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Abstract 
This paper deals with transforming Support vector regression (SVR) models into fuzzy systems (FIS). It is highlighted that 
trained support vector based models can be used for the construction of fuzzy rule-based regression models. However, the 
transformed support vector model does not automatically result in an interpretable fuzzy model. Training of a support 
vector model results a complex rule base, where the number of rules are approximately 40-60% of the number of the 
training data, therefore reduction of the support vector model initialized fuzzy model is an essential task. For this purpose, 
a three-step reduction algorithm is used based on the combination of previously published model reduction techniques, 
namely the reduced set method to decrease number of kernel functions, then after the reduced support vector model is 
transformed into fuzzy rule base similarity measure based merging and orthogonal least-squares methods are utilized. The 
proposed approach is applied for nonlinear system identification, the identification of a Hammerstein system is used to 
demonstrate accuracy of the technique with fulfilling the criteria of interpretability. 
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1 Introduction 
As universal approximator for any multivariate function; support vector machine model is widely-used to capture highly 
nonlinear, unknown or partially known complex systems plants or processes. However, it should be pointed out that 
simplicity and complexity of this type of models are challenging tasks to perform, since these black box systems don’t give 
any insight to the model structure. Hence, incorporating robustness of support vector models with the transparency and 
interpretability of fuzzy models is a straightforward directional development step, confirmed by the fact that connection 
between support vector regression and fuzzy regression has been widely and extensively researched lately. Numerous 
techniques were reported to exploit the above listed synergies. Nowadays complexity of regression problems is 
increasingly growing, therefore it is necessary to deal with structural issues and linguistic interpretability in order to 
capture more information from nature of the modeled system, data or process.  

Fuzzy logic helps to improve interpretability of knowledge based regression models through its semantics that provide 
insight in the model structure and decision making process. Application of support vector methods for the initialization of 
fuzzy models is not a completely new idea. Numerous methods have been proposed to build the connection between the 
SVR and the FIS. Chen and Wang [3, 4] propose a positive definite fuzzy system (PDFS). In the proposed fuzzy model, the 
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PDFS is equivalent to a Gaussian-kernel SVM [3] if Gaussian membership functions are adopted. Antecedent of a fuzzy 
rule is obtained by a support vector (SV). Therefore the number of fuzzy rules is the same as the number of SVs. As the 
number of SVs is generally large, the size of the FIS based on an SVM is also large. To solve this problem researcher [5] 
proposed a learning algorithm to remove the irrelevant fuzzy rules. In spite of this, the generalization performance is 
degraded. The above methods are for the zero order FIS, which has one fuzzy singleton in the consequent of a fuzzy rule. 
For the first order FIS, Leski [18] described a method for obtaining a FIS by means of the SVM with data-independent 
kernel matrix. Moreover Juang et al. used a combination of fuzzy clustering and the linear SVM to establish a fuzzy model 
with less parameter number and better generalization performance. However, negligible effort has been done to establish a 
HFIS (high order FIS) with kernel methods. It was presented a HFIS with high accuracy and good generalization 
performance [11]. It was shown how to obtain the formulation of the nonlinear function for the consequent part. 
Furthermore, Catala used prototype vectors to combine with the support vectors using geometric methods to define 
ellipsoids in the input space, which are later transformed to if then rules [2]. Special operator was utilized to achieve 
equivalency between support vector machines and fuzzy rule based system [6]. Utilization of support vector models is 
described to solve the convex optimization problem for multivariate linear regression models and it is also shown how 
multivariate fuzzy nonlinear regression model can be formalized for numerical inputs and fuzzy output [8]. Multiple types 
of kernels [6, 8] can be used to solve crisp nonlinear regression problems [1]. Juang and Hsieh [7] used a combination of fuzzy 
clustering and linear support vector regression to obtain Takagi-Sugeno type fuzzy rules. Support vector machines can be 
applied to determine the support vectors for each fuzzy cluster obtained by fuzzy c-means clustering algorithm [16]. 
Visualization of fuzzy regression models is also discussed lately. Interpretation of fuzzy regression is provided with an 
insight into regression intervals so that regression interval analysis, data type analysis and variable selections are 
analytically performed [15]. A visualization and interpretation tool is presented. Feature space is visualized with 
highlighting the corresponding variables in the original input data to show how they are associated to the output  
variable [17]. It is shown that which part of the input data can be utilized to estimate the output value. This technique also 
describes which input variable are responsible for the performance of the support vector regression. With the combination 
of visualization and interpretation the black-box support vector regression is identified in one step. 

