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ABSTRACT

Multiple-choice questions are the popular type of test items that are used for testing the knowledge of health-science students in
north America and elsewhere. The motivation of this article is to present the recent advances in the automatic item generation
(AIG) and to propose a novel unsupervised approach that extends the information-based Compositional Distributional Semantic
Model (CDSM) to measure the semantic relatedness among the pool of automatically generated items. We have used operational
item bank from the medical science domain for developing the CDSM and demonstrated our approach using the concepts from
AIG research. We illustrated our approach using eleven item models from the medical education domain, and discussed the
possible applications to advance the AIG research.
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1. INTRODUCTION

The growing popularity of automatic item generation (AIG)
can be attributed to the increasing demand for large pools of
operational test items that measure learning outcomes.[1, 2]

AIG is an algorithmic way of generating assessment tasks by
combining cognitive theories, psychometric practices, and
computer technologies. The outcome of this algorithmic
transcription is often referred to as item modeling.[3–6] The
item modeling process requires the identification of elements
within the assessment task so that these elements can be used
to create large set of items.[1, 7] These generated items may
or may not be similar to one another and thus the lexical
similarity among the generated items is often unknown.

Consequently, it is imperative to develop a measure to quan-

tify the semantic similarity among the generated items so
that the relatedness of words within the items across the
item pool can be evaluated. Information on semantic relat-
edness will enhance the quality and usability of generated
item pools thereby leading to the selection of higher quality
distractors[8] using semantic descriptions of the item content
that, in turn, could help predict the item difficulty level,[9]

the quantification of language diversity in the generated item
pool, the use of similarity-based theory to control the dif-
ficulty of the multiple-choice questions – MCQs[10] and a
better understanding what makes an item difficult for a group
of students. However, visual evaluation of similarity and se-
mantic relatedness is subjective and therefore ineffective and
could be impractical for large set of automatically generated
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items, Unfortunately, quantifying item similarity is challeng-
ing because prior semantic knowledge about the assessment
tasks is often not available.

Hence, the purpose of the present study is to introduce a
novel method for assessing the semantic relatedness among
the generated items. Our approach extends the compositional
distributional semantic model (CDSM) for assessing the se-
mantic relatedness among a set of generated items. We will
also present a popular measure from the natural language
processing (NLP) domain for the quantification of visual
similarity of automatically generated items. We illustrate
and discuss our approach using eleven item models from the
medical education domain.

2. THEORETICAL FRAMEWORK
2.1 Approaches for automatic item generation
Continuous testing is one important benefit of computer-
based testing (CBT). But it also requires large pools of op-
erational test items. Traditional item development practices
are resource intensive and are less viable for creating the
content required for CBT. Another important aspect of CBT
is the administration of parallel test forms. In which case, the
examinee(s) may require a different version of test form, due
to assessment needs or due to exceptional circumstances, that
must assess the identical knowledge level across multiple test
administrations. This is almost impossible to accomplish if
the test forms are created manually and thus innovative meth-
ods, such as parallel test form tabu[11] and particle swarm
optimization[12] were proposed to combine the test items us-
ing large item banks. However, examination agencies which
adopt computer-assisted testing systems are faced with the
daunting tasking of creating thousands of new and expensive
items for developing the large item banks, that must meets
multiple assessment and pedagogical objectives. This is a
challenging issue in educational assessment,[13] and thus had
promoted the AIG research and practice.

AIG employs three general steps.[6, 13] First, content experts
create an item model by identifying the elements in the as-
sessment task that can be manipulated. Second, the item
model is programmed for algorithmic variation of identified
elements using item generation software. Third, statistical
models are used to estimate the psychometric properties of
the generated items based on the combination of constrained-
elements used in item assembly. The purpose of this study is
to refine and extend step 2, the item generation process. AIG
is used to produce the stem as well as the options as part of
the item text. The stem is the part of the item which contains
the context, content, item, and/or the question the examinee
is required to answer. The options include the alternative
answers with one correct option and one or more incorrect

options or distracters. For the purpose of this study multiple-
choice item models were used which generated both stem
and four options.

