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ABSTRACT

This paper proposes to develop a model-based Monte Carlo method for computationally determining the best mean squared error of
training for an artificial neural network with feedforward architecture. It is applied for a particular non-linear classification problem
of input/output patterns in a computational environment with abundant data. The Monte Carlo method allows computationally
checking that balanced data are much better than non-balanced ones for an artificial neural network to learn by means of supervised
learning. The major contribution of this investigation is that, the proposed model can be tested by analogy, considering also the
fraud detection problem in credit cards, where the amount of training patterns used are high.
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1. INTRODUCTION

There are several books and papers mathematically describ-
ing the Monte Carlo method.[1–5] Nevertheless, it is needed
a minimum knowledge of Statistics, in order to better un-
derstand this method. Classic bibliographic references on
statistics and stochastic processes can be found in.[6–8] Monte
Carlo method is a way of solving problems by using random
numbers. This method is largely used for computational
simulation models. In this context, simulation is defined as
a technique that emulates an operation of real world system
insofar, as this system evolves in time. An appropriate way
of simulating the behavior of variable types to be analyzed
is through the development of a simulation model by using
probability distributions of discrete event known as Monte
Carlo method.

According to Metropolis,[1] it is possible to deliver complex
analytical mathematic models, which modeled the iterations
between nuclear particles, in order to model the rules and
statistics that governs each stage of a process. Starting from
a uniform statistical distribution and mapping it, for the dis-
tributions interesting to a given problem, it was possible to
process multiple decisions chains (simulations) and draw out
relevant outcomes with an accuracy that is compatible to the
one relevant for analytical methods.

The use of artificial intelligence has allowed great advances
in the computational area.[11, 16, 18] The most successful ap-
proach has been the use of the artificial neural network, al-
lowing, for example, writing recognition, image processing,
modeling of nonlinear dynamic systems, applications in con-
trol theory, among others. A good introduction to artificial
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neural networks theory can be found in.[11, 18, 19] A very im-
portant starting point in the study of artificial neural networks
is that they are considered universal approximators of func-
tions.[9, 10, 12–15, 17]

In study[20] the problems of classifying patterns involving
unequal probabilities in each class are treated and discussed
in detail. In it, the authors discuss metrics for systems that
use neural networks of multilayer perceptrons (MLP) for the
task of classifying new patterns. In study[21] a new semi-
supervised probabilistic detection structure is proposed using
a special neural network structure called Probability Posterior
Support Vector Machines (PPSVM) to classify unbalanced
data. So the hierarchical probabilistic model of PPSVM
is used for anomalies detection in order to alleviate unbal-
anced data problems with small samples and to improve the
accuracy of detection of unbalanced classes.

In study[22] the novel algorithm based on analysis of variance
(ANOVA) combined with fuzzy c-means (FCM) and bac-
terial foraging optimization (BFO) are proposed to classify
unbalanced data. The algorithm is supported by simulation
results. In the results of this simulation, the accuracy of the
classification of the proposed algorithm can surpass other
existing approaches. In study[23] it is mentioned that the
performance pattern of a neural network can be influenced
by several factors. One of these factors is related to the
considerable difference that may exist between the number
of examples belonging to each class to be recognized. The
so-called unbalanced data effect may negatively influence
the ability of a neural network to learn the concept of the
minority class.

Initially, the difference between balanced and non-balanced
data should be explained. Non-balanced data are data where
the amount of data with zero outputs and data with one out-
put are discrepant, for example, 99% of patterns with outputs
equal to zero and just 1% of patterns with outputs equal to
one is a good example of non-balanced data. In a perfect
case, balanced data occur when there are 50% of patterns
with outputs equal to zero and 50% of patterns with outputs
equal to one.

This paper intends to accomplish a Monte Carlo simulation
to estimate the best mean square error to train an artificial
neural network with feedforward architecture, for example,
Multilayer Perceptron (MLP) networks or Radial Basis Func-
tions (RBF). Two case studies will be considered involving
balanced and non-balanced data networks. On these case
studies, only the specific case of non-linear classification
problem of patterns where the net outputs are zero or one
will be considered. Next we mathematically define the prob-
lem that will be addressed throughout this article.

