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Abstract 

This study focuses on the relationship between the number of securities (n) pre-selected for mean-variance portfolio 

optimization and the number of optimal securities (k). We propose a heuristic k ≈ square root (n) based on empirical 

research optimizing different sized (n) portfolios. That is, a sample selection of 20-30 securities should yield a 

portfolio of about five optimal securities, and an initial sample of 500 securities, should result in an optimal portfolio 

of about 22. We focus on the tangent portfolio that maximizes the return-to-risk ratio. The heuristic finds its support, 

rationale, and logic in the numerical properties and statistical nature of the optimization. More specifically, the 

heuristic seems to originate in the dynamic convergence patterns observable in many statistical processes, especially 

in standard deviations. It is also supported by available results in the literature. Our “square root” heuristic functions 

as part of the wider family of approximation around the power law, where some variables (authors, securities, people) 

receive a disproportionate share of a given collection of items – see, for example, Pareto’s principle, Zipf’s law, 

Lotka’s law, Price’s square root law, Simon’s law, etc. The heuristic provides assistance not only in anticipating the 

number of optimal securities chosen by the mean-variance optimizer but also in suggesting selectivity in the effort of 

pre-selecting securities prior to the optimization and in sharpening portfolio-based approaches to investing in general. 

In sum, the heuristic k ≈ sqrt(n) seems helpful at all levels of portfolio management. 

Keywords: heuristic optimization, portfolio optimization, mean-variance, Markowitz model, limited diversification 

1. Introduction 

“Empirical formulae are not laws of nature yet, but can be important steps towards the discovery of theoretically 

substantiated functional relationships between physical quantities. An almost classical example of it is the discovery 

of Planck’s radiation law on the basis of three empirical formulae.” (Bronshtein and Semendyayev, 1985, p. 729) 

We studied the matter of the number of securities preselected before portfolio optimization (n) and the number 

obtained from the optimizer (k) when calculating optimal portfolio positions, i.e., optimal weights. Selecting which 

securities to buy is one of the two most critical parts of the application of portfolio optimization to actual investing; 

the other is making money. Despite its importance, and despite the generous amount of financial literature that 

addresses portfolio analysis, we have not seen any systematic study of the n-k relationship. 

One possible reason for that void in the literature is the inherent difficulty in trying to comprehensively shed light on 

this issue. We demonstrate one effective way to proceed: follow the lead of the earliest formulations of portfolio 

optimization, and focus on a case of an individual, small investor implementing the two steps mentioned above. 

Concerning portfolio construction, one enduring assumption is that the many resources available to large, 

institutional investors justify large numbers for n, the number of securities fed into the optimizer. Furthermore, 

numerical optimizations for large-scale problems are not as expensive/intractable as they used to be. Finally, 

institutional investors can analyze layers upon layers in the investing decision – the firms issuing the stock, the 

financial markets, the economy, the international scene, etc. To the contrary, we believe that excess resources and 

ingredients may be too many cooks spoiling the n-k broth. 

Facing the same challenges, scholars have reacted similarly to large investors – throwing more resources at the 

problem and believing larger sizes and more complex tools would help. Specifically, scholars have concentrated their 

efforts in the following endeavors: 1) identifying areas from which to draw guidance (statistics, economics, financial 

markets, corporate financial analysis, etc.), 2) numerical optimization of a function based on certain parameters 
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representing return and risk, and 3) evaluating the resulting portfolio. At every turn, scholars have come back to the 

problem with more resources and more impressive tools (mathematical programming, inequalities, auxiliary 

variables, theoretical probability, infinite variance, rocket mathematics), and impressive theories as well 

(mean-variance, Roy’s safety-first and related ideas, levered-portfolios, CAPM, utility theory). 

The barrier to progress in portfolio optimization is the lack of progress in understanding the n-k relationship. Being 

unable to justify that the optimal course of action is to invest in k optimal securities in exactly the calculated optimal 

weights prevents us from actually buying those securities. 

It is telling the more hopeless the attempt has been, 1) the more it has clothed itself in the form of presumably 

irrefutable proofs, lemmas, theorems, and corollaries, and 2) the lower the acceptance to tackle the problem in to 

tackle the n-k matter with more straightforward ways. Any such attempt is shot down before take-off because, it is 

alleged, it does not promise to be “robust” or “rigorous” enough. And thus, the loop of portfolio investing is never 

closed. 

We followed a direct path, and we have something to share with investors and our academic colleagues. 

(1) We first performed both an extensive and intensive analysis of the literature, which in some ways is unbounded. 

First, many of the contributions regarding “portfolio size” referred to the size of funds invested, not the any number 

or any list of the assets involved, and their optimal weights. Second, much of the literature that addressed the issue of 

“how many stocks make a diversified portfolio” did not perform any optimization at all. A great many of them 

associated risk reduction with a theoretical minimum, CAPM-inferred market covariance level. Others, primarily 

work involving simulations, did not perform any optimizations. In the worst cases, a most illogical assumption 

(choosing securities at random), which no real investor would take seriously, led to similarly ill-conceived condition 

(equal position weights), and produced a final recommendation to – unsurprisingly – load up on securities by the 

hundreds. 

(2) We then selected a specific portfolio optimization mode: the unlevered version of the original mean-variance 

model, as presented by Markowitz (1959). 

(3) We kept the add-ons to a minimum: a) focus on one portfolio (the one maximizing the return-to-risk ratio; b) no 

risk-rate; risk analysis can be performed once the n-k relationship has been clarified; c) keep utility implicit, as in 

Constantinides and Malliaris (1995). We studied the minimum-variance portfolio as well. 

(4) We worked at two levels: we focused on the small portfolio (ten securities) level to allow analysis of each 

optimization, but we also included several large portfolio groupings in our analysis. 

(5) Fluctuations in the stock market affect the optimal number of securities in optimal portfolios. It can be shown that 

mean-variance portfolios optimizer acted like a thermostat, reducing the number of securities in optimal portfolios to 

keep the return-to-risk ration as high as possible, given the circumstances. We studied optimal portfolios (tangent 

and minimum-variance) during around the mid-2000s crisis. 

Our work is organized in three sections. The first section is dedicated to the literature, the second to the material 

covered in points (2) to (5) above, and the third to our specific additions: numeric, quadratics, and the heuristic k ≈ 

sqrt(n). 

In our analysis, we tried to detect or construct helpful rules-of-thumbs or heuristics concerning the n-k relationship. 

For example, if one inputs n securities into the optimizer, how many would it determine would be “optimal:” half of 

n, the square root of n? We determined k = sqrt(n) is a useful heuristic, with interesting implications for investing 

practice. 

Concluding comments and references close the study. 

2. The Literature 

The existing literature is quite extensive, which made it advantageous to develop a typology of what makes some 

studies are more helpful than others (e.g., both those with findings regarding n and k individually, and those with 

incidence on the n-k relationship), and also keep in mind those indirect areas that can clarify the n-k issue. 

Ninety-nine percent of the literature pointed to Evan and Archer (1968) as the initial reference on the optimal 

number of stocks for a portfolio, which we designated k in our notation. This is important for two reasons. First, the 

earliest illustration of an application of mean-variance analysis was presented by Markowitz (1959, Chapter 2), and it 

is excellent; the model employed 9 stocks, assumed a risk-free rate paying cash, and covered 18 yearly return 

observations (1937-1954). At that time, the required optimization was hard to implement with the available 
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computing power. Markowitz (1952) stated that he had intended to use 25 securities but gave up (Appendix: 

Personal Notes, pp. 381 and ss.). Second, the date of Evans and Archer’s (1968) work indicates it likely influenced 

the development of the CAPM, and the authors write in the first paragraph, “The problems associated with portfolio 

analysis have been the subject of intense discussion in recent years, especially after the introduction of a practical 

solution algorithm by Sharpe…,” (p. 761). Why would the authors turn to the CAPM when mean-variance analysis 

was still in its late teenage years? It was because the CAPM differentiated between systematic risk (unavoidable for 

any investment in stocks) and unsystematic risk, which was the real target of security measures added to the portfolio. 

Evans and Archer came to very positive conclusions, eight to 10 securities were all that was needed in the portfolio. 

They emphasized costs and the cost-benefits of adding securities, but their analysis included “randomly selected 

portfolios,” where “equal dollar amounts were invested in each security in each of the portfolios, and dividends were 

not invested. 

Kryzanowski and Singh (2010), however, point to an earlier indication of the optimal number of securities: Fama 

(1965), who used an example of Paretian market and suggested using 15 securities might work but at least 100 might 

be required to exhaust diversification benefits. 

