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ABSTRACT

It is an important and challenging problem in unsupervised learning to estimate the number of clusters in a dataset. Knowing the
number of clusters is a prerequisite for many commonly used clustering algorithms such as k-means. In this paper, we propose a
novel diversity based approach to this problem. Specifically, we show that the difference between the global diversity of clusters
and the sum of each cluster’s local diversity of their members can be used as an effective indicator of the optimality of the number
of clusters, where the diversity is measured by Rao’s quadratic entropy. A notable advantage of our proposed method is that it
encourages balanced clustering by taking into account both the sizes of clusters and the distances between clusters. In other words,
it is less prone to very small “outlier” clusters than existing methods. Our extensive experiments on both synthetic and real-world
datasets (with known ground-truth clustering) have demonstrated that our proposed method is robust for clusters of different
sizes, variances, and shapes, and it is more accurate than existing methods (including elbow, Caliński-Harabasz, silhouette, and
gap-statistic) in terms of finding out the optimal number of clusters.
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1. INTRODUCTION

Clustering is an important unsupervised learning task aiming
to group a collection of items into subsets (clusters) such
that those within the same cluster are more closely related
(similar) to each other than to those in different clusters.[1]

For many commonly used clustering algorithms (such as
k-means,[1] k-medoids,[1] Gaussian mixtures,[2] and spec-
tral clustering[3]), it is necessary to specify beforehand the
number of clusters, a parameter often denoted by k as in k-
means/k-medoids, to run the algorithm. However, we often
do not have prior knowledge about the correct choice of k,
and it is a very challenging problem to accurately estimate
it by analysing the dataset itself only.[4–6] On one hand, in-
creasing k will reduce the amount of error (in terms of data
recovery[7]) in the resulting clustering, to the extreme case
of full accuracy when k = n the total number of items in
the dataset. On the other hand, decreasing k will offer a

higher compression ratio, to the extreme case of maximum
compression when k = 1. The optimal choice of k proba-
bly lies somewhere in the middle ground, depending on the
characteristics of the dataset such as its size, variance, and
shape.

In this paper, we propose a novel diversity based approach to
the problem of estimating the number of clusters in a dataset.
A notable advantage of our proposed method is that it en-
courages balanced clustering by taking into account both
the sizes of clusters and the distances between clusters. In
other words, it is less prone to “outlier” clusters (that are
much smaller than most other clusters in the dataset) than
existing methods. Such a property of clustering is usually
desirable in practice. For example, when using a clustering
algorithm to perform image segmentation,[8] a very small
cluster (segment) probably corresponds not to a complete
meaningful object but only part of it, and therefore should
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be avoided. For another example, when using a clustering
algorithm to perform market segmentation,[9] a very small
cluster (segment) probably means that the market segment
has too few customers to be profitable, and therefore should
be discouraged. Obviously in some scenarios, small outlier
clusters can be useful, e.g., for revealing exceptions or ab-
normalities in the data. However, there are many real-world
applications where balanced clusters are preferred, which is
the focus of this paper.

The rest of this paper is organised as follows. In Section 2,
we review well-known existing methods for determining the
number of clusters in a dataset. In Section 3, we describe
our diversity based approach to this problem in detail. In
Section 4, we present the experimental results on a number
of datasets and empirically compare our proposed method
with the existing methods. In Section 5, we make concluding
remarks and discuss the future work.

2. RELATED WORK
The problem of estimating the number of clusters k in a
dataset has been studied extensively, and many different
methods have been proposed by researchers from various
disciplines.[10] In this section, we review a few representative
ones.

2.1 The elbow method
The elbow method[11] examines the percentage of variance
explained by the clustering as a function of the number of
clusters k. If we plot the percentage of variance explained
against k, the first clusters will be able to explain a lot of vari-
ance, but at some point the marginal gain will drop, giving an
“elbow” in the graph. The optimal k is chosen at this point, as
introducing more clusters would not give a better explanation
of variance in the dataset, though such an “elbow” cannot
always be unambiguously identified.[12] In this paper, we use
a slight variation of this method which plots the curve of the
intra-cluster variance:[13]

E(k) =
k∑

r=1
W (Cr) (1)

where W (Cr) is the variance within the r-th cluster Cr.