The focus of the AIG process is to create items that share
the same cognitive attribute and yet look different to the
test takers. However, two broad item classification are dis-
cussed in the AIG literature; namely variants and clones (or
isomorphs).[4, 6, 13] The generated items are classified as iso-
morphs if the elements of the assessment task is simplistically
manipulated, where the resulting set of items contain only a
slight variation in the values of the elements in an assessment
task. Conversely, generated items are termed variants if the
elements of the assessment task are sufficiently constrained
while its instances are being generated to produce items that
look different from one another. Regardless of whether the
generated items are classified as isomorphs or variants, the
process of building item models is iterative, which provides
the opportunity for data collection and analysis,[13] and as a
result, could be used to improve the quality of the generated
items.

Items models can be developed using either a weak-theory
or a strong-theory approach.[14, 15] In weak theory approach,
design guidelines are used to create item models that gener-
ate isomorphic item instances which imitates a given parent
item (or family of parent items). The weak theory approach
is well suited to broad content domains where few theoretical
descriptions exist on the knowledge and skills required to
solve test items.[6] Conversely, the strong-theory approach
employs a cognitive model to specify and manipulate the
elements that yield generated items with predictable psycho-
metric characteristics (e.g., item difficulty). To date, few
comparable cognitive theories exist to guide the item devel-
opment practices[16] thereby limiting the practical application
of strong theory. Both approaches require the content ex-
perts to engage in the complex task of item modeling using
a combination of design guidelines and principles acquired
from experiences, theory, and research[14] For the purpose of
this study, eleven multiple-choice item models were created
using a strong-theory approach in the content area of medical
education.

2.2 Measure of semantic relatedness
Comprehending the meanings of electronic text is a funda-
mental application of natural language processing (NLP),
which involve the segmentation of large text (e.g., text pas-
sage) into smaller units of text (i.e., sentences or phrases)
and employing NLP methods for representing the meaning
of these units. These methods can be broadly categorized
in three families,[17, 18] namely semantic networks, feature-
based models, and semantic spaces. The semantic networks
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representation can be visualized as graphs of words, in which
each node is a word and the edges between the words repre-
sents the semantics relationships between the words. Here,
the semantic relatedness between words is expressed by the
path length (i.e., number of edges between words). The
shorter path represents semantically related words and the
longer path represents less related words. Semantic networks
are not practical for a large language corpus because it re-
quires linguistic modelers to hand code the nodes and the
edges. In feature-based modeling, native speaker (i.e., hu-
man modeler) are asked to develop list-of-feature that they
consider important for representing the meaning of a word.
This approach is time consuming and often substantively
unaligned because of the way the representations are coded
and analyzed using human judgements,[17, 19] and could also
be impractical for larger text corpus.

Semantic space is an attempt to model the characteristics of
a human semantic memory which is driven by the principle
(from brain research) that the words with similar meaning co
occur in similar linguistic environment. For example, gene
and molecules tend to occur in contexts of similar words,
such as proteins, DNA, and hereditary. A semantic space is
a vector-space that captures the meaning quantitatively in
terms of co-occurrence statistics, where words or concepts
are represented as vectors in a high-dimensional space.[17, 20]

As a result, similarity of word meanings can be quantified by
measuring their distance in high dimensional vector space.
Semantic representation using semantic space is advanta-
geous mainly because no explicit human judgments (i.e.,

human modeler) are required and as a result larger lexicon
(corpora) can be coded and analyzed.