Definition of the problem addressed: To the training patterns
of input of the neural network given by the vectors ~xj for
j = 1, 2, · · · , p and for ~xj = [xj

1.x
j
2, · · · , xj

n]T where n is
the input dimension of the neural network and for the out-
put patterns of the neural network given by scalars yj for
j = 1, 2, · · · , p, where p is the total number of training pat-
terns, then the vectors ~xjs and the scalars yjs make up the
input/output patterns of the neural network. For the particular
case of a pattern classification problem, the scalars yjs can
assume only the discrete values {0, 1}. Let, by definition,
be the scalar p = n1 + n2, where n1 is the total number
of training patterns that assume the value 1 and n2 the total
number of training standards that assume the value 0. Then,
the scalar n21 = n2

n1
is defined as the balancing factor of

the training patterns. The problem to be addressed here is
to make some a priori estimates of the mean quadratic error
of neural network training and to find out how they vary
as a function of the balancing factor n21 for the particular
problem of pattern classification. Because it is an estimate,
it will not be necessary to perform any real neural training
to obtain these values. It is intended to conclude mathemati-
cally, using the Monte Carlo Method, that unbalanced data
require a more rigid mean square error than balanced data.
Balanced data are those data where the value of n21 are very
close to one and unbalanced data have values of n21 very far
from the unit value. Only by mere convention to be followed
from beginning to end of this article, the values associated
with n2 will express the sense of abundance of data and
the values associated with n1 will express the sense of data
scarcity. There are several papers in the literature (see[19–23])
describing class imbalance in pattern classification problems.
However, as described here, nothing was found about it.

This paper is divided into the following sections: In section
2, there is a brief description of the Monte Carlo method;
section 3 presents a detailed analytical description of the
behavior of the mean squared error of neural training for bal-
anced and non-balanced data; section 4 presents a detailed
flowchart of the proposed Monte Carlo algorithm; section 5
discusses some numerical outcomes obtained; and section 6
shows the conclusions, concerning the proposed method.

2. THE MONTE CARLO METHOD
The Monte Carlo method represents a way of solving prob-
lems by using random numbers. This method is largely used
in computational simulation models. In this context, simu-
lation is defined as a technique that emulates an operation
of real world system, insofar as this system evolves in time.
A suitable way of simulating the behavior of the type of
variables that one intends to analyze, as it can be seen in
Figure 1, is through the development of a simulation model,
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by using discrete event probability distributions known as
Monte Carlo method. By using the Monte Carlo method, it
is possible to establish accurate geometrical considerations

of the length and area of complex Figures from purely prob-
abilistic considerations. This is due to its great ability of
generating random numbers inherent to computers.

Figure 1. The use of computers in real world problems simulation through the Monte Carlo method

Let us explain Figure 1 through a simple example. Consider
the problem of estimating the integral of function f over a
unit interval. We can represent the integral

(1)

as an expectation E[f(U)], with U uniformly distributed
between 0 and 1. Suppose we have a mechanism to generate
random point U1, U2, · · · , Un independently and according
to a uniform distribution in the interval [0,1]. In this way,
evaluating the f in these n points and calculating their mean,
we obtain the following Monte Carlo estimate[4] for the inte-
gral (1):

(2)

If f is actually integrable over the interval [0,1] then by the
law of large numbers, α̂n → α with probability 1, when
n → ∞. However, the most interesting fact of calculating
this integral is that the error of estimate α̂n can be determined
by applying the standard deviation formula:[4]

(3)

Thus, from the random values f(U1), f(U2), · · · , f(Un) of
the function f , we obtain not only an estimate of the integral
(1), but also the error of this estimate.

An important consideration concerning the Monte Carlo
method is that it is based on the real analogy between prob-
ability and volume, including the volume considered in n-
dimensional space. The mathematics of measurement[4] for-
malizes the intuitive notion of probabilities by associating

an event with a set of possible occurrences and defines the
probability of an event to occur over the whole universe of
occurrences. The Monte Carlo method uses this identity in
an inverted way,[4] that is, by providing the volume calcula-
tion of a set through interpreting the volume as a probability.
This means that random or aleatory samples of a universe of
occurrences of interest — exhaustively generated by the com-
puter — lead to a subset of laws that form that considered
volume.

The Generation of Random Numbers - any computer simula-
tion of a physical system that involves randomness includes
a method to generate sequences of random numbers, for ex-
ample, a simulation of line systems involves the generation
of interval between the arriving of people and the time of
attendance of each client. Random numbers should always
fulfill the physical process properties they are simulating and
the computer numerical simulation involves the generation
of long sequences of random numbers, and for this reason, it
involves the generation of random variables with pre-defined
distributions.

Many numerical problems in science, engineering, finance,
and statistics are currently solved by the Monte Carlo method,
that is, by the means of random experiments performed in
a computer. In such a way, the heart of any Monte Carlo
method is a random numbers generator: a procedure that
produces an infinite sequence

(4)

of random variables that are independent and identically dis-
tributed (iid), according to any probability distribution. The
concept of an infinite iid sequence of random variables is a
mathematical abstraction that might be impossible of being
implemented in a computer. The maximum that a computer
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can obtain is an approximation of that, because in practice,
an infinite sequence of random numbers is impossible.

A vast common category of random numbers generators is
based on simple algorithms that can easily be implemented in
a computer. Those algorithms can usually be represented[5]

for a tuple (S, f, µ, U, g) where:

• S is a finite set of states;
• f is a function from S to S;
• µ is a probability distribution over S;
• U is an output space, for example, for a uniform ran-

dom generator, U is the interval (0,1);
• g is a function from S to U .