2.2 The Caliński-Harabasz method
Milligan et al.[4] compared 30 different approaches to es-
timating the number of clusters in a dataset and found
that the best performing method is given by Caliński and
Harabasz:[14]

CH(k) = B(k)/(k − 1)
W (k)(n− k) (2)

where B(k) is the inter-cluster variance (i.e. the sum of
squared distances for the k clusters), and W (k) is the intra-
cluster variance. MaximisingCH(k) against different values
of k gives the estimated number of clusters.

2.3 The silhouette method
Rousseeuw et al.[15] proposed the silhouette method, of
which the main purpose is to examine whether an item i is
classified well in the cluster or not. For every item or point i,
its silhouette is calculated as:

S(i) = b(i)− a(i)
max(a(i), b(i)) (3)

where a(i) is the average distance of item i to all the items
in the same cluster and b(i) is its average distance to all the
items in the nearest cluster. The i-th item is well clustered if
the value of S(i) approaches the maximum which is 1; and a
S(i) value 0 means that item i belongs to the other cluster.
After plotting the silhouette score averaged over all the items
against different values of k, the right number of clusters is
estimated to be the k yielding the highest average silhouette
score.

2.4 The gap-statistic method
Tibshirani et al.[16] proposed another method, gap-statistic,
which compares intra-cluster variance with the expected val-
ues under the null reference distribution of the dataset. After
clustering the dataset for different values of k, we get the
intra-cluster variance for the observed dataset as well as the
reference dataset, and then calculate the gap-statistic as:

Gapn(k) = E∗
n{log(W (k))} − log(W (k)) (4)

where W (k) is the total intra-cluster variance and E∗
n{.}

denotes the expectation under a sample of size n from the
reference distribution. The gap-statistic measures the devi-
ation of the observed W (k) value from its expected value
under the null hypothesis.

3. OUR APPROACH
One drawback of the above mentioned methods for estimat-
ing the number of clusters is that they could lead to very
imbalanced clustering, where some “outlier” clusters are
much smaller than the other clusters. This is often unde-
sirable for real-life clustering applications (see Section 1).
Here we propose a novel diversity based approach to the
problem of estimating the number of clusters, which is less
tolerant to such “outlier” clusters and encourages balanced
clustering by taking into account both the sizes of clusters
and the distances between clusters.
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3.1 Rao’s quadratic entropy
The requirement of balance among clusters, in fact, implies
that there should be no particular cluster dominating the
dataset, i.e., there should be a certain level of diversity among
clusters.

The concept of diversity, originated from ecology,[17] has
been widely diffused into many other scientific disci-
plines[18, 19] (such as linguistics and sociology). In recent
years, a variety of quantitative measures of diversity have
been successfully applied in computer science for web
search,[20–24] text mining,[25] and recommender systems.[26]

Although there exist many different diversity measures (such
as Simpson’s and Shannon’s) and it is debatable which diver-
sity index is the best,[27, 28] we choose to use Rao’s quadratic
entropy[29] to measure the diversity of data, because it takes
into account both the sizes of species (groups) and the dis-
tances between species (groups). Rao’s quadratic entropy is
defined as:

Div =
s∑

i=1

s∑
j=1

pipjδ(i, j) (5)

where s is the number of species, pi and pj are the propor-
tions of species i and j respectively, and δ(i, j) is the distance
between them. Euclidean distance is used throughout this
paper, but other distance metrics could be used as well.

3.2 The diversity method
To find out the optimal number of clusters in a dataset with
n items, we use the output of the given clustering algorithm
(such as k-means) and then measure the difference between
the global diversity of clusters and the sum of each cluster’s
local diversity of their members, denoted by Q(k) and given
by

Q(k) = DivG −
k∑

r=1
DivL

r (6)

where DivG is the global diversity of k clusters (with each
cluster as a species) while DivL

r is the local diversity of
the r-th cluster (with each member item of the cluster as a
species) as measured by Rao’s quadratic entropy given in
Equation (5). We calculate the diversity based statistic Q(k)
for various values of k, i.e., for k from 1 to n, and the max-
imum value of Q(k) should be able to tell us the optimal
number of clusters in the dataset, i.e.,

k̂ = arg max1≤k≤nQ(k) (7)

The underlying intuition of this diversity method is that in a

good clustering, the items within each cluster should be as
homogeneous as possible (i.e., less local diversity), while the
clusters themselves should be as heterogeneous as possible
(i.e., more global diversity). The balance of cluster sizes is
actually implied by a high level of diversity among clusters.