A study by Fisher and Lorie (1970) made multiple helpful contributions: they used wealth ratios, not returns, to 

avoid misleading return assumptions. They included commissions, introduced Gini and Lorenz curve statistics, and 

assumed equal investments without any subsequent reallocation of resources and concluded that 8 stocks would 

provide 80% of the maximum possible diversification benefit; 16, 90%; 32, 95%; and 128, 98%. 

Mao (1970) indicated that a cost-benefit analysis was needed to provide an answer to the problem of the optimal 

number of securities needed, and he provided one using the expected return-to-beta ratio to cases where all securities 

had positive returns. This is very useful because it links the n-k relationship to the critical ratio at play in the 

optimization itself. We believe that using individual return-to-standard deviation ratio provided by mean-variance, 

rather than the one provided by the CAPM, would have been even better. 

Jennings (1971) addressed a different important factor – the competence of professional portfolio managers and the 

industry to provide diversification: “One of the inherent limitations of a portfolio manager is his inability to evaluate 

an infinite number of securities. The seriousness of this problem is directly related to the risks associated with a 

‘small’ portfolio. The economic function of a mutual fund industry is to provide diversification and professional 

management. If it is assured that a ‘small’ portfolio can virtually eliminate diversifiable risk, the necessity of these 

functions may be questioned. In addition, the strategy of concentration may be less ‘risky’ than is commonly 

supposed. Finally, the modern portfolio models generally assume that portfolio additions are costless” (p. 797). This 

is a very prescient observation, which sums up today’s situation perhaps even better than it did when it was made. 

Today, small-portfolio investors have more funds, education, information, and computing power than those of 1971, 

and some invest in small portfolios they put together themselves. Jennings studied two strategies, buy-and-hold and 

yearly full replacement, with randomly selected stocks. His recommendation concerning the optimal number of 

securities was similar to Fama’s (1965) above. Jennings also concluded that, “The characteristics of the investor will 

influence the number of securities contained in his portfolio. Diversification is not a ‘free good.’ The costs include 

brokerage fees, analytical and management expenses, and the opportunity for an exceptional portfolio gain that is 

assumed to decline as common stocks are added to the portfolio” (p. 799). 

Wagner and Law (1971) highlighted the information hypothetical investors may use before buying the stocks and 

another key item: the information used to manage risk and its effects on the number of securities to buy. They built 

random portfolios of 1-20 securities and checked if stocks ratings from the S&P Guide affected both performance 

and the number of securities. They found a “rapid decline in total risk as a portfolio is expanded from one security up 

to ten securities… Increasing the number of holdings does not, in and of itself, increase or decrease the rate of return 

on the portfolio… Portfolios of a small number of securities are very undiversified, whereas portfolios of as few as 

fifteen to twenty securities have a strong relationship to the market index…. Investment performance can often be 

improved by expanding the list of qualified securities to include higher return, higher risk stocks, while offsetting the 

increase in market risk through more effective diversification. Small accounts should be encouraged to pool their 

assets to exploit these possibilities” (Our boldfacing, Wagner and Law, 1971, several pages). 

Note, for further reference: “On March 4, 1957, the index was expanded to its current 500 companies and was 

renamed the S&P 500,” (https://en.wikipedia.org/wiki/S%26P_500_Index#History ). The square root of 500 is 

approximately 22. 

Fielitz (1974) went back to using managed investments companies, “Should they be considered viable investment 

alternatives for individual investors? The answer is not obvious since these companies provide diversification and 
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thereby reduce risk, which is an advantage of prime importance… Direct investment in a randomly diversified 

portfolio of common stocks is preferred since the return performance of the random stock portfolio is superior to that 

that can be obtained from investment funds on the average,” (pp. 54 and 61). He recommends eight randomly 

selected stocks for individual stock portfolios, and 20 selected at random to approximate the market portfolio (again, 

a number close to the square root of 500). He also notes, “[T]he time is near when ‘index’ funds will be available to 

the general public.” 

Jacob’s (1974) study is pivotal in the literature on household investing. Realizing that small investors would not be 

able to buy many stocks, she developed a “limited diversification” approach, with which investors could find success 

from investing in as few as six securities. Brennan (1975) followed up by creating a single-index model in which the 

number of securities a variable that was dependent on costs. In his view, costs were the variable likely to keep small 

investors in the limited diversification area. Blume and Friend (1975) furthered this research by analyzing the 

characteristics of individual investors. Finally, Elton and Gruber made many contributions that small investors could 

make use of (e.g., simplified optimization procedures, clarifications on what matters when studying diversification, 

etc.); their (1977) research provides an analytical method to study the relationship between securities and portfolio 

risk. 

Goldman’s (1979) contribution may be considered very indirect, as he did not specify any particular number of 

securities and was responding to highly theoretical issues concerning Merton-type assets and stochastic calculus. But 

he highlighted the very important contrast between the concepts of “favoritism” and “diversification.” The title of his 

study, “Anti-Diversification or Optimal Programs for Infrequently Revised Portfolios,” anticipated very sophisticated 

modern topics such as rational inattention and indicated why some investors might stick to small portfolios. 

Sengupta and Sfeir (1985) addressed over and under diversification by focusing on statistical efficiency – weights 

reliability. The matrices used in the optimization were negatively affected differences between the number of 

observations (rows) and the number of securities (columns). Increasing the number of observations for a given 

number of variables makes the optimal weights less reliable through overdetermination; increasing the number of 

variables causes underdetermination. Restricting both makes for more robust estimates and protects from 

nonnormality concerns. In addition, the variance of returns may not adequately measure the risk of a portfolio. Bird 

and Tippett (1986) followed up on the previous study and assessed portfolios by varying the number of observations 

and the number of variables. In this context, so-called “naive diversification” – piling up equally weighted, randomly 

selected securities – may be most detrimental, even for portfolios with as few as eight securities. They cautiously 

suggested, at the very least, doubling the number of stocks recommended by Evans and Archer (1868) to 16-20 

instead of 8-10. More recently, Goetzmann and Edwards (1994) studied the issues using short-horizon data to build 

portfolios that could be held for long horizons, which touches upon the issues raised by Sengupta and Sfeir (1985) 

discussed above. DeMiguel et al. (2008) tried to measure the inefficiency of “naïve diversification.” 

Statman (1987) used a levered-portfolio context to set the number of stocks to be held at 30 when borrowing and 40 

when lending. Woerheide (1993) provided useful diversification indices, and Newbould and Poon (1993) examined 

textbooks and found the recommendations varied between 8 and 20 securities. Beck et al. (1996) found that 

“substantial” diversification benefits were realized when the portfolio size approached 20 securities – note that, as in 

most studies, securities were chosen at random. DeWitt (1998) addressed with lack of information and made the case 

for naïve diversification – adding securities at random and using equal weights. He concluded by conjecturing that 

“100 to 500 securities might still lead to economically significant reductions in the required excess return,” leaving 

the reader wondering how or why. Xu and Malkiel (2003) recommended 50 stocks on the basis of idiosyncratic 

volatility. 

In the 2000s, a climate developed in which individual investors could be more successful than previously assumed. 

Vissing-Jorgensen (2003) found that many behavioral finance objections disappeared when individuals had enough 

wealth to allow appropriate investment (see Goetzmann and Kumar (2008) for an example of behavioral finance 

application). Chhabra (2004) wrote, “[T]here is a remarkable group of people, a minority of the general population 

but a significant majority of the affluent, who have become wealthy over the years by defying market diversification. 

Ironically, many of them would not have become so wealthy had they followed a conventional diversified approach” 

(p. 8). Riepe (2004) noted the lack of specifics in many studies advocating for diversification, which he likened to an 

“eat your vegetables mantra.” However, in other studies, the recommended number of stocks continued to increase: 

one suggested 30 securities randomly selected from industry leaders might achieve diversification equivalent to that 

of the market index (Boscaljon et al., 2005); another noted more than 100 securities might be needed when shortfall 

risk was considered (Domian et al., 2007); and another recommended 40-50 stocks (Bellenjoun, 2010). 
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Two studies provide a close to our review of the literature. Part of Ivkovick et al.’s (2008) abstract aptly summarize 

their findings: “Stock investments made by households that choose to concentrate their brokerage accounts in a few 

stocks outperform those made by households with more diversified accounts (especially among those with large 

portfolios). Excess returns of concentrated relative to diversified portfolios are stronger for stocks not included in the 

S&P 500 index and local stocks, potentially reflecting concentrated investors’ successful exploitation of information 

asymmetries. Controlling for households’ average investment abilities, their trades and holdings perform better when 

their portfolios include fewer stocks” (p. 613). 