So, computationally, a random number generator should have
the following structure:[5]

The Algorithm 3.1 (Generic random numbers genera-
tor):

(1) Starting - generate the seed S0 of a probability distri-
bution µ over S. Establish t = 1;

(2) Transition - Establish St = f(St−1);
(3) Output - Establish Ut = g(St); and
(4) Repetition - Establish t = t + 1, and come back to

step 2.

The above algorithm produces a sequence U1, U2, U3, · · ·
of pseudo-random numbers. They can be referenced as ran-
dom numbers only. A very important definition is the one of
length period of a random generator numbers. Length period
is, by definition, the fewest number of steps that an algorithm
takes before entering again in an already visited state.

The most common methods to generate pseudo-random se-
quences use linear recurrent relations. Three types of random
generators, much used in the literature, are:[5] Linear Con-
gruential Generators, Multiple-Recursive Generators, and
Matrix Congruential Generators.

Another important question is how to generate a sequence
of random numbers, according to a normalized Gaussian
distribution (mean xm = 0 and standard deviation σx = 1)
from a uniform distribution. This can be easily answered
from the Central Limit Theorem that states that an addition
of any probability distribution tends to be a Gaussian one,
when the number of samples tends to infinity. It is impor-
tant to note that all Monte Carlo simulations that will be
performed in this article will consider only Gaussian distri-
butions. The Laplace-Gauss probability distribution function
is mathematically defined as:

(5)

where µ and σ are two constants or parameters and y is the
continuous variable. It can be mathematically demonstrated
that µ and σ are respectively the mean value and the standard
deviation of this probability distribution.

It is interesting to notice that when n measurements of
a random process indicated by the sets of measurements
{y1, y2, · · · , yn} are known and if there is evidence to be
a Gaussian distribution, then mean and standard deviation
values can be roughly calculated by equations (6.a) and (6.b)
and these values can be substituted in equation (5) to deter-
mine a continuous Gaussian probability distribution for the
n discrete values known.

(6)

It is evident that the sample of data should be meaningful, in
order that the continuous approximation may suitably adapt
itself to the discrete values given.

3. THE ANALYTICAL ANALYSIS OF MEAN
SQUARE ERRORS

In order to begin the analytical analysis of the mean square
error, one will start from the mathematical definition of mean
square error. This definition is expressed in the following
equation (7)

(7)

where ȳi is the desired value of the estimator and ŷi is the
value estimated by the estimator.

It is interesting to notice that for binary classification of pat-
tern problems, for example, in determination of credit card
frauds, where one has the value 1 to represent the fraud and
the value 0 to represent the absence of frauds, one can di-
vide the mean square error into two portions as indicated in
equations (8.a) and (8.b)

(8)
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where n is the total number of training patterns; n1 is the
number of training patterns with output 1 (frauds or lacking
data); n2 is the number of training patterns with output 0
(absence of frauds or data in excess); and n = n1 + n2.
Being so, it is stipulated from now on that e2

m1
is the mean

square error of the lacking data and e2
m2

is the mean square
error of data in excess. The equation (8.a) can be simplified
as follows:

(9)

The equation (9.d) is the equation of a line in the form
y = q − px (notice that this line has a negative bending).
In a first analysis on the consistency of equation (9.d), one
should notice that when n1 = 0, there is the specific case
of e2

m2
= e2

m, that is, the total absence or lacking of data
implies that e2

m2
only depends on e2

m. In order to check this,
it is enough to do the following calculation:

(10)

being n1 = 0 in equation (10), one has

(11)

Something that should be noticed in relation to the line given
equation (9.d) are the two points of the line that cut the coor-
dinated axes. This significance is justified further up. This
way, in order to calculate the point that cuts the abscissa, that
is, the point (0, e2

m2
), one does the following mathematical

operation:

(12)

The equation (12.c) implies that the point (0, e2
m2

) =

(0, n1+n2
n2
· e2

m) belongs to the line (12.a). In order to calcu-
late the point that cuts the coordinate axis, that is, the point
(e2

m1
, 0), one does the following mathematical operations:

(13)

The equation (13.c) implies that the point (e2
m1
, 0) =

( n1+n2
n1
· e2

m, 0) belongs to the line (12.a). From equations
(12.c) and (13.c), one has the two pursued points, given by:

(14)

Figure 2 illustrates the equation of the line given by equation
(10). An analysis of the graphic of Figure 2 allows one to
elaborate isoparametric lines in relation to the variable e2

m.
These lines can be seen in Figure 3, which illustrates isopara-
metric lines in relation to the variable e2

m for balanced data,
that is, n1 = n2 = n

2 . Notice that the points that intercept
the coordinated axes for balanced data are given by:

(15)

It is interesting to observe that the point (e2
m1
, e2

m2
) =

(e2
m, e

2
m) belongs to the equation of the line given by e2

m2
=

n1+n2
n2
· e2

m − n1
n2
· e2

m1
, independently of the chosen values

for n1 and n2. The demonstration of that is simple enough,
as it can be inferred from as follows:

(16)
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Hence, the point (e2
m1
, e2

m2
) = (e2

m, e
2
m) belongs to the line

given by equation (10).