The approaches to estimating the number of clusters can
be divided into two categories, global methods and local
methods, as pointed out by Gordon.[30] The former evaluate
some measure over the entire dataset and optimise it as a
function of the number of clusters; the latter consider indi-
vidual pairs of clusters and decide whether they should be
amalgamated.[16] Obviously the diversity method proposed
by us is a global method. According to Gordon,[30] most
global methods suffer from a serious disadvantage that they
are undefined for one cluster (i.e., k = 1) and therefore cannot
be used to determine whether the dataset should be clustered
at all. It is worth mentioning that our diversity method does
not have this shortcoming: Q(k) is well defined for k = 1, as
we show later in Section 4.2.

4. EXPERIMENTS

4.1 Balance

As can be seen in Equation (5), Rao’s quadratic entropy takes
into account the sizes of clusters and the distances between
clusters, which is important to achieve balanced clustering
desirable in many real-life clustering applications.

For the purpose of investigating the trade-off between the
sizes of clusters and the distances between clusters, we first
create two clusters from two 2-dimensional standard normal
distributions which have 1,000 items each and are centred at
(0,0) and (0,5) respectively, and then we create another clus-
ter from one 2-dimensional standard normal distribution with
varying number of items from 1 to 1,000 (i.e., we generate
1,000 different datasets). Following this, we move the third
cluster’s centre (x, y) as follows: we keep y at 2.5 (halfway
from the first cluster’s centre to the second cluster’s centre),
and gradually increase x from 0 to +∞ until the third cluster
is detected by our proposed diversity method as a separate,
third, cluster.

The results of the simulation study are shown in Figure 1,
which indicates that using the diversity method to estimate
the number of clusters, a small cluster needs to be distant
from the other clusters in the dataset to be regarded as a
separate cluster, otherwise it will be assimilated into another
nearby cluster: the smaller the cluster, the larger its distance
to the other clusters should be. In other words, the diversity
method tends to avoid suggesting very small clusters unless
they are very far away from the rest of data.
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Figure 1. The trade-off between the sizes of clusters and the
distances between clusters

4.2 Robustness
In this section, we investigate how robust our proposed di-
versity method is when it is applied to different types of

datasets.

For this purpose, we create five synthetic datasets of differ-
ent sizes, variances, and shapes. In addition, we also make
use of three real-world datasets — Wine, Breast Cancer,
and Thyroid Disease — from the UCI Machine Learning
Repository.[31] On these synthetic and real-world datasets,
we cluster the data points into k clusters with k from 1 to
n (using k-means for the first three synthetic datasets and
the first real-world dataset, but average-link hierarchical ag-
glomerative clustering[32] for the remaining datasets), and
calculate the value of Q(k) for each k. The actual number of
clusters in the dataset is estimated to be the k that maximises
Q(k) (see Section 3). It can be seen from the experimental
results in Figures 2-7 that for both synthetic and real-world
data, no matter what size, variance, or shape the dataset has,
our proposed diversity method can successfully discover the
correct number of clusters.

Figure 2. Experimental results on the synthetic dataset of five clusters with equal sizes and equal variances

Figure 3. Experimental results on the synthetic dataset of five clusters with equal sizes but different variances
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Figure 4. Experimental results on the synthetic dataset of four clusters with different sizes and some random noise

Figure 5. Experimental results on the synthetic dataset of two ring-shape clusters

Figure 6. Experimental results on the synthetic dataset of two moon-shape clusters
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Figure 7. Experimental results on three real-world datasets from the UCI Machine Learning Repository, where m and k*
are the number of features/dimensions and the actual number of clusters respectively in the corresponding dataset.

4.3 Comparison
We use four synthetic datasets to evaluate the proposed diver-
sity method and compare it with the other methods reviewed
in Section 2, i.e., elbow, Caliński-Harabasz, silhouette, and
gap-statistic. Note that the same experimental methodology
was used by the gap-statistic paper.[16]

Those datasets are intentionally made to differ in the number
of clusters, the number of dimensions, and the number of
items. They are defined as follows.

• Four clusters in 2 dimensions; their sizes are 250, 250,
250, and 500 respectively; their centres are (1,3), (0,8),
(8,0) and (4,-2) respectively.

• Four “normal” clusters and one small “outlier” cluster
in 2 dimensions; the sizes of those “normal” clus-
ters are 1,000, 900, 900, and 850 respectively while
the size of that “outlier” cluster is randomly set to a
number between 50 and 100; their centres are chosen
randomly.