Kryzanowski and Singh (2010) provided an excellent integration of the previous literature and carried out additional 

research using simulations (5,000 portfolios, Monte Carlo approach, equal weights). One major finding was, “mixed 

evidence for the refutation by various authors … that investors suffer from the cognitive error that losses are reduced 

over longer holding periods. Specifically, while the probability of not earning a positive return is reduced with a 

longer holding period, the probability of not earning the market return is increased with a longer holding period. 

Thus, the existence of cognitive error depends upon the choice of anchor or benchmark return” (p. 29). Another 

finding was that “the minimum portfolio size depends upon the chosen investment opportunity set, the metric(s) used 

to measure the benefits of diversification, and the criterion chosen to determine when the portfolio is sufficiently 

well diversified” (op. cit., p. 1). 

More recently, the very comprehensive bibliometric study by Zaimovic et alia (1921, p. 551) note that, “a 

generalized optimal number of stocks that constitute a well-diversified portfolio does not exist for whichever market, 

period or investor.” 

What do we learn from the literature review? Negative observations include the following: 

(1) Very little has been established about how to pre-select securities ahead of optimization (that is, how to set n). A 

few authors suggested focusing on an index might be useful. 

(2) Authors rarely used optimal portfolios to set k, but they relied on observing given metrics for risk when the 

number of securities held for long periods changed, and these grouping almost invariably consisted of randomly 

grouped stocks. In other words, one cannot find empirical studies reporting findings along these lines: “We selected 

these n stocks, ran the optimization, obtained k optimal stocks, and this is what the follow up shows for returns and 

risks.” 

(3) In addition, without mean-variance optimization, one cannot evaluate the only quantifiable variety of 

diversification we know about, which is related to splitting the portfolio variance into individual security variances 

and covariances. Chasing after the conjecture market-covariance minimum is not comparable because of Roll’s 

critique – the double implication of both mean-variance analysis and market theory hold true. Diminishing investing 

risk by splitting funds between a portfolio of risky securities and cash is hedging not diversification. 

(4) Finally, there are some very important issues not included in a buy and hold, single-period, static problem. Some 

authors referred to the evolution of the investors’ knowledge and financial position, which may affect to the length of 

the investing period and window of opportunity during which the investment takes place. Martellini and Urosevic 

(2006) found that optimal solutions produced by mean-variance analysis might not be as optimal under uncertain 

investment exit times. 

On the positive side, our examination of the literature stresses two most useful points: 

(1) Portfolio optimization may benefit from studying the portfolio econometric properties. Prior to Sengupta and 

Sfeir’s (1985) study, Jobson and Korkie (1983) showed how to optimize a mean-variance portfolio using an atypical 

regression, where the matrix of returns was regressed on a column of one’s (any constant would do), without using 

an intercept. Rebalancing the beat estimates produced the optimal weights, as well as standard errors for the 

regression and each of the coefficient. The procedures also suggested a very handy algebraic model that simplified 

both the optimization itself and its analysis (see Tarrazo, 2009, 2014, 2018). 

(2) Kryzanowski and Singh (2010) noted, “the minimum portfolio size depends upon the chosen investment 

opportunity set, the metric(s) used to measure the benefits of diversification, and the criterion chosen to determine 

when the portfolio is sufficiently well diversified,” (p. 1). This means that if we provide a logical way to prelect “n,” 

the securities to be optimized, mean-variance analysis will provide the additional elements needed to study the n-k 

relationship. As previously done in the literature, we used several indices as the initial samples for the optimizations. 

Markowitz’s (1952, 1959) mean-variance model appears ideal to study the n-k relationship. It makes sense of a) 

investing by concentrating efforts in two dimensions: risk and return; b) it also makes sense at the statistical level – it 
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employs well-known, easy-to-calculate descriptive stats (mean and variance) within the context of the normal 

distribution. And it shows that the optimal portfolio is also an optimal predictor. The numerical aspects that seemed 

prohibitive when it was proposed have become very reasonable and need no involve mathematical programming at 

all (see Tarrazo, 2014). 

Other items like sample size and investment windows (optimal horizons) still remain on the researchers’ back 

burners. But this is where our study comes in. Our analysis and contributions will be as follows: 

(1) In the next section, we first study the effect of markets and the number of securities in the three critical portfolios 

in the efficient frontier for different portfolio groupings: the minimum-variance portfolio (portfolio with minimized 

standard deviation), the tangent portfolio (portfolio with the highest return-to-standard deviation), and the portfolio 

with the maximum return (portfolio with 100% of investment allocated to the security with the highest return). 

(2) We present a different analysis using small portfolios -- ten pre-optimization stocks. 

(3) Results from the previous point also clarify some matters related to sample length and horizon issues. 

(4) We elucidate the major point of risk reduction, the number of securities, and the split between individual variance 

and covariance risk. We found it is more advantageous to diminish portfolio risk using financial analysis to 

pre-select securities than using blind security accumulation. 

In addition to our empirical analysis of pre- and post-optimizations effects on the number of securities, we also, for 

the first time, explore the effects that the tools employed in mean-variance optimization have themselves on the 

number of post-optimal securities. This section provides an interesting and apparently valid and helpful heuristic to 

approximate the optimal number securities for the minimum-variance and tangent portfolios, given a 

pre-optimization number of n securities. 

3. Empirical Analysis 

The broad lines of mean-variance portfolio analysis, as in Markowitz’s (1952, 1959) optimization are well known. 

The following paragraphs rely on work by Fabozzi, Gupta, and Markowitz (2002) and Constantinides and Malliaris 

(1995). 

Investments were taken to be probabilistic variables, and their statistical measures or central tendency (average) and 

dispersion (variance, covariances) approximated the investments return (mean) and risk, respectively. These statistics 

were calculated by, first, collecting closing prices (adjusted for dividends and splits, five years’ worth of monthly 

data) and, second, by computing the indicators using returns (natural logs of price relatives). The, the investor tried 

to maximize expected portfolio returns for a given level of risk or minimize risk for a given level of return. The 

optimization program can be stated in a number of ways – in terms of mathematical (quadratic) programming, in 

terms of Lagrangian optimizations, or in an algebraic manner, which we used in the calculations that follow. 

Let, 

F(w, V, r) = -1/2 w’V w + w’r                                         (1) 

represent the portfolio optimization problem, where w is a (k by 1) vector of optimal portfolio weights, V is the 

variance-covariance (k by k) matrix, and r is a (k by 1) vector of returns. Instead of using (1), we employed an 

auxiliary formulation, Z(z, V, r), where z (k by 1) is a vector of auxiliary variables. To solve Z, we compute z = 

inv(V) r , then we computed optimal portfolio weights by normalization, wi = zi / sum(z), and we used the optimal 

weights to compute portfolio returns, rp = w’ r and portfolio variance, pvar = w’V w. The algebraic expression in (1) 

implicitly incorporates the investor’s (quadratic) utility (Constantinides and Malliaris, 1995), which eliminates the 

need to handle another mystifying curve. 

The work of Jobson and Korkie (1983) established that optimal mean-variance portfolios can be calculated using 

regression methods (see also Tarrazo, 2014, 2009; Britten-Jones, 1999; and Rekenthaler, 1999). MATLAB’s 

function lsqnonneg(), provided a handy way to calculate optimal, non-negative (wi ≥ 0) portfolio weights, especially 

for large-scale portfolios. The most straightforward way to perform these calculations is to use the returns matrix and 

a column of ones for the tangent portfolio and the covariance matrix and a column of ones for the minimum variance 

portfolio. We used EXCEL’s optimizer for the analysis of the small portfolios presented in the second part of this 

section. 

We were interested in the optimal number of securities for the three key portfolio in the efficient frontier: 1) 

maximum returns (100% into the security with maximum returns), 2) the tangent portfolio (that maximizing portfolio 

return to portfolio standard deviation, rp/pstd), and 3) the minimum variance portfolio. 
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We first present our analysis of the n-k relationship in large portfolios under changing market conditions. 