Figures 4 and 5 illustrate isoparametric lines, in relation to
the variable e2

m for non-balanced data, that is, n1 = n2
1000 .

Notice that the points that intercept the coordinate axis for

balanced data are given by:

(17)

Figure 2. The graphical illustration of the equation of the line given by equation (10) for balanced data

Figure 3. Isoparametric lines in relation to the variable e2
m for balanced data
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Demonstration: From the equation (14.a), the pair (0, e2
m2

)
is calculated as follows:

(18)

Equivalently, from the equation (14.a), the pair (e2
m1
, 0) is

calculated as follows:

(19)

Thus, Figures 4 and 5 present isoparametric lines for the
non-balanced case. Notice that, for non-balanced data, the
dispersion between e2

m1
and e2

m2
is much greater than for the

balanced data case. In fact, for non-balanced data case this
dispersion can reach the infinite.

Figure 4. Isoparametric lines for non-balanced data, that is n1 = n2
1000

Figure 5. Isoparametric lines for non-balanced data, that is n1 = n2
1000
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An important issue concerning the equation of the line given
by equation (10) is the point where e2

m1
= 1. For this point,

in particular, one has:

(20)

Therefore, the point (e2
m1
, e2

m2
) = (1, n

n2
·e2

m− n1
n2

) belongs
to a line in Equation (10). Now, one has all needed infor-
mation to elaborate a Monte Carlo algorithm to estimate the
training behavior of a neural network in function of mean
square error. For this, one needs to divide the simulation into
three distinct parts, as follows:

(1) Analytical behavior of mean square error of perfectly
balanced data, that is, n1 = n2;

(2) Analytical behavior of mean square error of extremely
or completely non-balanced data n1 � n2;

(3) Analytical behavior of mean square error of interme-
diate data, which are more or less balanced or equiva-
lently more or less non-balanced.

Balanced Data - based on empirical observations, one can
state that for perfectly balanced data, the neural training con-
verges to the point (e2

m1
, e2

m2
) ∼= (e2

m, e
2
m) (see Figures 6,

26, and 27), that is, around the intersection of the line of the
mean square errors and the bisector line of the coordinate
axis. Thus, one can formulate the first simulation hypothesis.

H1: For perfectly balanced data, the neural training con-
verges to (e2

m1
, e2

m2
) ∼= (e2

m, e
2
m).

Justification for H1: One should notice that the ordered
pair (e2

m1
, e2

m2
) must necessarily be contained in a point of

the line present in Figure 6, and never out of it. As data
are perfectly balanced, one expects that the chosen point for
the neural training convergence might be around the point
(e2

m, e
2
m), that is, the mean point of the line of Figure 6.

Figure 6. Analytical behavior of mean square errors among perfectly balanced data

Completely Non-Balanced Data - also based on empirical
observations, one can state that for perfectly non-balanced
data the neural training converges according to H2.

H2: For completely non-balanced data (n1 �� n2), the
neural training converges to H2 (see Figure 7).

If
(

n1+n2
n1

)
·e2

m ≤ 1, so, consider the convergence pair given

by (e2
m1
, e2

m2
) =

((
n1+n2

n1

)
· e2

m, 0
)

(in the worst case).

If
(

n1+n2
n1

)
·e2

m > 1, consider the convergence pair given by(
1,
(

n1+n2
n2

)
· e2

m −
(

n1
n2

))
for n12 = n1

n2
< − e2

m

e2
m−1 and

e2
m − 1 < 0 (first existence condition) or n12 = n1

n2
= e2

m

e2
m−1

and e2
m − 1 6= 0 (second existence condition). These both

existence conditions do not need to be filled. At the same
time, only one of them should be satisfied in each simulation.
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Figure 7. Analytical behavior of mean square errors among non-balanced data

Justification for H2: When any neural training is performed,
after some training periods have elapsed, it is to be expected
that mean square errors (e2

m,e2
m1

and e2
m2

) stay confined
at any point between 0 and 1; In other words, it is war-
ranted at least a minimum of learning. Thus, values greater
than 1 and less than 0 for mean square errors are not al-
lowed in Monte Carlo simulations, which are those one
intends to perform in this article. Based on this, the first
conditional for H2 states that if e2

m1
=
(

n1+n2
n1

)
· e2

m is
less than 1, the training algorithm is forced to converge
to the convergence point given by

((
n1+n2

n1

)
· e2

m, 0
)