It must be taken into account that fuzzy logic does not guarantee interpretability as a prerequisite, because obtaining fuzzy 
models from support vector based training often result fuzzy models with high number of fuzzy rules. This phenomenon 
makes interpretability much more difficult, therefore aim of this paper is to describe a combination-of-tools three-step 
technique how to use reduction techniques on trained SVR models to acquire transparent, but accurate fuzzy rule based 
regression models. The steps are the following: 

1) Application of the Reduced Set method 

The identification of the SVM is followed by the application of the Reduced Set (RS) method to decrease the number 
of kernel functions. Originally, this method has been introduced [9] to reduce the computational complexity of SVMs. 
The obtained SVM is subsequently transformed into a fuzzy rule-based regression model. 

2) Similarity-based fuzzy set merging 

The Gaussian membership functions of the fuzzy rule based regression model are derived from the Gaussian kernel 
functions of the SVM. The interpretability of a fuzzy model highly depends on the distribution of the membership 
functions. Hence, the next reduction step is achieved by merging fuzzy sets based on a similarity measure [12]. 

3) Rule-base simplification by orthogonal transformation 

Finally, orthogonal least-squares method is used to reduce the number of rules and re-estimate the consequent 
parameters of the regression model. The applications of orthogonal transformations for reducing the number of rules 
have received much attention in the recent literature [13, 14]. These methods evaluate the output contribution of the rules 
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to obtain the order of importance. The less important rules are then removed according this ranking to further 
complexity reduction and increase transparency.  

This article is organized as follows. Firstly basic notations of support vector machines and the connection between the 
fuzzy regression are described. After detailed description of the three step reduction algorithm examples indicate the 
power and the usage of the described techniques on regression problems. 

2 FIS interpreted SVR 
SVM has been recently introduced for solving pattern recognition and function estimation problems. SVM is a nonlinear 
generalization of the Generalized Portrait algorithm developed in Russia in the 1960s. In its present form, the SVM was 
developed at AT&T Bell Laboratories by Vapnik and coworkers [19]. Due to this industrial context, SVM learning has now 
evolved into an active area of research. Moreover, the technique belongs to the standard methods toolbox of machine 

learning. The basic idea behind SVM is that with a kernel function:	݇ሺݔ௜ݔ௝ሻ, which for all data pairs ൫ݔଵ, … . , ே೏൯ݔ ⊂ 	߯	ܴ௜ே 

give rise to positive matrices ܭ௜,௝ ≔ ݇ሺݔ௜ݔ௝ሻ× RN݅. Using k  instead of dot product in ܴ	௜ே, this will correspond to map the 

data into a possibly high dimensional space F, by a usually nonlinear map ϕ : R	Ni→F and take the dot product there 

 ݇ ሺݖ௜; ሻݔ ൌ ሺ߶ ሺݖ௜ሻ ; ߶ ሺݔሻሻ (1) 

2.1 Support vector regression models 

Suppose we have training data, {(x1;y1),…(xNd ;yNd)}⊂χ × R	݅ࡺ, where χ denotes the space of  input patterns. Our goal is to 

find function f (x) that has at most ε deviation from the targets with the obtained yi, for all the training data. In other words 
we do not care about the errors as long as they are less than ε, but any larger deviation than ε won’t be accepted. SVR can 
be formulated as follows: 

 min௪,௕,క೔,క೔ 12 ห|ܹ|หଶ ൅ ௜ߦ෍ሺܥ ൅ ௜∗ሻே೏ߦ
௜ୀ௟  

.ݏ .ݐ ݅ݕ െwT	ߔ	ሺݔ௜ሻ െ ܾ	 ൑ ߝ	 ൅ ௜ሻݔሺ	ߔ	்ݓ	௜ߦ ൅ ܾ ൑ ߝ	 ൅ ௜ߦ	∗௜ߦ , ∗௜ߦ ൒ 0 

(2) 

where ϕ is the feature mapping for kernel k, ε is the tolerance error, are ߦ௜	,  ,௜∗ slack variables and C > 0 is a cost coefficientߦ

which determines the trade-off between the model complexity and the degree of tolerance to the errors larger than ε . The 
dual form of the optimization problem eq. 2 becomes a quadratic programming (QP) problem: 