3.1 Large Portfolios and Market Effects 

Anyone who has run portfolio optimizations for a few years will have noticed that the difference between the number 

of securities pre-selected for mean-variance portfolio optimization (n) and those within the optimal portfolio (k) 

seems to change – it gets narrower in good market times and significantly wider during poor market times. This 

effect can be observed simply by optimizing the Dow-Jones for different periods. Tarrazo (2018) carried out a more 

thorough analysis and evaluated the behavior of mean variance during the period 01/31/2001 to 12/30/2011, which 

included 132 monthly data points. The first optimal portfolio was calculated using 60 observations, five years of 

monthly data, and was dated 2006-01-3. Rolling portfolios were calculated every month after that first one for a total 

of 72 portfolios (non-negative weights). The data collected were grouped into the following four sets, corresponding 

to 1) companies in the Dow Jones Industrial Average (DJIA; 30 stocks), 2) companies in the NASDAQ 100 index 

(ndx100; 81 stocks), 3) stocks of companies in the Standard & Poor’s 100 Index (sp100; 93 stocks with options 

traded), and 4) a set of stocks of companies from the San Francisco Bay Area (baf; 131 stocks), mostly tech-intensive 

businesses (note: R = rows = observations; and C = columns = variables). 

(1) djia-092112-4matlab 132R by 30C 

(2) ndx100-1012-4matlab-alpha 132R by 81C 

(3) sp100-1012-4matlab 132R by 93C 

(4) baf-1012-h-alpha-4matlab 132R by 131C 

This methodology let us observe how mean-variance optimization worked and performed during this extended time 

period, which included the late 2000s economic/stock market crisis. 

According to the National Bureau of Economic Research (NBER), “A recession is a significant decline in economic 

activity spread across the economy, lasting more than a few months, normally visible in real GDP, real income, 

employment, industrial production, and wholesale-retail sales” ( https://en.wikipedia.org/wiki/Recession). NBER 

provided specific dates for the beginning and end of the crisis: December 2007 – June 2009, 18 months (Portfolios 

24 and 42, respectively). ( https://admin.nber.org/cycles/main.html). On September 29, 2008, the Dow Jones 

Industrial Average fell 777.68 points. On March 6, 2009, the Dow dropped to its lowest, closing at 6,594.44, a total 

decline of 53.4% from its peak close of 14,164.43 on October 9, 2007. 

Figure 1 includes charts showing DJIA returns and portfolio standard deviations for the tangent portfolio during the 

period of reference. These polar charts that work like walking down a spiral staircase, from the highest point 

(Portfolio 1, January 3, 2016) to the lowest (Portfolio 72, December 30, 2011). The solid line depict portfolio returns 

and the broken line indicates portfolio standard deviations; portfolio returns resemble a crown close to the north 

pole-like center, for some of the groupings (DJIA, BAF) more than for others. The portfolio standard deviations 

seem to spiral out with frightening centrifugal force (see Tarrazo, 2018, for the analyses of the other three groups). 

The return-to-risk ratio also exhibits deterioration, as is demonstrated in the chart showing the ratio for the DJIA 

(bottom of the exhibit) and is covered in more detail in the next exhibit. It is hard not to conclude that mean-variance 

optimization had to do with preserving the levels of return much like a thermostat preserves the temperature in a 

house. 

Figure 2 illustrates how portfolio optimizations countered deteriorating standard deviations and risk-to-return ratios 

to preserve and stabilize levels of returns – by reducing the number of optimal securities (k). Each row shows a 

different portfolio DJIA (30), S&P100 (93), NDX (81), and BAF (131). The numbers within the parentheses, the 

actual number of securities in the sample, were the values for n, the pre-optimization number of securities in each of 

the portfolios. In the chart on the left, each row shows the return-to-standard deviation ratio (pr/pstd) for each of the 

critical portfolios in the efficient frontier during each rolling month optimization. 

Several items are noteworthy: 

(1) The 2007 recession is clearly observable in all charts. It is even more remarkable that the charts’ peaks and 

recovery coincide so well with the NBER dates for the beginning and end of the recession, Portfolios 24 and 42, 

respectively. 

(2) The tangent portfolio in each grouping reaches higher return-to-risk ratios (and these are ex-post as well) than the 

minimum-variance portfolio, and the ratio of the security to the largest return meanders curiously between them. 
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(3) The difference in the ratios remains stable throughout the period for each grouping, which is also quite 

remarkable and signals the effects of the optimization. 

(4) The right column shows the minimum-variance portfolio holding more stocks than the tangent portfolio for each 

of the groupings. 

(5) The difference in the number of securities in each optimal portfolio is not as stable as that of the ratios. 

(6) Each chart clearly depicts three regimes: pre-crisis, crisis, and post crisis (more details about this later). Each 

regime exhibits some stable (flat) range for the number of securities in each optimal portfolio, and further analyses of 

these trends are presented in a subsequent section. 

In sum, there seems to be a relationship between the pre- and post-optimal number of securities in optimal portfolios. 

The evidence present so far suggests that this relationship is determined by economic/market conditions. In a 

following section, we show that it is also determined (in general) by the mathematical nature of the tools employed. 

 

Figure 1. DJIA optimal portfolios: January 3, 2016 -- December 30, 2011 

Source: Tarrazo, M. “Mean-Variance under Stress -Ten years of Portfolio Optimizations: 2001-2011.” 

Quarterly Journal of Finance and Accounting, Vol. 50, Issues 1 & 2, Winter & Spring 2018, 91-148. 
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Figure 2. Efficient frontiers, return-to-risk ratios and number of securities 

Source: Tarrazo, M. “Mean-Variance under Stress -Ten years of Portfolio Optimizations: 2001-2011.” 

Quarterly Journal of Finance and Accounting, Vol. 50, Issues 1 & 2, Winter & Spring 2018, 91-148. 

3.2 Small Portfolios 

Figures 3 and 4 present optimizations (tangent portfolio, max rp/pstd, non-negative weights) for fourteen small 

portfolios: 10 securities pre-optimization, with five-years of monthly returns, for 03/01/2014-02/01/2019. These 

portfolios were put together as part of the normal analysis of the company issuing the stock (usual, textbook financial 

analysis concerning debt, ROE and ROA rates, etc.) and the stock price itself. All companies were attractive in 

several different ways. 
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The following observations offer insights on the n-k relationship: 

(1) Note the boxes enclosing the securities that were admitted into the optimal portfolio. The number of optimal 

securities in each portfolio hovered around 5, that is n = 10 and k = 5. However, a deeper look reveals a significant 

amount of variation in optimal weights, with a pattern of the top three companies in each portfolio getting from 

70-80% of the total portfolio weight (100% in two cases) and the top four, from the mid-80 to 100% in some cases, 

as reflected in the columns to the right of the optimal weights. In other words, all the action centered around three to 

four securities. 

(2) The individual security ranking (individual security return to individual security standard deviation ri/pstdi) and 

the optimal weights were directly related. The ranking of the securities in the optimal portfolio (those in the box) 

followed nearly exactly the individual return-to-risk ratio. That means the optimizations rankings reflect individual 

security rankings very closely. In the cases represented by the straight arrows, the ranking was identical. In the cases 

indicates by the inclined arrows, the ranking was approximate. The securities with lower individual rankings have 

little hope of getting themselves admitted to the “the club” represented by the optimal portfolio. 

(3) The arrows offer a qualitative representation of diversification: positively correlated securities that were demoted 

are represented with downward pointing arrows; and negatively correlated securities that were promoted have 

upward pointing arrows. Quantitatively, the effect can be ascertained by looking at the weight gain (loss) in each 

case. For example, in Portfolio 1, the individual return-to-risk ranking imposed itself almost completely, with the 

exception of the 5.55% Apple lost to Facebook. Individual return-to-risk coefficients determined membership in the 

optimal portfolio, and diversification (covariance) effects re-arranged where those securities would sit at the tables. 

(4) Based on the rp/pstd ratios reported at the top of each portfolio, ten securities seemed to be enough to earn an 

impressive rate of risk-adjusted returns. 

Some readers may be surprised to read those individual effects (main diagonal, direct effects, variance) prevailed 

over indirect (off-diagonal, covariance) effects. In other words, that mean-variance optimization was predominantly 

about individual return-to-risk proportions. But this is a mathematical characteristic of the model itself. It happens 

because the variance-covariance matrix is positive and definite. As Mao (1970) showed, for diagonal matrices (no 

covariance terms), the ranking of optimal weights follows the ranking of individual return-to-risk ratios exactly: that 

is, wi = (ri/vari) / (Σ ri/vari), where vari is the individual security variance. This is readily apparent in the diagonal 

variance-covariance matrix of Mao’s (1970) case, but it is harder to see in a positive definite matrix. As Golub and 

Van Loan (1996) put it, “A symmetric positive definite matrix has a ‘weighty’ diagonal. The mass on the diagonal is 

not as blatantly obvious as in the case of diagonal dominance but it has the same effect in that it precludes the need 

for pivoting,” Golub and Van Loan (p. 141). In our case, this means the main diagonal imposed its ranking over 

off-diagonal terms, in conjunction with the corresponding rate of return. 