The linguistic structures are compositional in nature because
simpler language-elements are combined to form more com-
plex ones. For example, morphemes (a minimal meaningful
language unit) are combined into words, words into phrases,
and phrases into sentences. Therefore it is reasonable to
assume that the meaning of sentences is composed of the
meanings of individual words or phrases.[17, 18, 21] Most im-
portantly, the temporal order of words in a sentence repre-
sents the differences in meaning as a result of differences in
word order or syntactic structure.[18] Early semantic space
modeling approaches (e.g., Foltz’s[22]) were insensitive to
word ordering and thus could not capture meaning differ-
ences that are modulated by differences in syntactic structure.
Consider, for example, the following two sentences from Lan-
dauer and Dumais[23] that happen to use the same vocabulary
but are still semantically unrelated:

(1) It was not the sales manager who hit the bottle that
day, but the office worker with the serious drinking
problem.

(2) That day the office manager, who was drinking, hit the
problem sales worker with the bottle, but it was not
serious.

The mechanism of compositionality, for quantifying the re-
latedness between text, depends on how high-dimensional
representation are combined for constructing the sematic
space.

Table 1. A hypothetical semantic space for “gene” and “molecules”
 

 

 Protein DNA Hereditary Life Cell Acid 
 (w1) (w2) (w3) (w4) (w5) (w6) 
Gene  2 9 7 5 2 3 
Molecules  7 5 0 7 3 1 

 
Semantic spaces could be constructed either using an addi-
tive or a multiplicative model. Both additive and multiplica-
tive approaches for constructing semantic space assumes
that composition is a symmetric function of the constituents
(words) and they apply the mathematical operation (addition
or multiplication) for combining the co-occurrence vectors.
But neither approach take into account the order of words. To
illustrate basic composition functions, consider the simplified
semantic space in Table 1 that represents the co-occurrence
vector for words gene and molecules using a six-dimensional
semantic space from a hypothetical corpora. A two word
phrase p could be represented using its two constituents
(words) q and r with a compositional-function acting on

those constituents, that is, p = f(q, r). Using Table 1, q =
gene, and r = molecules, the additive model would yield the
vector [9w1, 14w2, 7w3, 12w4, 5w5, 4w6] and multiplicative
model would yield [14w1, 45w2, 0w3, 35w4, 6w5, 3w6] for
representing the phrase p. These representations form the
basis of distributional information for quantifying the seman-
tic relatedness among constituents (i.e., words or phrases).
Such modeling, which approximates the meaning of words
with vectors summarizing their patterns of co-occurrence in
corpora, are called distributional semantic models (DSMs).

Researchers have extended the DSMs to incorporate the com-
positional structure of language and called these models
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compositional-DSMs (CDSMs). CDSMs assume that the
meaning of a word can be interpreted by its context and
the meaning of a sentence can be derived from its composi-
tions.[17, 24] Central to CDSM is the notion of compositional-
ity, i.e., the meaning of complex expressions is determined by
the meanings of their constituent expressions and the rules
used to combine them. However, access to the annotated
text and rules or corpora of symbolic-logic representation is
challenging to evaluate in operational settings such as items
generated from an item model.

3. OUR APPROACH

3.1 Extension of compositional distributional semantic
model

To address this challenge, we developed a unsupervised
CDSM, which extends the work by Mitchell and Lapata.[17]

We expanded the CDSM framework in three ways: 1) con-
structing word vector of co-occurrence weighted by distance,
2) using the bigram multiplicative model to compose sen-
tence vector, and 3) computing term frequency–inverse docu-
ment frequency (TF-IDF) weights for different words. Taken
together, an enhanced CDSM method which explore the util-
ity of making better use of the structural information for
quantifying the semantic similarity.

One drawback for Mitchell and Lapata,[17, 25] and Baroni
and Zamparelli[26] approaches is that they do not take word
distances into consideration and instead, only focus on neigh-
boring words next to the target words. Semantic relatedness
becomes stronger when words are closer, but long distance
words can also convey semantic information about target
words.[27] So, in our method, we not only focused on occur-
rences of neighboring words, but also occurrences of other
words in the context window of a certain size, multiplied by
some weights between 0 and 1 according to the distance. Im-
plementing such weights serve as a reciprocal of the distance
measure. For example, if context window = 3, and the sen-
tence = A dog jump onto a tree, the vector of weights could
be define for the target word jump relative to the distance of
each ward in the context window, as shown in Figure 1.