 minఈ,ఈ∗ 12 ෍ ሺߙ௜ െ ௜∗ሻே೏ߙ
௜,௝ୀଵ ൫ߙ௝ െ ௝∗൯ߙ ݇ሺݔ௜ݔ௝ሻ 

൅ߝ෍ሺߙ௜൅ߙ௜∗ሻே೏
௜ୀଵ െ෍ݕ௜	ሺߙ௜ െ ௜∗ሻே೏ߙ

௜ୀଵ  

(3) 
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.ݏ ௜ߙሺ	௜ݕ෍.ݐ െ ௜∗ሻߙ ൌ 0 ே೏,ߙ
௜ୀଵ ∗ߙ ∊ ሾ0,  ሿܥ

where α and α∗ are the Lagrange multipliers. As an outcome of solving the QP problem eq. 3 can be rewritten to the 
following form: 

 ݂ሺݔሻ ൌ ෍ሺߙ௜ െ ௜∗ሻே೏ߙ
௜,௝ୀଵ ݇ሺݔ௜, ሻݔ ൅ ܾ (4) 

Let ߛ௜ ൌ ௜ߛ  ௜∗ In caseߙ	௜െߙ ് 0  the corresponding training pattern xi can be noted as support vector. 

2.2 Structure of the fuzzy rule-based regression model 
To get a fuzzy rule-based regression model from the support vector regression model the following interpretation is 
needed: 

ݕ  ൌ෍ߚ௜ሺݔሻேೃ
௜ୀଵ ௜ߜ ൅ ܾ (5) 

where βi is the firing strength and δi is the rule consequent. The output of the regression model is calculated via this 
equation. In case of fuzzy systems, fuzzy rules can be formulated as follows 

 ܴ௜݂݅	ݔଵ	݅ݏ	ܣ௜ଵ	ܽ݊݀…ݔ௡ ݏ݅ ௜௡ܣ ݄݊݁ݐ ௜ݕ ൌ ,௜ߜ ݅ ൌ 1,… ோܰ (6) 

where ܴ௜ is the i-th rule in the fuzzy rule-based regressor and ோܰ denotes the number of rules. ܣ௜, … ,  ே௜ denote theܣ

antecedent fuzzy sets that define operating region of rule in the  ௜ܰ dimensional input space. The rule consequent ߜ௜ is a 
crisp number. The connective is modeled by the product operator. Hence the degree of activation of the ith rule is 
calculated as 

ሻݔ௜ሺߚ  ൌෑܣ௜௝ ൫ݔ௝൯, ݅ ൌ 1,… , ோܰே೔
௝ୀ௜  (7) 

Main principle of kernel-based support vector regressors is the identification of a linear decision boundary in this high 
dimensional feature space. The link to the fuzzy model structure is the following: the fuzzy sets are represented in this 
paper by Gaussian membership functions 

௝ሻݔ௜௝ሺܣ  ൌ expቆ||ݔ௝ െ ଶߪ௜௝||ଶ2ݖ ቇ (8) 

The degree of fulfillment ߚ௜ሺݔሻ can be written through eq. 7-8 in a more compact form by using Gassuian kernels. 

ሻݔ௜ሺߚ  ൌ expቆ||ݔ െ ଶߪ௝||ଶ2ݖ ቇ (9) 

This kernel interpretation of fuzzy systems shows that fuzzy models are effective in solving nonlinear problems because 
they map the original input space into a nonlinear feature space by using membership functions similarly to the support 
vector machine that utilize kernel functions for this purpose. 
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3 Ensuring interpretability with three step algorithm 
In the previous sections, it has been shown how a SVM, that is structurally equivalent to a fuzzy model, can be identified. 
Unfortunately, this identification method cannot be used directly for the identification of interpretable fuzz systems 
because the number of the support vectors is usually very large. Typical values are 40-60% of the number of training data 
which is in our approach equal to the number of rules in the fuzzy system. Therefore, there is a need for an interpretable 
approximation of the support vector expansion. For this purpose a step-wise algorithm will be introduced, where the first 
step is based on the recently published Reduced Set (RS) method developed for reducing the computational demand of the 
evaluation of SVMs [9]. 