(in

the worst case). If e2
m1

=
(

n1+n2
n1

)
· e2

m is greater than
1, the training algorithm will prefer the convergence point(

1,
(

n1+n2
n1

)
· e2

m −
(

n1
n2

))
, because e2

m1
cannot be greater

than 1, due to the minimum learning criteria (see Figure 7).
In Figure 7, it is possible to notice that the point

(
e2

m1
, 0
)

can be located before the coordinated point (1,0) or after
it. The previous argumentation took these two cases into
account. Beyond this, notice that Figure 6 shows that for
perfectly balanced data, the point (e2

m, e
2
m) divides the mean

square errors line into two equal parts. Nevertheless, for non-
balanced data (see Figure 7), though the point (e2

m, e
2
m) still

belongs to the mean square errors line, this point always is in
an asymmetrical position near the coordinated axes source.

The first and the second existence conditions are imposed to
avoid negative values for e2

m2
, because the means of mean

square errors can never be negative. So, one should notice:

(21)

The last inequality equation of (21) is re-presented as fol-
lows:

(22)

So, the inequality (22) can be unraveled in three cases:

(23)

Values of e2
m2

that result in (e2
m − 1) = 0 should be avoided,

in order to avert problems of division by zero in equality
(23.c). Values of e2

m2
that result in (e2

m − 1) > 0 can be
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disregard, because the most important simulations will be
performed for values of e2

m in the interval e2
m2

. This way,
the most important inequality that interests is (23.b).

Partially Unbalanced Data - For intermediate data, one can
choose to do a linear interpolation or an exponential interpo-
lation on both extreme points indicated in H1 and H2. In this
case, one should consider the following two situations:

If
(

n1+n2
n1

)
· e2

m ≤ 1 so consider two in-
terpolations, one interpolation on the points((

n1
n2

)
= λ∞, e

2
m1

=
(

1 + n2
n1

)
· e2

m = (1 + λ∞) · e2
m

)
(maximum imbalance point) and (

(
n1
n2

)
= 1, e2

m1
= e2

m)
(perfectly balancing point) to establish the value of e2

m1
,

and another linear interpolation on the line e2
m2

=
n1+n2

n2
· e2

m − n1
n2
· e2

m1
to determine the value of e2

m2
.

The first of these two interpolations for the determination
of e2

m1
can be a linear, as well as an exponential one. The

variable λ∞ is an adjustment constant and a very great value
where occurs a total imbalance.

If
(

n1+n2
n1

)
· e2

m > 1, so consider two interpolations, one
interpolation on the points((

n1
n2

)
= λ∞, e

2
m1

= 1
)

(maximum imbalance point) and

(
(

n1
n2

)
= 1, e2

m1
= e2

m) (perfectly balancing point) to estab-

lish the value of e2
m1

, and another linear interpolation on the
line e2

m2
= n1+n2

n2
· e2

m − n1
n2
· e2

m1
to determine the value of

e2
m2

. The first of these both interpolations for the determina-
tion of e2

m1
can be a linear, as well as an exponential one. In

such a way, one can formulate H3 as follows:

H3: For partially non-balanced data, that is, 1 <
(

n2
n1

)
≡

n21 < λ∞, one has whenever:
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For

(24)

where λ∞ is a great value where a total imbalance of data
occurs (it is an adjustment constant) and 1 < n21 =

(
n2
n1

)
<

λ∞. As it can be noticed, there are two allowed interpolations
to determine e2

m1
: one is linear; and the other is exponential.

They practically produce the same outcome, and therefore, it
does not matter which of them ones uses in practice. Again,
there are three existence conditions for the mean square error
e2

m2
. Nevertheless, only one of them needs to be satisfied at

the same time for each Monte Carlo simulation.

A question remains: How can one find the expressions for
the linear or exponential interpolation? In order to answer
this question, see Figure 8, which considers the specific case
of condition (i) in H3.

Figure 8. The linear interpolation for the determination of e2
m1

, for partially non-balanced data
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As it can be noticed in Figure 8, a linear interpolation be-
tween the points((

n1
n2

)
= λ∞, e

2
m1

=
(

1 + n2
n1

)
· e2

m = (1 + λ∞) · e2
m

)
and (

(
n1
n2

)
= 1, e2

m1
= e2

m) produces the following line
equation:

(25)

By isolating the variable e2
m1

of equation (25), it results in:

(26)

Equation (26) is the same as the one, which appears in con-
dition (i) of H3. Similarly, the exponential interpolation uses
the same extreme points that were used in linear interpolation.
However, instead of using an equation of a line, one uses
the equation of an exponential. So, a possible exponential
interpolation would be:

(27)

By subtracting the Napierian logarithm in both sides of equa-
tion (27), one has:

(28)

where p and q are adjustment parameters. By substituting
both extreme points (λ∞, (1 + λ∞) · e2

m) and (1, e2
m) in

equation (28), it results in the following linear system:

(29)

By solving (29) linear system, one has:

(30)

This way, the exponential interpolation equation results in:

(31)

Analogously to the interpolation that appears in condition

(ii) of H3, the following linear interpolation can be obtained:

(32)

By isolating the variable e2
m1

of equation (32), it results in:

(33)

Equation (33) is the same as the one that appears in condition
(ii) of H3.