Figure 1. An example for weighting based on context
window

The second modification we implemented is to use the bi-
gram multiplicative model. In the original approach, Mitchell
and Lapata[25] built the representation of sentences by com-
posing its individual word representation. Normally, the
composition method is only an additive operation, where
all vectors are added to get the sentence vector. Although
Mitchell and Lapata[17, 25] proposed a multiplicative oper-
ation, they used it only to compare phrases, but not full
sentences. We propose a bigram multiplicative operation
that incorporates the syntactic sequence thereby taking into
account the temporal order of words. Thus, their additive
model for sentence vector

∑n
i−1 vi (where vi is the vector

representation) was extended by appending the bigram mul-
tiplicative model, as shown in equation 1:

n∑
i=1

vi + α

n−1∑
j=1

vj ∗ vj+1 (1)

Here the additive model is appended with the weighted mul-
tiplication as well as the component-wise multiplication of
adjacent two words (where vj ∗ vj+1 is the bigram repre-
sentation; and α is the weight, farther the distance lower
the weight). In this way we can exploit the multiplicative
operation to compare sentences.

The last idea is to add weights to important words that affect
the similarity. The important words were flagged using the
TF-IDF score. TF-IDF is a numerical statistic that is intended
to reflect how important a word is to a document in a corpora
collection. The words with higher TF-IDF scores are often
the words that best characterize the topic of the document.[28]

Intuitively, if a word is less frequent in the whole training set
but appears often in one single sentence, then it means this
word is of high probability to be significant to the theme of
this sentence. Thus this word should be given more weight.
Finally, the model representation vector of the sentence was
updated by incorporating this modification, i.e., words were
weighted according to TF-IDF score (i.e., sw,i , sw,j , and
sw,j+1 represents weighted TF-IDF score of a word at posi-
tion i, j, and j + 1). Mathematically, the final expression for
sentence-vector relatedness, as shown in equation 2:

n∑
i=1

sw,i ∗ vi + α

n−1∑
j=1

(sw,j ∗ vj)(sw,j+1 ∗ vj+1) (2)

We named our unsupervised measure the index of semantic
heterogeneity or ISH. It ranges between 0.0 and 1.0. The
minimum ISH value of 0.0 means high semantic diversity
among the sentence pair and the maximum ISH value of 1.0
means high semantic relatedness among the sentence pairs.
Simply put, the lower ISH indicates semantic diversity and
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higher ISH indicates the semantic relatedness (i.e., variant
and isomorphs, respectively, in the AIG context). When
more than two sentences (i.e., items) are compared, the pair-
wise ISH indices need to be computed and then averaged for
evaluation of semantic relatedness. The standard deviation
among the pair-wise ISH value could be computed for eval-
uating the amount of semantic variation among the set of
sentence pairs.

3.2 Cosine similarity index

It is also important to quantify the visual similarly of the gen-
erated items. One numeric measure that serves as an alternate
for visual similarity is the Cosine Similarity Index (CSI) . CSI
is one among many type of NLP word similarity measures
shown to produce high quality results across several text and
document similarity domains[29–31] and could be used for the
quantification of visual similarity of automatically generated
items. CSI is based on a text-vector indexing technique[29]

which measures the similarity between two vectors of co-
occurring texts in terms of distance score. Mathematically,
CSI is expressed in equation 3:

cos(−→A,−→B ) =
−→
A ·
−→
B∥∥∥−→A∥∥∥∥∥∥−→B∥∥∥ (3)

Here, A and B are two binary vectors which represent the
word occurrence in sentence A, and sentence B, from the
universe of unique words. To illustrate, suppose the words
in Table 1 forms the universe of words using six words (i.e.,
proteins, DNA, hereditary, life, cell, acid), and we want to
compute the visual similarity between two sentences, sen-
tence A: “Life DNA hereditary protein DNA”, and sentence
B: “Acid hereditary cell”. In total, we have six unique words
and each word represents a dimension from the universe of
words, which in this case is represented as a six dimensional
vector. Next a word frequency vector needs to be constructed
for each sentence which corresponds to the value in the word
dimension. For example, the word DNA occurred twice in
A, thus the value of 2 in dimension w2. The word frequency
vector for