3.1 Model simplification by reduced set method 
The aim of the RS method is to approximate the highdimensional feature space given by the support vectors 

ߖ  ൌ෍ߛ௜߶ሺݔ௜ሻேೣ
௜ୀଵ  (10) 

by a reduced set expansion 

′ߖ  ൌ෍ߜ௜߶ሺݖ௜ሻேೃ
௜ୀଵ  (11) 

with NR < Nx < Nd, where Nx denotes the number of support vectors (the number of xi vectors for those γi≠ 0) and NR 

represents the number of the desired rules in the fuzzy rule based regressor that we would like to identify and zi denotes the 
centers of the new kernel functions that are not necessarily training samples. NR should be as small as possible because it 
determines the number of fuzzy rules. In practice it turns out that the RS method is often able to deliver a one-tenth 
reduction, so NR can be chosen as NR =Nx/10. For this model reduction, the squared error ||Ψ−Ψ||/2 has to be minimized. 

For this purpose, the ‘kernel trick’ has to be applied because ϕ is not given explicitly 

 ฮߖ െ ฮଶ′ߖ ൌ ෍ ௝ሻேೣݔ௜ݔ௝݇ሺߛ௜ߛ
௜௝ୀଵ ൅ ෍ ௝ሻேೃݖ௜ݖ௝ሺߜ௜ߜ

௜௝ୀଵ െ 2෍෍ߛ௜ߜ௝݇ሺ	ݔ௜, ௝ሻேೃݖ
௝ୀଵ

ேೣ
௜ୀଵ  (12) 

The cost function 12 is minimized in a step-wise manner while the feature space is approximated by the following iterative 
algorithm: 

Repeat for m : 2;……NR 

 Step 1: Obtain the residual space  

Let Ψm mean the residual of the feature space approximation generated at the (m-1)–th step 

 Ψ୫ ൌ෍γ୧ϕሺx୧ሻ୒౮
୧ୀଵ െ ෍ δ୧ϕሺz୧ሻ୫ିଵ

୧ୀଵ  

ൌ෍ε୧ϕሺv୧ሻ୒ౣ
୧ୀଵ  

(13) 
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where 

 ,(௠ିଵߜଵ,…,െߜ-,ேೣߛ,.…,γ1)=(ே೘ߝ,…,ଵߝ)

…,ଵݔ)=(ே೘ݒ,…,ଵݒ) ,ேೣݔ ,ଵݖ …  (௠ିଵݖ

Nm=Nx+m-1 

 Step 2: Inner iteration step for determining zm  	
This residual function is approximated by the determination of zm and δm in the iterative procedure, where the 
following cost function has to be minimized	

 minఋ೘,௭೘‖ߖ௠ െ  ௠ሻ‖ଶ (14)ݖ௠߶ሺߜ

This can be done by standard techniques or using fixed point iteration [9]. 

 ܼ௠௡ାଵ ൌ ∑ ε୧exp൫െ‖v୧ െ z୫୬ ‖ଶ/ሺ2σଶሻ൯v୧୒ౣ୧ୀଵ∑ ε୧exp൫െ‖v୧െz୫୬ ‖ଶሺ2σଶሻ൯୒ౣ୧ୀଵ  (15) 

where the superscript n denotes the n–th inner iteration step; eq. 15 is iterated till it converges to ‖ݖ௠௡ାଵെݖ௠௡ ‖ଶ ൏ߝ. Interestingly, eq. 15 can be interpreted in the context of clustering [10]. It determines the center of a single 

Gaussian cluster, trying to capture as many of the ݒ௜ with positive ߜ௜ as possible, and simultaneously avoiding 

those ݒ௜ with negative ߜ௜.  
 Step 3: Least-squares estimation of the ߜ௜	coefficients 	

The ߜ௠ coefficient is calculated by recalculating the whole δ ൌ ሾδଵ,… , δ௠ሿ்vector by minimizing eq. 12	
 δ ൌ ሺܭ௭ሻିଵK୸୶γ (16) 

where the element of the matrices are expressed by the kernel functions ܭ௜௝௭൫ݖ௜, ௜௝௭௫ܭ ௝൯ andݖ ൌ ݇൫ݖ௜,  .௝൯ݔ
3.2 Reduction of the number of fuzzy sets 
In the previous section, it has been shown how kernel-based regression model with a given number of kernel functions NR, 
can be obtained. Because the number of the rules in the transformed fuzzy system is identical to the number of kernels, it is 
extremely important to get a moderate number of kernels in order to obtain a compact fuzzy rule-based regression model. 