Remark - For partially non-balanced points, it is not neces-
sary to consider the case e2

m1
< e2

m, because this will never
happen, if one takes care to consider only values less than
1 for e2

m, that is always e2
m ≤ 1. Thus, the first existence

condition for partially non-balanced data is not needed.

To finalize this section, an important result can be obtained
by calculating the limit for n1 = 1 and n2 →∞ in equation
(9.a). Using L’Hôpital’s well-known rule to avoid indetermi-
nation of the type∞/∞, we have:

(34)

Equation (34.b) simply states that when there is only one
fraud, mixed with an infinity of non-frauds, the value of e2

m

will only depend on e2
m2

, independently of any value, which
is for e2

m1
, zero or infinite. Put another way, for this extreme

case of imbalance, the neural network completely loses its
ability to learn the fraud.

4. THE MONTE CARLO PROPOSED ALGO-
RITHM

Based upon the previous sections and also on the mathematic
tooling presented up to here, it is possible to propose a Monte
Carlo algorithm to preview the theoretical behavior of neural
training errors between balanced and non-balanced data for
a typical non-linear classification problem of training pat-
terns. It is assumed the particular case of having only two
classes: an output equal to zero or an output equal to one.
The proposed algorithm can be divided into three parts:

• The Monte Carlo algorithm for perfectly balanced data
(see Figure 9);

• The Monte Carlo algorithm for partially non-balanced
data (see Figures 10 and 11); and

• The Monte Carlo algorithm for completely non-
balanced data (see Figures 12 and 13).
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Figure 9. The Monte Carlo algorithm for perfect balanced data
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Figure 10. The Monte Carlo algorithm 4.2 for partially non-balanced data (Part I)
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Figure 11. The Monte Carlo algorithm 4.2 for partially non-balanced data (Part II)
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Figure 12. The Monte Carlo algorithm 4.3 for completely non-balanced data (Part I)
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Figure 13. The Monte Carlo algorithm 4.3 for completely non-balanced data (Part II)
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Nevertheless, before presenting these three partial algorithms,
the input and output variables of the proposed algorithms are
established as follows.

 

 

1. Input Variables 

 0,1 2 me  is the global mean square  

1n  is the total number of data in the minority 

2n is the total number of data in the majority 

21 nnn   is the total number of training patterns 

1
1

2 









terco
n

n  is the theoretical relation from where a total 

imbalance occurs (high value adjustment constant)  

1

2
21 n

n
n   should be a value in the interval  ,1  

2

1
12 n

n
n   

2

1

21
me

n

nn
rc 







 
  

 
2. Output Variables 

2

1me  is the mean square error of data in minority (frauds) 

2

2me  is the mean square error of data in majority (non-frauds) 

In fact, outputs are Gaussian curves with well-established means 

and standard deviation, that is, 2
1me

x , 2
1me

 , 
2

2me
x  and 

2
2me

 . 

The random vectors that obey these Gaussian distributions are 

respectively 
1nx


 and 

2nx


. The dimension of 
1nx


 is 1n  and 

the dimension of 
2nx


 is 2n . The random vectors 

1nx


 and 

2nx


 are effectively the algorithm output. 

The same rule is always valid for the three proposed algorithms, 

that is, one should establish: the mean square error 
2

1me ; the mean 

value of the dispersion 2
1me

x ; the standard deviation of 
2

1me
  

dispersion; the normal random vector 
1nx


; and the projection of 

1nx


 vector values inside the interval ]1,0[  for data in minority. 

The value of 2
1me

  standard deviation is established by the 

expression 32

1me , because this warrants the Gaussian random 

vector 
1n

x


 
has all its values limited in the interval ]1,1[

1me  with 

99.73% of sureness. This is repeated for data in majority. In order 
to follow all the progress of this algorithm, it is necessary an 
attentive reading of section 3 of this paper. 

 

5. THE NUMERICAL IMPLEMENTATION OF
MONTE CARLO ALGORITHM

The numerical outcomes presented in this section were nu-
merically obtained from the MATLAB application. The
developed algorithm was exactly the one described in detail
in section 4 of this paper. A total of 11 numerical simula-
tions were performed (see Figures from 14 to 24). All of
these simulations were performed with n2 = 650, 000 and
λ∞ = 26. If one allows n1, varying from 650,000 to 25,000,
it was possible to vary the value of n21, as presented in Ta-
bles 1 and 2. In most of simulations, the values of λ∞ = 26
and em =

√
e2

m were respectively established in 0.1000 and
0.3162. Nevertheless, these values were changed in Figures
from 22 to 24.