−→
A = 〈1 w1, 2 w2, 1 w3, 1 w4, 0 w5, 0 w6〉, and

for
−→
B = 〈0 w1, 0 w2, 1 w3, 0 w4, 1 w5, 1 w6〉. Here, the

frequency of each word corresponds to the components of
vector A and B. The vector values are then used in the CSI
equation to produce a similarity value between sentence A
and B, as demonstrated in equation 4:

(1.0 + 2.0 + 1.1 + 1.0 + 0.1 + 0.1)/

(
√

12 + 22 + 12 + 12 + 02 + 02 ×√
02 + 02 + 12 + 02 + 12 + 12) ≈ 0.22

(4)

The CSI ranges from 0 to 1. The minimum CSI value of 0
means that no words overlapped between the two vectors.
The maximum CSI value of 1 means that the text represented
by the two vectors are identical. That is, lower CSI indicates
lower similarity and higher CSI indicates higher similarity
among the words in the text. When more than two items
are compared, the pair-wise CSI indices need to be com-
puted and then averaged for the evaluation of similarity. The
standard deviation among the pair-wise CSI value could be
computed for evaluating the amount of variation among the
set of generated items.

Table 2. Random sample of generated items from an item
model of Post Operative Fever

 

 

531. The man is on post operative day 3 and has received a left 

hemicholectomy. The patient has a temperature of 38.5℃. There 

are no other potential complications; his age is recorded as 40 
years. Which one of the following is the most likely diagnosis?

a. Jugular Vein Thrombosis 
b. Pneumonia* 
c. Staphylococcal infection 
d. Urinary tract infection 

832. A 70-year-old man has had a appendectomy. On post 
operative recovery day 4, after returning to a general ward 

settings, the man has a temperature of 38.5 ℃ . Physical 

examination reveal a red and tender wound. Which one of the 
following is the most likely diagnosis? 

a. Wound infection* 
b. Jugular Vein Thrombosis 
c. Atypical pneumonia 
d. Urinary tract infection 

158. The man has a temperature of 38.5℃ and is on post 

operative day 3. Earlier this year, the patient was hospitalized for 
urinary catheterization. The patient’s age is recorded as 
70-years. He has had a left hemicholectomy. The best prognosis 
for this patient would be: 

a. Urinary tract infection* 
b. Jugular Vein Thrombosis 
c. Atypical pneumonia 
d. Nonobstructive atelectasis 

Note. *- correct option. 

4. METHODS
Eleven item models were used to generate a large pool of test
items. Each item model belongs to a specific topic within the
medical education domain. These item models were devel-
oped by the content experts during an item modeling session
at an international medical licensing authority. To generate
the items, the computer program IGOR[32] was used. IGOR,
an acronym for Item GeneratOR, is a software program writ-
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ten in JAVA that instantiates all possible combinations of
elements into items based on the definitions and constrains
within the item model. The item models from content experts
were first transcribed into an XML format that IGOR can
interpret, after which IGOR computes the necessary informa-

tion and outputs items in either HTML or Word format. A
sample item model is shown in Figure 2, and a small random-
sample of generated items is presented in Table 2. Next we
will present the methods for constructing the semantic space
and operationalization of our measures.

Figure 2. A sample item model

4.1 Data corpus for constructing the semantic space

In total, 2,049 operational test items from the medial ed-
ucation domain were extracted from the item bank of an
international medical licensing authority to build the corpus
used in the current study. These multiple-choice items con-
tain a stem and five options (i.e., four distractor and one key).