From eq. 9 it can be seen that the number of fuzzy sets in the identified model is ௦ܰ ൌ ோܰ ௜ܰ. The interpretability of a fuzzy 
model highly depends on the distribution of these membership functions. With the simple use of eq. 8, some of the 
membership functions may appear almost undistinguishable. Merging similar fuzzy sets reduces the number of linguistic 
terms used in the model and thereby increases the transparency of the model. This reduction is achieved by a rule-base 

simplification method [12, 20] based on a similarity measure ܵ൫ܣ௜௝, ,௜௝ܣ௞௝൯ and i≠j. If ܵ൫ܣ  ௞௝൯, then the two membershipܣ

functions Aij and Akj are equal. ܵ൫ܣ௜௝,  ௞௝൯ becomes 0 when the membership functions are non-overlapping. During theܣ

rule-base simplification procedure similar fuzzy sets are merged when their similarity exceeds a user-defined threshold θ 

∈ [0;1]. The set-similarity measure can be based on the set theoretic operations of intersection and union [12].  
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 ܵ൫ܣ௜௝,ܣ௞௝൯ ൌ หܣ௜௝ ∩ ௜௝ܣ௞௝หหܣ ∪  ௞௝ห (17)ܣ

where |.| denotes the cardinality of a set, and the ∩ and ∪ operators represent the intersection and union, respectively, or 

it can be based on the distance of the two fuzzy sets. Here, the following expression was used to approximate the similarity 
between two Gaussian fuzzy sets [20]. 

 ܵ൫ܣ௜௝, ௞௝൯ܣ ൌ 11 ൅ ݀൫ܣ௜௝,  ௞௝൯ܣ
ܵ൫ܣ௜௝, ௞௝൯ܣ ൌ 11 ൅ ට൫ݖ௜௝ െ ௜௝ߪ௞௝൯ଶ൫ݖ െ  ௞௝൯ଶߪ

(18) 

3.3 Reduction of the number of rules by orthogonal transforms 
By using the previously presented SVM identification and reduction techniques, the following fuzzy rule-based regression 
model has been identified 

ݕ  ൌ෍ෑ൫ݔ௝ െ ଶே೔ߪ௜௝൯ଶ2ݖ
௝ୀଵ

ேೃ
௜ୀଵ ௜ߜ ൅ ܾ (19) 

Because the application of the RS method and the fuzzy set merging procedure the obtained membership functions only 

approximate the original feature space identified by the SVM. Hence, the ߜ ൌ ,ଵߜൣ … ,  ேೃ൧்consequent parameters of theߜ

rules have to be re-identified to minimize the difference between the decision function of the support vector machine eq. 4 
and the fuzzy model eq. 19. 

ܧܵܯ  ൌ෍ቌ෍ߛ௜݇൫ݔ௝,ݔ௜൯ேೣ
௜ୀଵ െ෍ߜ௜ߚ௜൫ݔ௝൯ேೃ

௜ୀଵ ቍଶே೏
௝ୀଵ  

																																												ൌ ௦ݕ‖ െ  ଶ‖ߜܤ

(20) 

where the matrix ܤ ൌ ൣܾଵ,… , ܾேೃ൧ ∊ ܴே೏௫ேೃ  contains the firing strength of all NR rules for all the inputs xi, where 

௝ܾ ൌ ,ଵሻݔ௝ሺߚൣ … ,  ே೏൯൧். As the fuzzy rule-based regression model in eq. 19 is linear in the parameters δ , eq. 20 can beݔ௝൫ߚ

solved by a least-squares method 

ߜ  ൌ  ௦ (21)ݕାܤ

where B+ denotes the Moore-Penrose pseudo inverse of B. The application of orthogonal transforms for the above 
mentioned regression problem eq. 20 for reducing the number of rules has received much attention in recent  
literature [13, 14]. These methods evaluate the output contribution of the rules to obtain an importance ordering. For 
modeling purposes, the Orthogonal Least Squares (OLS) is the most appropriate tool [13]. The OLS method transforms the 
columns of B into a set of orthogonal basis vectors in order to inspect the individual contribution of each rule. To do this, 
Gram-Schmidt orthogonalization of B=WA is used, where W is an orthogonal matrix WTW = I and A is an upper 
triangular matrix with unity diagonal elements. If wi denotes the i–th column of W and gi is the corresponding element of 
the OLS solution vector g = Aδ, the output variance yTs ys=Nd can be explained by the regressors 
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 ∑ ௜݃ݓ௜் /௜ݓ ௗܰேೝ௜ୀଵ . Thus, the error reduction ratio, ρ, due to an individual rule i can be expressed as 

௜݌  ൌ ௜݃ଶݓ௜் ௦்ݕ௜ݓ ௦ݕ  (22) 

This ratio offers a simple mean for ordering the rules, and can be easily used to select a subset of rules in a forward 
regression manner. Evaluating only the approximation capabilities of the rules, the OLS method often assigns high 
importance to a set of redundant or correlated rules. To avoid this, some extension for the OLS method were  
proposed [14, 21]. 