Because of the ri/stdi ranking, no security with negative returns would be ever admitted in a portfolio that has 

positive returns. Because of linearity, the return-to-risk ratio of the portfolio equaled the ratio of individual securities, 

marginal returns to individual securities marginal variance. The denominators are all nonnegative, so the numerator 

of the individual, marginal return must be positive if the portfolio return is positive. Though a necessary condition, 

having a positive return alone is not sufficient for a security’s inclusion in the optimal portfolio. The security also has 

to improve the overall return-to-risk of the portfolio, which was very tough. 

Our observations concerning diversification sharply conflicted with its portrayal in some of the literature as a 

powerful force that can be harnessed by indiscriminate accumulation of securities. We observed optimizations in 

which the optimizer ruthlessly discarded dozens of securities. In a well-selected portfolio, diversification might make 

large-return gains more stable. Diversification effects depend on the specific grouping into which each security is 

cast. 

These results are most interesting and have the clearest relevance for practical investing. They indicate that 

mean-variance optimization, when properly applied, may uncover forces at play in the investment world. It may, in 

fact, tend to reduce the number of securities needed in an optimal portfolio. 

At this point, we have seen there is an observable relationship between the pre-optimization number of securities and 

that of securities included in the optimal portfolio (tangent, and minimum-variance). In our next and final section, we 

present general relationship derived from the mathematical objects used in the analysis. 
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Figure 3. Small portfolios I (cases 1-8) 

Source: Tarrazo, M. “Mean-Variance under Stress -Ten years of Portfolio Optimizations: 2001-2011.” 

Quarterly Journal of Finance and Accounting, Vol. 50, Issues 1 & 2, Winter & Spring 2018, 91-148. 

P1 rp/stdp 0.448666 P2 rp/stdp 0.345639

ri/stdi wi* ri/stdi wi*

ADBE 0.395711 ADBE 38.69% 38.69% CSCO 0.294263 CSCO 38.88% 38.88%

INTU 0.357916 INTU 33.94% 72.64% INTC 0.252938 INTC 31.53% 70.41%

NVDA 0.322061 NVDA 13.86% 86.49% CRM 0.229921 GOOG 14.98% 85.39%

INTC 0.252938 INTC 7.96% 94.45% GOOG 0.184156 CRM 14.61% 100.00%

APPL 0.233182 FB 5.55% SCHW 0.131283 CVX 0

CRM 0.229921 CRM 0 HPQ 0.130251 GPS 0

FB 0.215065 SAP 0 WSM 0.130251 BMRN 0

GOOG 0.184156 APPL 0 CVX 0.068401 HPQ 0

SAP 0.120186 GOOG 0 BMRN 0.022418 WSM 0

CVX 0.068401 CVX 0 GPS -0.0628 SCHW 0

P3 rp/stdp 0.337578 P4 rp/stdp 0.417866

ri/stdi wi* ri/stdi wi*

INTC 0.252938 INTC 46.61% 46.61% NVDA 0.322061 CSCO 49.06% 49.06%

CRM 0.229921 FB 29.13% 75.74% CSCO 0.294263 NVDA 26.71% 75.76%

FB 0.215065 CRM 24.26% 100.00% NFLX 0.228906 GHDX 17.42% 93.18%

GOOG 0.184156 CVX 0 GHDX 0.164847 NFLX 6.82% 100.00%

ORCL 0.120788 GOOG 0 SSD 0.129527 EXEL 0

CVX 0.068401 TWTR 0 EBAY 0.090091 GILD 0

WFC 0.065652 ORCL 0 EXEL 0.082611 BEN 0

GPS -0.0628 GPS 0 WFC 0.065652 WFC 0

TWTR -0.0679 WFC 0 GILD -0.0314 EBAY 0

YELP -0.1022 YELP 0 BEN -0.10703 SSD 0

P5 rp/stdp 0.575406 P6 rp/stdp 0.414188

ri/stdi wi* ri/stdi wi*

WCN 0.482923 WCN 51.05% 51.05% NVDA 0.322061 LMT 27.38% 27.38%

CSCO 0.294263 CWT 21.20% 72.25% CSCO 0.294263 CSCO 21.94% 49.32%

CWT 0.259956 CSCO 14.09% 86.35% LMT 0.262436 INTC 21.56% 70.89%

AAPL 0.233182 NFLX 9.44% 95.78% INTC 0.252938 NVDA 14.94% 85.82%

CRM 0.229921 AAPL 3.54% AAPL 0.233182 ABM 7.28%

NFLX 0.228906 TSLA 0.68% CRM 0.229921 TSLA 5.10%

EBAY 0.090091 YELP 0 ORCL 0.120788 AAPL 1.80%

CVX 0.068401 CVX 0 ABM 0.103957 ORCL 0

TSLA 0.041844 CRM 0 CVX 0.068401 CRM 0

YELP -0.1022 EBAY 0 TSLA 0.041844 CVX 0

P7 rp/stdp 0.481861 P8 rp/stdp 0.506429

ri/stdi wi* ri/stdi wi*

ADBE 0.395711 ADBE 36.18% 46.61% ADBE 0.395711 ADBE 44.58% 44.58%

V 0.373323 ROST 24.20% 75.74% DLR 0.27356 CLX 26.57% 71.15%

INTU 0.357916 INTU 23.20% 75.74% CLX 0.241593 DLR 23.19% 94.33%

ROST 0.278786 V 8.13% GHDX 0.164847 ISRG 2.69% 97.03%

AAPL 0.233182 ISRG 4.89% ATVI 0.156425 BLUE 1.52%

CRM 0.229921 NFLX 2.05% IRBT 0.142902 GHDX 1.46%

NFLX 0.228906 EA 1.35% RHI 0.139849 RHI 0

EA 0.228506 CRM 0 BLUE 0.138151 IRBT 0

AMD 0.180101 AMD 0 ISRG 0.100269 ATVI 0

ISRG 0.100269 AAPL 0 CVX 0.068401 CVX 0

Roy's paper
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Figure 4. Small portfolios II (cases 9 to 14) 

Source: Tarrazo, M. “Mean-Variance under Stress -Ten years of Portfolio Optimizations: 2001-2011.” 

Quarterly Journal of Finance and Accounting, Vol. 50, Issues 1 & 2, Winter & Spring 2018, 91-148. 

4. Numerics, Quadratics, and the Heuristic k ≈ sqrt(n) 

This section explains a) the search for and development of the heuristic, b) the conceptual integration of the 

relationships between portfolio return-to-risk ratios for critical portfolios along the efficient frontier and the number 

of securities in each of those portfolios, c) the numerical integration of those two relationships, and d) an empirical 

assessment of the usefulness of the heuristic we developed. 

The presence of patterns in the number of optimal securities in critical portfolios – the minimum-variance and the 

tangent portfolio – that are obtained from any given n, suggested the existence of an heuristic, which has been 

described as a rule of thumb, a quick and frugal approximation of practical value, or a short cut. 

In some areas of research, heuristics have bad connotations (e.g., behavioral finance). In most of those negative cases, 

shortcuts are used to remedy something being done wrong due to 1) not gathering enough information (due process), 

2) discarding available useful information, 3) not properly quantifying, or at least weighing, information, and 4) 

making decisions too quickly. Heuristics are only useful if they help in decision making. In our opinion, 

decision-making shortcuts originating from wrongful omissions and commissions should simply be referred to as 

errors or biases not heuristics. Useful, which should also mean proper, heuristics imply straight-forwardness, often 