Each items belongs to one of six content area within the
medical education domain, and was develop by the context
expert using item development guideline. The content-wise
count of these items is shown in Table 3. We used these item
as a corpus for parameter tuning as well as for building the
semantic space.
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Table 3. Summary of Item counts as a function of content
area

 

 

Content area Item count 

Medicine 669 
Obstetrics and Gynecology 402 
Pediatrics 274 
Preventive Medicine & Community Health 54 
Psychiatry 319 
Surgery 331 
Total 2,049 

 
All items in the corpus were used to construct the semantic
space of co-occurrence, which was then used to quantify
the semantic relatedness for the AIG items. First, the text
for each item (including the stem and the five options) was
transcribed into sentences and was supplied as a TAB delim-
ited text file to the semantic-space creation module. Several
parameters were tuned so the optimal semantic space could
be develop. We used 205 items as our development set (i.e.,
10% of 2,049 items) to tune the parameters. The final param-
eters were used to build the semantic space that, in turn, was
used to quantify the semantic relatedness of the items from
eleven AIG models.

4.2 Parameter tuning for constructing the semantic
space

ISH is an extension of CDSM that requires the algorithm to
learn the best set of parameters for representing distributional
semantic space by means of parameter tuning. Parameter
tuning is a process of learning an optimized set of param-
eters using independent dataset, that improves the overall
performance of the system as evaluated by some measure-
able metric. For this step, we used independent dataset of
10,000 sentence pairs, that are rich in the lexical, syntactic
and semantic phenomena and was annotated for relatedness
in meaning by trained human annotator.[33] We used the gra-
dient descent parameter learning method[34] for optimizing
the performance metric of Pearson correlation between ISH
and the human score of relatedness in meaning.

There are several parameters that must be tuned in order to
achieve the best result for our improved version of CDSM.
The first parameter is window size. When we compute the
co-occurrence of words we only take into consideration the
words whose distances are within a certain window size. By
means of machine learning, we found that the best results are
obtained when the window size is between 4 and 6. Smaller
or larger range will not increase the accuracy of the results.
Whether or not to add <s> and </s> at the start and end of
sentences, respectively (which effects the word boundary
selection for bigram multiplicative model) is our second pa-

rameters. We found that the correlation decreases to about
0.10 when we appended the start and end symbols, thus
we omitted these symbols. For stopwords (most common
words, e.g., a, is, this), three options are available: 1) not
deleting any, 2) delete using assigned list of common stop-
words, or 3) deleting the n most frequent words. We tried
all three methods as well as setting different thresholds for
top n words and found that the best result is produced when
we deleted the top 25 frequent words. The second and third
modifications exhibited a satisfactory outcome. When we set
a weight of 0.10 (α = 0.10) for bigram multiplicative vectors
and took TF-IDF score of each word into consideration, the
Pearson correlation result boosted significantly. The optimal
parameters for our model are shown in Table 4.

Table 4. The best parameter values after model tuning
 

 

Parameters Value 
Window Size 6 
Sentence Symbols FALSE 
Stopwords 25 
Distance Weights FALSE 
Multiplicative Weight 0.1 
TF-IDF TRUE 

 
4.3 Data analysis
For each item model, one hundred items were randomly
selected from the set of generated items and then passed
onto two software application modules that we develop to
compute ISH-relatedness and CSI-similarity.

4.3.1 For ISH
Each AIG item (stem + options) were transcribed as sen-
tence, and then paired with every other items. That is, for
100 randomly-selected items, 4,950 sentence-pair were cre-
ated. Each sentence-pair was then quantified using the se-
mantic space that we constructed using operational test item
corpus. As a result, for each item model, 4,950 ISH values
were computed and then summarized as a mean and standard
deviation.