As all n1 values were altered, so the rc values also suffered
meaningful variations as presented in Tables 1 and 2. The
value of e2

m was strategically chosen equal to 0.1000, be-
cause by having these values in the case of balanced data,
the training classification of patterns with zero or one output
is satisfactorily obtained as presented in Figure 14. This
is a frontier value, because values a little greater than that
improve the classification of patterns just a little bit, and
values lesser than that meaningfully injure the classification
of patterns. What one intends here is to vary the value of n21,
more specifically, to increase it from 1 to 26 and check if the
classification of training patterns improves or worsens with
the imbalance of n21 for this specific frontier value adopted
for e2

m.

Table 1. Simulation of Numerical Data
 

 

 
 

Figure 
14 

Figure 
15 

Figure 
16 

Figure 
17 

Figure 
18 

Figure 
19 

1n  650,000 550,000 450,000 350,000 250,000 100,000 

2n  650,000 650,000 650,000 650,000 650,000 650,000 

21n  1.0000 1.1818 1.4444 1.8571 2.6000 6.5000 

2
me  0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 

2
me me

 

0.3162 0.3162 0.3162 0.3162 0.3162 0.3162 

rc  0.2000 0.2182 0.24444 0.2857 0.3600 0.7500 

By analyzing Figures from 14 to 18, it is verified that for
an unbalance up to n21 = 2.60000, the classification of pat-
terns does not worsen or improve. However, though a simple
visual inspection from Figures 14 to 18, it is verified that a
meaningful imbalance occurs in the classification of patterns.
But, by observing Figures from 19 to 21, it is noticed that
with the imbalance for n21, varying between 6.5 and 26.000,
the classification of patterns meaningfully worsens.
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Figure 14. The Monte Carlo simulation for perfectly balanced data, that is n21 = 1.0000 and rc = 0.2000

Figure 15. The Monte Carlo simulation for partially balanced data, with n21 = 1.1818 and rc = 0.2182

Figure 16. The Monte Carlo simulation for partially balanced data, with n21 = 1.4444 and rc = 0.2444
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Figure 17. The Monte Carlo simulation for partially balanced data, with n21 = 1.8571 and rc = 0.2857

Figure 18. The Monte Carlo simulation for partially balanced data, with n21 = 2.6000 and rc = 0.3600

Figure 19. The Monte Carlo simulation for partially balanced data, with n21 = 6.5000 and rc = 0.7500
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Figure 20. The Monte Carlo simulation for partially balanced data, with n21 = 13.0000 and rc = 1.4000

In the first analysis, it is verified that unbalanced data are
more difficult of being learned than balanced data, because
the former require a mean square error of learning that is
much lesser than the values of the mean square errors of the
balanced data to reach the same precision.

From Figures 21 and 22, it is noticed a little abrupt varia-
tion in the presented outcomes of one Figure in relation to
another. This is due to the fact that the rc values of Figure 21
are greater than one and those of Figure 22 are lesser than 1
(see Table 2).

Table 2. Simulation of Numerical Data
 

 

  Figure 
20 

Figure 
21 

Figure 
22  

Figure 
23 

Figure 
24 

1n  50,000 25,000 25,000 25,000 650,000 

2n  650,000 650,000 650,000 650,000 650,000 

21n  13.000 26.0000 26.0000 26.0000 1.0000 

2
me  0.1000 0.1000 0.0200 0.0050 0.0050 

2
me me  0.3162 0.3162 0.1414 0.0707 0.0707 

rc 1.4000 2.7000 0.5400 0.1350 0.0100 

Figure 21. The Monte Carlo simulation for partially balanced data, with n21 = 26.0000 and rc = 2.7000
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As it can be seen in algorithms 4.2 and 4.3, this causes a little
variation in the calculation of mean square errors, because
the variable rc is responsible for altering the mathematical
formula that estimates the mean square errors of balanced

and non-balanced data. However, as the presented model is
an abstraction of reality, this does not meaningfully damage
the numerical outcomes presented by Figures 21 and 22.

Figure 22. The Monte Carlo simulation for partially balanced data, with n21 = 26.0000 and rc = 0.5400

Figures 22 and 23 present the numerical outcomes for com-
pletely non-balanced data, as suggested by algorithm 4.3.
This algorithm foresees a mean square error for abundant
data that is equal to zero with a variance that is also equal to

zero. Nevertheless, it is verified that in real world problem
there will always be a little non-zero noise. However, the
presence of this noise would just worsen the classification,
which is already not good.