4 Application examples 

4.1 Illustrative example 
To demonstrate the potential of Support Vector Regression techniques two examples were introduced. Firstly an 
illustrative regression problem is solved with a simple dataset containing 51 samples (see Figure 1). The SVR technique 
obtained 14 support vectors. This model has been reduced by the RS method (Step 1), by which we tried to reduce the 
model to operate with 10 rules. Modeling results can be seen in Table 1. Utilization of all the three steps of the algorithm 
reduced number of fuzzy rules to 6, however this indicated slight increase in modeling error. 

 

Figure 1. Illustrative example with model output, support vectors and the insensitive region 

Table 1.  Application of the proposed three step algorithm 

Method RMSE #Rules 

SVR Identification 0.084 14 
Step 1. Reduction 0.0919 10 
Step 2. Reduction 0.2415 9 
Step 3. Reduction 0.3361 8 
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4.2 Identification of a hammerstein system 
In this example, the support vector regression is used to approximate a Hammerstein system that consists of a series 
connection of a memory less nonlinearity, f, and linear dynamics, G, as it is shown in Fig. 2., where v represents the 
transformed input variable. For transparent representation the Hammerstein system consist of a first-order linear part ݕሺ݇ ൅ 1ሻ ൌ ሺ݇ሻݕ0,9 ൅ ሺ݇ሻݒ ,ሺ݇ሻ and a static nonlinearity is represented by a polynomialݒ0,1 ൌ  ሺ݇ሻଶ. The datasetݑ
contains 500 input-output data. Support vector regression model was identified with efficiency summarized in Table 2. 

 

Figure 2. Hammersten system 

Table 2. Results of Hammerstein system identification 

Method RMSE #Rules 

SVR Identification 0-0533 22 

Step 1. Reduction 0.0604 15 

Step 2. Reduction 0.0.65 13 

Step 3. Reduction 0.0792 12 

As figure 3 and Table 2 conclude, support vector regression is able to give accurate models for Hammerstein system 
identification. Extracted, non-distinguishable rules from this system are represented on Figure 4, therefore the three-step 
reduction algorithm is used to acquire interpretable models. 

 

Figure 3. Identified Hammerstein System, support vectors and model output after reduction 

Number of rules could be reduced to 15 without any major modeling error increase after applying the RS method (Step 1), 
Using further reductions with the second and third step of the proposed algorithm interpretable model (see Figure 5) and 
accurate model could be extracted. 
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Figure 4. Non-distinguishable membership functions obtained after the application of RS method 

 

Figure 5. Interpretable membership functions of the reduced fuzzy model 

5 Conclusions 
Support vector based techniques and fuzzy rule-based models work in a similar manner as both models maps the input 
space of the problem into a feature space with the use of either nonlinear kernel or membership functions. The main 
difference between support vector based and fuzzy rule-based systems is that fuzzy systems have to fulfill two objectives 
simultaneously, i.e., they must provide a good modeling performance and must also be linguistically interpretable, which 
is not an issue for support vector systems. However, as the structure identification of fuzzy systems is a challenging task, 
the application of kernel-based methods for model initialization could be advantageous because of the high performance 
and the good generalization properties of this type of models. 

Accordingly, support vector based initialization of fuzzy rule-based model is used in this paper. First, the initial fuzzy 
model is derived by means of the support vector learning algorithm. Then the support vector model is transformed into an 
initial fuzzy model that is subsequently reduced by means of the reduced set method, similarity based fuzzy set merging, 
and orthogonal transform-based rule-reduction. Because these rule base simplification steps do not utilize any nonlinear 
optimization tools, it is computationally cheap and easy to implement them. 

The application of the proposed approach was shown on simple one dimensional function identification data and 
Hammerstein system identification. The obtained models are very compact but their accuracy is still adequate. Besides, it 
might be clear that still real progress can be made in the development of novel methods for feature selection. 
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We intend this paper also as a case study for further developments in the direction of a combination-of-tools methodology 
for modeling and identification. We are seeking for techniques that perform well on multiple criteria, considering here 
different soft-computing tools, namely support vector machines and fuzzy techniques are combined to achieve a 
predefined trade-off between performance and transparency. 
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