• Five clusters in 10 dimensions; their number of items
are randomly set to either 50 or 100; their centres are
chosen randomly.

• Six clusters with the same settings as in the previous
case of five clusters except that the number of dimen-

sions is set to 4.

The items (data points) in each such cluster are all sampled
from a particular standard multivariate normal distribution.

For each scenario defined above, we generated 50 concrete
datasets so as to carry out 50 simulation trials. Then we
used the chosen clustering algorithm to divide the generated
dataset into k clusters with k varying from 1 to 9. On the
basis of the clustering results, we apply the diversity method
and the other methods in comparison to make estimations
about the actual number of clusters.

The experimental results of the simulation study are sum-
marised in Table 1. Each number in the table shows how
many times a particular method detected the number of clus-
ters mentioned in its column header. In the first case where
there is little noise, all the methods performed almost equally
well. In the second case where there is a lot of noise, it can
be clearly seen that the diversity method outperformed all
the other methods significantly. In the third and fourth cases,
the diversity method worked best with near-perfect accuracy,
closely followed by the gap-statistic method (which is widely
regarded as the state-of-the-art).
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Table 1. Experimental results on the synthetic datasets showing how many times out of 50 simulation trials a particular
method estimated the number of clusters to be k̂, where the column corresponding to the correct number of clusters is
annotated with *.

 

 

Method 
Estimates of the following numbers of clusters  

1 2 3 4 5 6 7 8 9 

a) Ground truth: 4 clusters (relatively clean) 

elbow 0 0 1 49* 0 0 0 0 0 

silhouette 0 0 0 50* 0 0 0 0 0 

Caliński-Harabasz 0 0 0 50* 0 0 0 0 0 

gap-statistic 0 0 0 50* 0 0 0 0 0 

diversity 0 0 0 50* 0 0 0 0 0 

b) Ground truth: 4 clusters (relatively noisy) 

elbow 0 0 5 29* 16 0 0 0 0 

Caliński-Harabasz 0 0 1 0* 49 0 0 0 0 

silhouette 0 0 0 39* 11 0 0 0 0 

gap-statistic 0 0 0 14* 36 0 0 0 0 

diversity 0 0 0 48* 2 0 0 0 0 

c) Ground truth: 5 clusters 

elbow 0 1 0 5 44* 0 0 0 0 

Caliński-Harabasz 0 7 0 6 37* 0 0 0 0 

silhouette 0 2 0 9 39* 0 0 0 0 

gap-statistic 0 0 0 0 48* 2 0 0 0 

diversity 0 0 0 1 49* 0 0 0 0 

d) Ground truth: 6 clusters 

elbow 0 0 0 0 8 42* 0 0 0 

Caliński-Harabasz 0 6 0 0 8 36* 0 0 0 

silhouette 0 0 0 0 12 38* 0 0 0 

gap-statistic 0 0 0 0 0 49* 1 0 0 

diversity 0 0 0 0 0 50* 0 0 0 

 

5. CONCLUSIONS

The main research contribution of this paper is a novel diver-
sity based approach to the problem of estimating the number
of clusters in a dataset. To the best of our knowledge, the
underlying connection between diversity and clustering has
not been revealed before in research literature.

Specifically, we show that the difference between the global
diversity of clusters and the sum of each cluster’s local diver-
sity of their members can be used as an effective indicator of
the optimality of the number of clusters, where the diversity
is measured by Rao’s quadratic entropy. A notable advan-
tage of our proposed method is that it encourages balanced
clustering by taking into account both the sizes of clusters

and the distances between clusters. In other words, it is less
prone to very small “outlier” clusters than existing methods.

Our extensive experiments on both synthetic and real-world
datasets (with known ground-truth clustering) have demon-
strated that our proposed method is robust to clusters of
different sizes, variances, and shapes, and it is more accurate
than existing methods (including elbow, Caliński-Harabasz,
silhouette, and gap-statistic) in terms of finding out the opti-
mal number of clusters.

It would be meaningful to explore the usage of diversity
measures other than Rao’s quadratic entropy, which is left
for future work. It would also be interesting to compare our
approach to estimating the number of clusters with those
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clustering algorithms that have built-in ability of detecting
the number of clusters (such as DBSCAN,[33] OPTICS,[34]

and affinity propagation[35]).
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