P9 rp/stdp 0.417017 P10 rp/stdp 0.428288

ri/stdi wi* ri/stdi wi*

NVDA 0.322061 CSCO 32.62% 32.62% V 0.373323 V 68.12% 68.12%

CSCO 0.294263 NVDA 21.67% 54.30% NVDA 0.322061 NVDA 21.53% 89.64%

INTC 0.252938 INTC 20.63% 74.93% AAPL 0.233182 FB 8.18% 97.82%

AAPL 0.233182 FB 20.16% 95.09% CRM 0.229921 NFLX 2.03% 99.86%

CRM 0.229921 NFLX 4.91% NFLX 0.228906 AAPL 0.14%

NFLX 0.228906 AAPL 0 FB 0.215065 CVX 0

FB 0.215065 GOOG 0 GOOG 0.184156 GOOG 0

GOOG 0.184156 WFC 0 SCHW 0.131283 CRM 0

CVX 0.068401 CVX 0 CVX 0.068401 SCHW 0

WFC 0.065652 CRM 0 WFC 0.065652 WFC 0

P11 rp/stdp 0.514545 P12 rp/stdp 0.293102

ri/stdi wi* ri/stdi wi*

ADBE 0.395711 CLX 31.04% 31.04% LMT 0.262436 LMT 34.74% 34.74%

NVDA 0.322061 ADBE 28.49% 59.54% INTC 0.252938 INTC 27.26% 62.00%

CSCO 0.294263 ESS 14.51% 74.05% AAPL 0.233182 WMT 12.00% 74.00%

CLX 0.241593 NVDA 11.32% 85.37% EA 0.228506 EA 10.62% 84.62%

ESS 0.239473 COO 7.51% GOOG 0.184156 AAPL 9.57%

CRM 0.229921 CSCO 7.12% WMT 0.128383 TSLA 5.81%

COO 0.220686 CVX 0.00% ORCL 0.120788 GOOG 0

BIO 0.18928 COHR 0.00% MET 0.045104 ORCL 0

COHR 0.097755 BIO 0.00% TSLA 0.041844 MET 0

CVX 0.068401 CRM 0.00% AMC -0.03333 AMC 0

P13 rp/stdp 0.49994 P14 rp/stdp 0.440994

ri/stdi wi* ri/stdi wi*

INTU 0.357916 CWT 30.77% 30.77% ADBE 0.395711 ADBE 39.87% 39.87%

NVDA 0.322061 CSCO 27.13% 57.89% NVDA 0.322061 CSCO 20.69% 60.56%

CSCO 0.294263 INTU 18.90% 76.79% CSCO 0.294263 NVDA 14.30% 74.87%

CWT 0.259956 NVDA 14.74% 91.53% INTC 0.252938 FB 9.58% 84.45%

BIO 0.18928 GDDY 8.47% ALIGN 0.236966 INTC 8.24%

MGCR 0.164649 EXEL 0 AAPL 0.233182 JPM 7.32%

GDDY 0.113155 MGCR 0 JPM 0.222587 ALIGN 0

FORM 0.100937 BIO 0 FB 0.215065 AAPL 0

EXEL 0.082611 FORM 0 GOOGL 0.181667 GOOGL 0

EHTH 0.008268 EHTH 0 AMAT 0.149885 AMAT 0
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built on the most important factors in the problem being solved. However, more attention is often paid to those errors 

or biases, as indicated by Wikipedia’s “List of cognitive biases,” which include cognitive, memory, and social biases 

and total almost one hundred entries, referring to many others in the “See also” section. The literature on the errors 

seems to grow exponentially all across disciplines (see Fonseca et al, 2002). But also note that each psychological 

habit may have a flipped side that is beneficial and] some behavioral biases appear to conflict with one another. A 

few guidelines, including “[to] develop quantitative investment criteria,” seem useful in overcoming psychological 

biases in some important cases, see Baker and Nofsinger (2002, p. 112 and ss.). 

The value of shortcuts is determined by where they originate, the problem they address, and they ways they are used 

by the decision-maker. Relative to systemic portfolio optimization that allows the implementation of a real 

investment plan, heuristics are useful because each part of the decision-making process – defining the problem, 

assessing the situation and goals, and understanding the investing opportunities (e.g., a model)—are overwhelming. 

In our area of research (decision sciences, operational research), heuristics are not viewed second-class solutions. 

They have been be formally described as “A method which, on the basis of experience or judgement seems likely to 

yield a reasonable solution to the problem, but which cannot be guaranteed to produce the mathematical optimal 

solution” (Silver, 2004, p. 936). Heuristics may be qualitative or quantitative, and they are sought after to strengthen 

and improve the efficiency and accuracy of mathematical programming methods (see Ball, 2011). In fact, as noted 

by Geoffrion (1976), heuristics reflect the fact that effort is put into modeling and optimizing is to gain insight rather 

than to produce numbers. Simon and Newel (1958), writing at the peak of what Paul Samuelson has named one of 

the golden ages of economics (theory of inequalities, linear and nonlinear mathematical programming, game theory, 

mean-variance portfolio analysis), referred to heuristics as “the next advance in Operations Research.” In addition, 

heuristics can bridge qualitative and quantitative information, a benefit receiving significant current interest (see the 

survey by Smith and Winterfeldt, 2004, and the effort in mapping attributes and choices in Hogarth and Karelia, 

2005). Interestingly, Astebro and Elhedhli’s (2006) study on assessing commercial success in early-stage ventures 

used a heuristics-based sorting procedure methodology roughly equivalent to a portfolio selection model. 

Our review of the portfolio optimization literature showed us that research has either implicitly or explicitly 

employed heuristic reasoning and techniques, for example, Evans and Archer’s (1968) suggestion to invest in eight 

to 10 securities. Jacob (1970) used CAPM betas as short cut in implementing “limited diversification” portfolios for 

individual, small investors. While looking for the optimal number of securities to hold, Mao (1970) searched for the 

essential variable or ratio that could determine diversification. In the same vein, Elton, Gruber, and Padberg 

developed simple rules and techniques for portfolio optimization, including assuming that the pairwise correlation 

coefficients between stocks was a constant number (e.g., 50%; see Elton, Gruber, Brown, and Goetzmann, 2010). 

Sankaran and Patil (1999) studied “the problem of selecting portfolios which maximize the ratio of the average 

excess return to the standard deviation, among all those portfolios which comprise at most a pre-specified number, k, 

of securities. Under the assumptions of constant pairwise correlations and no short-selling, we argue that the simple 

ranking procedure of Elton, Gruber, and Padberg effectively solves the problem for all values of k, and that as a 

function of k, the optimal ratio increases at a decreasing rate. Using reasoning from graph theory, Tarrazo (2009) 

showed that the heuristic ri/stdi (individual security returns to standard deviation ratio) is the key variable 

responsible for the ranking of optimal weights. This means optimal portfolios can be calculated without using 

mathematical programming using, by adding securities one at a time (starting with that with the highest return) or 

subtracting those securities with negative weight (starting with the unrestricted, simultaneous equation solution to the 

problem; see Tarrazo, 2009, 2014). In this study, the evolution of n (preselected securities) to k (optimal securities) 

shares the non-proportional, power convergence rate exhibited by the portfolio optimal return-to-risk ratio during 

optimization (that is, rp/pstd, where “p” stands for portfolio). 

5. The Search for the Heuristic k ≈ sqrt(n) 

As noted earlier, the presence of patches with stable numbers for the number of optimal securities in critical, optimal 

portfolios (minimum-variance and tangent portfolios) obtained from any given n suggested the existence of a 

heuristic. Our first step was to review the objects and processes involved in the calculation of optimal portfolios. We 

found basic algebra concepts in Z(x) = -1/2 x’Ax + x’b , a quadratic equation with its quadratic form (x’Ax). The 

optimization function is equivalent to the algebraic one, but one or two Lagrangians may be added to include 

restrictions for the required return or the sum of optimal weights. The important functional forms are the same as 

those in algebra. Finance research on the optimal number of securities also employs a variety of quadratic 

formulations and approximations, e.g., Markowitz (1959), Brennan (1975), and Shawky and Smith (2005). The 

statistical components in mean-variance portfolio theory are the calculation of two types of indicators (central 
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tendency, mean; dispersion, variance) and the use of the normal distribution, which, unsurprisingly, can be expressed 

as an exponential function raise to a quadratic expression: f(x) = exp {ax^2 + bx + c}. The statistical component also 

includes some probability theory concerning convergence rates for estimates (sample to population) and for 

distribution themselves (e.g., central limits theorems). Interestingly, convergence formulas employ the square root of 

n, the number of observations. 

 

Figure 5. Efficient frontier portfolios, ratios and number of optimal securities 

When we carried out portfolio optimizations, the tangent portfolio always had the largest return-to-risk ratio (rp/pstd), 

and it was easy to see that the minimum variance portfolio had a lower ratio and more securities, and the highest 

return portfolio (with 100% allocated to the security with the highest return) had both a lower return-to-risk ratio and 

only one security. That means that for n securities, the tangent portfolio will have k securities, and generally k is 

strictly less than n (i.e., k < n). We “cheated” by running prior optimization and selecting the best securities, but we 

still observed k < n. We also observe that the minimum variance portfolio always had more securities than the 

tangent but fewer than the total number of securities in the pre-optimization sample, that is n > mv > k (see Figure 2). 

