes increasingly difficult to manage this kind of model. Moreover, IBMs are 
stochastic rule-based models and so, it is convenient to compare and contrast them with other modelling classical 
techniques such as PDEs.  

A bridge between both approaches, IBMs and PDEs, has been developed under certain restrictions or requirements. A 
sequence of steps and ideas to establish this connection, based on mathematical reasoning, has been exposed in a very 
general forest model. An equivalent PDE formulation of the forest IBM designed has been obtained as an example of how 
to proceed. Our passage establishes the relationship between the Lagrangian scale and the Eulerian scale, because an IBM 
corresponds to the former point of view, and a PDE to the latter.  

In comparison, mathematical continuous models are (at least in principle) easy to analyse and easy to communicate (their 
language is mathematics). Sometimes PDEs can be studied and analysed through standard tools of mathematics, not 
always due to the use of numerical methods and the convergence of their numerical solutions. But, there is no established 
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method to obtain conclusions from an IBM, and modellers obtain results by using their intuition. As (most) IBMs include 
stochasticity, different runs of the same IBM yield different outcomes; sometimes this randomness does not help in 
obtaining conclusions from a model. 

There is no reason to consider continuous (or more classical) modelling and IBMs as incompatible or exclusive 
methodologies since they can be complementary to each other, which is convenient for many biosystem modelling 
projects, specifically related to forests or tree populations. The presentation and discussion of these two modelling 
methodologies applied to the study of a specific biological system, a population of trees, can contribute to the 
improvement in the teaching of models and their use for researchers. The fundamental and underlying ideas of the two 
different approaches, top-down and bottom-up, as well as their relationship, will be helpful for current and future users.  

Modelling is perceived as a way of dealing with real life activities. Acquisition of the capacity and ability to autonomously 
carry out all aspects connected to the modelling process in a specific context is very significant. This contribution is an 
attempt to facilitate those acquisitions, or at least to transmit the main ideas involved in the two modelling processes 
chosen here, illustrating them with a specific application in the field of natural science. 
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