4.3.2 For CSI
To begin, the porter stemmer algorithm[35] was used to elim-
inate the post-fixes (e.g., shapes into shape) and common
words (e.g., a, is, this). Next, the matrix of word occurrence
was compiled for each sample of items, where each row rep-
resents an item and each column represents a unique word,
and each row-by-column cell is enumerated dichotomously
to determine whether a word occurred in a specific item.
Finally, the CSI was calculated for each unique item-pair.
That is, for a sample of hundred items, 4,950 CSI values
were computed and summarized as a CSI mean and standard
deviation.
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Table 5. Summary statistics of Semantic Index of Heterogeneity (ISH) and Cosine Similarity Index (CSI) across eleven
content area of health sciences

 

 

Content Area of Item Models 
Semantic Heterogeneity (ISH) Cosine Similarity (CSI) 

Min. Max. Mean SD Min. Max. Mean SD 

Abdominal Aneurysm 1.00 1.00 0.99 0.00 0.00 1.00 0.47 0.38 
Adverse reactions to drugs 0.91 1.00 0.96 0.04 0.52 0.97 0.71 0.08 
Diabetes 0.40 1.00 0.71 0.20 0.00 1.00 0.49 0.31 
Diverticulitis 0.41 1.00 0.76 0.17 0.00 1.00 0.34 0.25 
Gallstone 0.97 1.00 0.99 0.01 0.00 1.00 0.70 0.21 
Hernia 0.27 1.00 0.70 0.17 0.00 1.00 0.53 0.16 
Hypertension 0.44 1.00 0.79 0.17 0.00 1.00 0.48 0.24 
Infection & Pregnancy 0.98 1.00 0.99 0.01 0.00 1.00 0.53 0.25 
Menopause 0.45 1.00 0.77 0.15 0.00 1.00 0.36 0.23 
Post Operative Fever 0.98 1.00 0.99 0.00 0.00 1.00 0.39 0.31 
Post Operative Management 0.19 1.00 0.66 0.23 0.00 1.00 0.43 0.18 

 
5. RESULTS

Table 5 summarizes the results using the semantic-
heterogeneity and visual-similarity indices using the eleven
medical education item models. Across the eleven item
models, the mean SHI ranged from 0.66 to 0.99, with corre-
sponding SD of 0.24 and 0.00. Item models that generated
similar items (i.e., item clones) had a higher mean ISH (>
0.80) and lower SD (< 0.10) values, suggesting that on aver-
age these item models generated items that are highly related
in their meaning (i.e., less lexical diversity in the generated
items). Conversely, item models that generated semantically
heterogeneous items (i.e., item variants) had a lower mean
SHI (≤ 0.80) with higher SD (≥ 0.10) values.

For our data, the mean CSI ranged from 0.34 to 0.71, with
corresponding SD of 0.25 and 0.08. Item models that gener-
ated similar items (i.e., item clones) had a higher mean CSI
(> 0.70) and lower SD (< 0.10) values, suggesting that on
average these item models generated the set of isomorphs.
Conversely, item models that generated distinct items (i.e.,
item variants) had a lower mean CSI (≤ 0.70) with higher
variability (SD ≥ 0.10) among the set of generated items.

These results suggest that six of the eleven item models gen-
erated variants. Consider for example, the Hypertension item
model. This model had generated the most semantically het-
erogeneous items (ISH = 0.79) and yet visually the items
are quite distinct (CSI = 0.48). The corresponding SD of
0.17 and 0.24, respectively, also suggest a high degree of
heterogeneity in the generated item pool of this model. The
Diabetes, Diverticulitis, Hernia, Hypertension, Menopause,
and PostOperative Management item models produced the
same pattern of results.

6. DISCUSSION AND CONCLUSIONS

Unfortunately, there are few empirical methods available
for quantifying the similarity of generated test items,[36] and
hence to date, similarity is often established more subjec-
tively using judgments from test development specialists. To
address this limitation in literature, we describe two measure
of item similarity that can be used to evaluate the compa-
rability of the generated items. Despite the feasibility and
potential usefulness of using the AIG methodology to gen-
erate test items, the semantic cohesiveness of the generated
items must also be evaluated. We illustrated how item quality
can be evaluated using information-based approaches so that
the semantic relatedness among the generated items can be
determined.