As was true throughout the study, our analyses concerned only portfolios subject to non-negative weights 

restrictions. 

Figure 5 shows the integration of the concepts used in portfolio optimization. We calculated the efficient frontier in 

the plane rp-pstd (width-length), and it included the three critical portfolios mentioned above. We added another axis 

(height) to represent the number of securities in each of those critical portfolios. We suspected there would be a 

relationship between those two curves, and, upon further inspection, we not only confirmed the relationship but 

found it to be quite special – both curves carried the same information; they were perfectly correlated in a special 

way. This numerical integration is shown in the Figure 6. The numbers correspond to Optimal Portfolio 10 in Figure 

4. The numbers for each curve are at the top, graphically shown in a regular x-y chart (continuous line) to which we 

added a quadratic (polynomial order 2) approximation (dotted lines), and their equations appears to the right of the 

tittle. The R2 in each of the fitted lines was not surprising. It was the result of fitting a quadratic equation with three 

observations. What was remarkable was that the relation between the original curves was a conformal mapping. 

Despite their different units, they contained the same information; an appropriate change of coordinates shows their 

commonality. We show the perfect correlations between the information in each of the original curves in two ways: 1) 

using logarithms: we took the natural logarithms of the components in each curve, built their ratios, and computed 

the correlation and 2) using squares: we squared the components in each of the two original curves, built the 
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proportions, and computed correlations. Using squares (norm = 2) is very common when applying a conformal 

mapping to a given matrix to compute eigenvalues and eigenvectors. 

The two curves have similarity properties, both have a quadratic hump that is not situated in the arithmetic mean 

between the minimum and maximum values of the range (zero and n securities, respectively). It is closer to the 

minimum number in a nonlinear manner. And the statistics of convergence use square root of n, constituting a solid 

candidate for our fast and frugal rule-of-thumb: 

The T-heuristics: For the tangent portfolio, given an initial securities, the optimal number of securities could be 

approximated by k = sqrt(n). One nonlinear, iteration down from n. The minimum-variance portfolio required two 

iterations: start with k = sqrt(n) and add another. That is, mv = 2*sqrt(n). The letter “t” indicates the transformations 

from the different, but related, coordinate systems the problem being solved inhabits. 

At this point, we could assess the performance of the heuristic we derived. This assessment is presented in Exhibits 

VII and VIII. The information in Figure 7 is essentially a numeric reproduction of the information from the Figure 2 

concerning optimal numbers of securities for each of the portfolio groupings, including some basic additional 

indicators (maximum and minimum values, and descriptive statistics). The actual performance of the heuristic is 

directly addressed in Figure 8, which contains a summary of the securities included in the optimal portfolios for each 

of the stock grouping during pre-crisis, crisis, and post-crisis periods. 

The heuristic performed quite acceptably for the whole sample period, 01/31/2006-01/31/2011. It was right on target 

for the minimum-variance portfolio of the NDX index and deviated on only one security in three other occasions. It 

was only three securities away from the average for the BAF grouping, which included 131 securities, for a 2.30% 

error. The highest deviations consisted of a results five stocks away from the S&P100 (5 out of 93 stocks, 5.38%^), 

the NDX (5 out of 81, 6.17%), and BAF (5 out of 131, 3.81%). The heuristic underapproximated the mean for the 

tangent portfolio case. 

The performance of the heuristic for the periods pre-, during, and post-crisis was quite good, with an 

underapproximation of the target during pre-crisis times. During and after the crisis, the most significant errors were 

two that occurred for the S&P100 (6 out of 93, 6.45%): one during the crisis for the tangent portfolio and another 

after the crisis for the minimum-variance portfolio. 

Out of 32 analyses, the heuristic was perfectly correct in three cases. It was two or fewer securities away from the 

target in 50% of the cases and five or fewer securities away 85% of the time. These are quite modest errors given the 

Finance standards for regression errors and given the accuracy problems and ill-defined matrices used in portfolio 

optimization. In fact, it looks quite remarkable given that we were mapping ratios to integers and discretization is 

always tricky. Fortunately, Golub and Van Loan (1996) noted, “many of the matrices that arise from discretized 

elliptic PDE’s are symmetric positive definite” (p. 512). This means the integers may retain essential properties of 

their continuous source. 

As with many other statistical tools (e.g., random number generating algorithms when simulating statistical 

distributions), the heuristic may be better evaluated in terms of existing in an area of wide variability rather than as 

squarely matching expected values. 

After we applied the heuristic to the data and reviewed its logic, we tested the heuristic in a way we should have 

initially: using a simple x-y chart of a series of numbers (in this case, the first 20 integers) to their square roots. This 

chart is reproduced at the end of the Figure 8. But even given its simplicity, it provides a condensed summary of our 

findings. Although our variables of interest are expressed in their first order magnitude (e.g., returns, standard 

deviations, integers for the number of securities before and after the optimization), when we process risk we are 

working on a second order phenomenon. The results obtained from model optimizations are all related in a given, 

explainable manner. The x-y chart, y = x^2, represents the unit parabola, and all parabolas (e.g., the relationship 

between portfolio returns and portfolio variances) are affine transformations (translation plus linear mapping) of the 

unit case. Affine transformations are invariant; they preserve ratios, midpoints, and parallel lines, which are 

properties at play in the computation of coordinate equivalences between the original optimization and its 

corresponding integer expressions via conformal mappings. This we show graphically in Figure 5, and numerically 

in the Figure 6. 

Perhaps the heuristics were just there waiting for someone to notice. Still, the conceptual integration was a 

worthwhile exercise. A preliminary explanation of the success in applying the square root rule in optimal portfolios 

is to think that we are observing simply a reflection of the many quadratically convergent processes we find in 

statistics. But there is more, much more to it than that. The “square root” heuristic may form part of the wider family 
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of approximation around the power law, where some variables (authors, securities, people) receive a disproportionate 

share of a given collection of items – see, for example, Pareto’s principle, Zipf’s law, Lotka’s law, Price’s square 

root law. In addition, the square root rule is critical in both inventory and insurance –e.g., the economic ordering 

quantity (EOQ) follows a square root rule, in insurance and square root is used to approximate objective risk, etc. 

--See Appendix. These matters represent important areas for future research. 

 

Figure 6. Numerical integration efficient frontier and number of optimal securities 
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Figure 7. Optimal securities in efficient portfolios 

DJIA (30) S&P100 (93) NDX (81) BAF (131)

mv ktg mv ktg mv ktg mv ktg

Whole: 1-72

Average 9.75 5.68 18.15 13.65 17.32 13.43 19.13 15.58

Max 16.00 15.00 30.00 24.00 25.00 22.00 27.00 23.00

Min 5.00 2.00 10.00 5.00 13.00 8.00 15.00 7.00

Median 10.00 4.50 16.50 13.00 17.00 12.00 19.00 15.00

Average ^2 95.06 32.27 329.52 186.40 299.96 180.38 365.77 242.84

Variance 8.38 11.83 32.77 33.34 8.55 14.33 6.94 15.55

stdev 2.90 3.44 5.72 5.77 2.92 3.79 2.63 3.94

Pre-crisis 1-21

Average 11.04 6.91 23.70 18.74 16.87 17.70 18.04 19.22

Max 14.00 14.00 27.00 24.00 23.00 22.00 22.00 23.00

Min 8.00 4.00 19.00 16.00 13.00 13.00 15.00 17.00

Median 11.00 7.00 23.00 19.00 16.00 18.00 18.00 19.00

Average ^2 121.96 47.79 561.48 351.16 284.58 313.14 325.57 369.31

Variance 1.61 7.30 5.26 3.67 10.90 2.82 3.43 2.43

stdev 1.27 2.70 2.29 1.92 3.30 1.68 1.85 1.56

Crisis: 24-42

Average 12.50 7.80 20.10 14.80 19.65 12.80 22.05 14.60

Max 16.00 15.00 30.00 23.00 25.00 18.00 27.00 22.00

Min 9.00 2.00 13.00 5.00 14.00 8.00 19.00 7.00

Median 13.00 7.00 19.50 17.50 20.00 11.50 22.00 14.50

Average ^2 156.25 60.84 404.01 219.04 386.12 163.84 486.20 213.16

Variance 5.05 17.86 21.59 43.36 8.53 12.86 5.65 24.54

stdev 2.25 4.23 4.65 6.58 2.92 3.59 2.38 4.95

Post-crisis: 43-72

Average 6.83 3.24 12.41 8.83 16.07 10.48 17.97 13.38

Max 9.00 5.00 16.00 13.00 19.00 13.00 21.00 19.00

Min 5.00 2.00 10.00 6.00 14.00 8.00 15.00 10.00

Median 7.00 3.00 12.00 8.00 16.00 10.00 18.00 13.00

Average ^2 46.62 10.51 154.10 77.93 258.21 109.89 322.76 179.01

Variance 0.97 1.01 2.38 5.25 1.24 1.08 2.45 3.75

stdev 0.99 1.01 1.54 2.29 1.11 1.04 1.56 1.94
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Figure 8. Heuristic performance 

6. Concluding Comments 

In this study, we present two heuristics, which we call “t-heuristics” from their square-root origins: For the tangent 

portfolio, given “n” initial securities, the optimal number of securities may be approximated as k = sqrt(n), one 

nonlinear iteration down from n. The minimum-variance portfolio requires two iterations; start with one k = sqrt(n) 

and add another. That is, mv = 2*sqrt(n). The letter “t” indicates the transformations from the different, but related, 

coordinate systems the problem being solved inhabits. 