Figure 23. The Monte Carlo simulation for partially balanced data, with n21 = 26.0000 and rc = 0.1350
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Figure 24 presents the numerical outcomes of perfectly bal-
anced data in comparison to completely non-balanced data
from Figure 23. The same value for e2

m was used in both
of these simulations, 0.0050. Notice that the numerical be-
havior in both presented cases are quite different from each
other. Based upon all the numerical simulations presented in
this section, one can verify that, in average, balanced data are

easier of being learned than non-balanced data. The balanc-
ing of data suggested here is the same as the one mentioned
in section 5.1 of this paper, that is, to multiply all data in
minority by a factor greater than one, in such a way that the
amount of data in minority is very close to the amount of
data in the majority. Evidently, this artifice causes several
repetitions of the same data.

Figure 24. The Monte Carlo simulation for partially balanced data, with n21 = 1.0000 and rc = 0.0100

Figure 25. The Neural Training with non-balanced data
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Experimental results obtained by real neural training

Figures 25 and 26 show a typical training where an MLP net-
work with about 650 thousand non-balanced training patterns
is used. This MLP application has used in this training 613
thousand outputs equal to zero and only 37 thousand outputs
equal to one. In this case, eighty per cent of patterns were
set apart for training and twenty percent for testing. Figures
25, 26, and 27 present the testing patterns only. Figures 25
and 26 represent real world data with credit card transactions
performed in Brazil, where frauds (the minority of data) have
outputs equal to one and non-frauds (the majority of data)
have outputs equal to zero. Figure 27 shows the training
with balanced data. From Figures 25, 26, and 27, one can
realize that for the balanced data (see Figure 27) frauds and
non-frauds tend to separate themselves in a uniform way.
However, for non-balanced data (see Figures 25 and 26), the

minority data tend to be classified as majority data, that is,
in an unsuitable way. This paper showed that due to this
phenomenon, non-balanced data are more difficult of being
trained than balanced data.

It should be noticed that classifications obtained from MLP
networks in Figures 25, 26, and 27 are not very good. Nev-
ertheless, discovering a neural training method to improve
these classifications is not the aim of this paper. However,
it is important to say that the authors of this paper are cur-
rently trying to improve these classifications by using Neural
Networks with Deep Learning architecture on Tensorflow
framework. But this is an issue for another paper. What was
intended here was to develop a model based in Monte Carlo
method to theoretically preview and estimate how the decay
of mean squared error of neural networks occurs when there
is balancing and non-balancing data.

Figure 26. The same graphic of Figure 25, but amplified

Figure 27. The Neural Training with balanced data
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An important piece of information concerning Figure 27
is that the balanced data were obtained from non-balanced
data, because as it is known, in a universe of credit card
transactions, the total number of non-frauds is meaningfully
dominant over the total number of frauds. The obtainment
of balanced patterns is simple enough. In the case of Figure
27, frauds were multiplied by a factor of 15. It means that
37 thousand fraud transactions were changed into about 555
thousand, that is, almost the same number of non-fraud trans-
actions (about 613 thousand). Evidently, this artifice causes
the repetition of the same fraud several times.

In order to end this section, Figures 26 and 19 are compared.
In Figure 26 (real world training data), the data in minority
with output values that should be equal to one are centered
in zero, which is sharply a non-Gaussian distribution, be-
cause in a Gaussian distribution, the data in majority should
be centered in 1. In Figure 19 (theoretical simulation), a
Gaussian distribution was considered and the data are really
centered in 1, which is exactly the opposite of Figure 26. In
fact, there is a difference between Monte Carlo theoretical
model presented in this paper and the data of credit card
frauds problem drawn from real world.

However, notice that the range of variation or dispersion of
errors of data in minority (fraud) between the theoretical
Monte Carlo method (see Figure 19) and the real world data
(see Figure 26) is the same, and for being a first approxima-
tion, Monte Carlo simulation really got reasonable.

6. CONCLUSION
One can attempt to use Monte Carlo simulation to analyze
and estimate the maximum acceptable mean square error of
training and test patterns of a supervised learning, which
uses some architecture of feedforward neural networks. The
Monte Carlo method application also allows one to verify

how the mean square error of test patterns varies according
to the balance and unbalance of training patterns according
to the total number of training patterns.

At first sight, it seems that balanced data can be trained with
greater mean square errors, when compared to unbalanced
patterns. So, one can list the following advantages of the
Monte Carlo method application in the context of this paper:

(1) Knowing in advance what the maximum acceptable
mean square error of neural training is;

(2) Give an a priori estimate of what neural network has
a more favorable mean square error either networks
with balanced either non-balanced data;

(3) Monte Carlo Simulation is almost instantaneous. It
can offer an estimate of the training behavior of an
MLP network at a mouse click. If one directly uses
neural networks for that, it would take days or weeks
and even then all simulation possibilities would not be
embraced;

(4) Direct the neural training into a more acceptable direc-
tion and easier to be trained by the computer;

(5) Proving that balanced data can have greater training
mean square error and test than non-balanced data and,
therefore, it is easier to train artificial neural networks
with balanced data.
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