AIG requires that the generated items are equivalent on the
cognitive requirements but at the same time should appear
to be different items to the test takers. The purpose of this
study was to present an improved version of CDSM to rep-
resent test-items by composing different words vectors and
then use these word representation vectors to compose sen-
tence representation vectors and thus, compute the semantic
similarity between item pairs using the semantic space. Se-
mantics relatedness in the context of this study has a rather
broad meaning. By “semantics relatedness” we refer to the
whole test-item (stem + options) meaning that a word can be
interpreted by its context and the meaning of a sentence can
be derived from its compositions.

Although the first improvement we proposed in the CDSM
(i.e., adding distance weight) turned out to be unsatisfactory,
the other two improvements we introduced weighted bigram
multiplicative model and TF-IDF score produced optimum
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result for the learned semantic space. Our unsupervised ap-
proach could be used to quantify the semantic heterogeneity
among the automatically generated items thereby providing
a more intuitive representation about the quality of generated
item pools. The item models used in this study were found to
be visually distinct and moderately related on meaning with
high semantic variability, which suggests near ideal gener-
ative capacity of the medical item models. These findings
embodied quantitative and cognitive indicator of distinctive-
ness for the generated items. Both measures, ISH and CSI,
provided methods for concretely measuring distinctiveness
and could be informative and helpful for several item genera-
tion and item bank management tasks.

For example, these NLP measures could be used as a feed-
back mechanism to the test developers for enhancing the
elements in item model in order to produce more diverse
items from an item model. These measures could also be
used as a method for choosing items at the time of test as-
sembly process to ensure that the final test form contains
a diverse sample of items that measure different outcomes.
Administering test on computers also facilitates delivery of
individualized items by providing different difficulty levels,
content emphases, and possibility of immediate feedback to
the test takers.[37] Excluding the items with overlapping con-
tent and answer curing (enemies[38]) is another area in which
these measures could be used to enhance the item delivery
and development practices because as the item bank grows
the human ability is restricted to compare and detected the
enemies. The other promising application is statistical pre-
calibration of the generated items,[39] that uses the concept
of item families to develop a statistical model for calibrating
siblings (i.e., generated items) based on the commonality
within generated items. In the absence of empirical measures
of commonality, the sibling membership must be established
more subjectively using judgements and ratings from test
development specialists. Finally, comparing the items in
active item bank against those on the shared public domain
(e.g., learning websites, materials from coaching school, etc.)

can identify compromised items, and the investigation can
proceed accordingly for the stolen items.[30]

Most importantly, all of these possible applications will be
based on semantic vectors of numbers which would not re-
quires access to the actual item bank there by providing
an additional security that is seldom possible in costly con-
ventional methods, which requires the content specialist to
initially create and then transform each individual item as
it moves through the creation, editing, and revision process.
Given the high cost of item development, the proposed em-
pirical methods for reviewing and identifying commonality
within large item banks will help focus resources on unique
items rather than on item editing and revision.[36]

Nevertheless, the semantic space constructed in this study
uses a corpora from a relatively small item bank. We ex-
pect that if the semantic space had been constructed using
a large sample of operational test items, we would have ac-
cess to more co-occurrence information thereby leading to
the construction of word vectors with close to true semantic
meanings. This study had proposed two methods that could
be used as an evidence to describe the similarity among
the generated items. However, more research is needed to
establish the gold standard to classify automatically gener-
ated items based on their measure of distinctiveness. Hence,
one possible future direction of this research could be to
develop an effect size measure with interpretative criteria[40]

for classifying the generated items as isomorphic or variants
and to evaluate the effectiveness of proposed distinctiveness
measures in other content domains. Finally, AIG is not free
from human subjectivity because content experts must still
make decisions about which aspect of assessment task will
contribute in the item difficulty, discrimination and seman-
tic relevance. It is expected that human subjectivity will
be reduced by incorporating more systematic approach to
item development such that large number of items can be
generated effectively to populate item bank for satisfying the
demands of varying assessment criteria.
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