Our findings originated from accumulated experience optimizing hundreds of small portfolios and evaluating their 

value for actual investing and from the systematic empirical research in this study. We present material on the 



http://afr.sciedupress.com  Accounting and Finance Research  Vol. 13, No. 2; 2024 

Published by Sciedu Press                         50                          ISSN 1927-5986  E-ISSN 1927-5994 

plausibility and theoretical support for the heuristics and their consistency from numerical and mathematical (i.e., 

statistical theory, conformal mapping) viewpoints. 

The concept that the number for the optimal securities could be the  (approximate) square root of n, the initial 

number of securities, suggested itself in a sea of quadratic constructs. Like every heuristic worthy of that name, it 

should be helpful. First, it originates in what still might be the best tool we have to put together portfolios – the 

mean-variance model. Admittedly, this model is only a crude approximation, but as Samuelson (1967) put it, “…in 

practice, where crude approximations may be better than none, the 2-moment models may be found to have 

pragmatic usefulness” (p. 12). In addition, awareness of the quadratic relationship between the pre- and 

post-optimization number of securities in an investment portfolio opened other vistas. For example, how many 

securities should be analyzed? Studying about 20-30 stocks, the equivalent to focusing on the DJIA, to identify a 

small portfolio of five to six securities looks very feasible and very attractive, especially when looking at their 

return-to-risk ratios – nothing short of spectacular in several of them. In a way, and somewhat independently of the 

value of the heuristic, the analysis presented highlights the suitability of small portfolios. 

The heuristics presented may also prove to be useful in other contexts where historical information is lacking, for 

example, in venture capital investing, where sometimes over a hundred proposals yield ten or even fewer investable 

projects. The fact that a second order process provides a square root heuristic suggests pursuing a third order process 

logic (average, variance, asymmetry) might provide a cube root heuristic. 

Jagannathan and Ma (2003) wrote and very informative study on the number of securities in optimal portfolios; there 

we read, “A striking feature of minimum variance portfolios constructed subject to the restriction that the portfolio 

weights should be nonnegative is that investments is spread over only a few stocks. The minimum variance portfolio 

of a 500-stock universe has between 24 and 40 stocks, depending on which covariance matrix estimator was used…” 

(p. 1677). Somehow, we were not surprised; the square root of 500 is 22.36, and twice that is 44.72. 
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Appendix 

An Optimal Inventory Understanding of Portfolio Optimization 

This appendix clarifies the point raised in the last section of the study about the foundation of the heuristic k = sqrt(n) 

in the theory of optimal inventories. 

It is fair to think of the Economic Ordering Quantity (EOQ) model as one of the most robust foundations in optimal 

inventory research and practice. It is a foundation not only for inventories but also for organizing production, 

deliveries, and processes requiring scheduling. In fact, the article first describing both the general ideas and specifics 

of what would be later known as EOQ was titled “How many parts to make at once?”, written by Ford Harris in 1913. 

R. H. Wilson extended Harris’ analysis and added a distinctive industrial engineering approach that he described as a 

scientific routine for stock control. Wilson’s 1934 study included interesting, pre-computer, decision-making aids 

such as stock record cards, ordering point calculating wheels with movable overlapping disk, and ordering point 

tabular representations of data. The EOQ became part of the operations-research, quantitative management toolbox. 

In the 1950s, it was used by William Baumol to develop a model for transactions demand for cash which, in turn, 

helped formulate an influential theory regarding the relationship between the rate of interest and the demand for cash 

by James Tobin, and a whole model dedicated to the demand for money by firms by Merton Miller and Daniel Orr. 

We searched both the practitioner and the research literature and found some interesting extensions of the basic EOQ 

such as, for example, the following: The EQO variant known as the Economic Production Quantity (EPQ); the (S,s) 

model; McDaniel’s inverted EOQ approach, where the inventory is replenished at a constant rate until it reaches a 

given value; 

Brennan (1975) where transaction costs limit the number of securities in a portfolio following a quadratic polynomial; 

and Stigler and Becker (1977) where the optimal number for searches follows the EOQ, which is derived from a 

quadratic equation. The literature is immense and cover many areas. The good news is that, for the purposes of this 

study, the EOQ entry in Wikipedia may suffice as an introduction to the model: 

https://en.wikipedia.org/wiki/Economic_production_quantity 

Let’s see how the EOQ works; let’s first introduce the variables used by the model with some numbers: level of sales 

(S = 200,000), per unit costs of carrying the inventory (C = 1.50), and some fixed costs of placing an order to 

replenish the inventory (P = 100). The optimal inventory, Q = EOQ = (p S 2/c)^ ½  = 5,163 units, will minimize the 

total (ordering and carrying) cost of inventory. The expression for the Ordering Costs is, OC = [S/Q] * P .The 

expression for the Carrying Costs is, CC = ½ Q * C . The expression for the EOQ can be found by taking first order 

derivatives in [OC + CC] with respect to Q, and making the resulting equation equal to zero. However, it is much 

easier just to first equate OC to CC, extract Q^2, and then calculate the square root. 

We can rewrite the solution found as follows: EOQ = square root ( 2 S P/C ), where we see that the term square root 

(2 S) is modified by a composite factor, a ratio of something magnifying the optimal amount of Q --that would be P-- 

though the ordering pattern, and something diminishing the optimal amount Q --that would be C-- acting through the 

carrying costs. If we look at the transaction costs, we even see more clearly the magnifying effect of P on S/Q. 

This is very important: why not Q to S right away? –Because, implicit in the model is the fact that while Q is 

immediately wanted/needed, S is not. There is something that makes S not immediately desirable/needed. This is 

exactly what happens when an investor puts together a portfolio of stocks. S/he examines n stocks and the 

corresponding firms, and then gathers data on their returns (statistical averages), and risk indicators (statistical 

variances and covariances). The larger set of securities, of size n, is of definite interest, but there is something that 

makes the smaller set, of k securities immediately purchasable, that is revealed by a quadratic, mean-variance 

optimization. 

It turns out that in statistical analysis, the coefficient of variation, cv = standard deviation/average –the average 

usually represents the expected value, in sampling, regression, or forecasting analyses.  And it also happens that 

portfolios are evaluated in terms of their return-to-risk ratio (rp/stdp), stdp representing the square root of the 

variance of the portfolio. We can easily integrate both the EOQ and MV portfolio optimization by the following 

operations: replacing S by n, Q, by k, and the ratio P/C, by stdp/rp. 

Figure 9 shows an optimal portfolio, and its return (rp = ), and risk (stdp = ).  This means that the optimal number 

of securities, k, would be explained/approximated by: k = square root (2*n*stdp/rp) = square root (2 * 10 * 

0.543294 ) = 6 , approximately. 
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In the middle of the Figure 9, we also show that alternative heuristic rules, such as sqrt(n), or sqrt(2n) can be 

combined. For example, averaging the EOQ and the sqrt(2n) heuristic provide the exact number of securities in the 

optimal portfolio: INT((EOQ + sqrt(2n))/2) = 5. 

We can also apply this model to stock market indices. For example, we can read the following with respect to the 

risk-return statistics of the S&P 500: “Since its inception in 1926, the index's compound annual growth 

rate—including dividends—has been approximately 9.8% (6% after inflation), with the standard deviation of the 

return over the same time period being 20.81%.” S&P 500 - Wikipedia https://en.wikipedia.org/wiki/S%26P_500 

The lower part of Figure 9 shows what happens if we calculate the optimal portfolio of securities without EOQ-MV 

model. The top line shows the number of initial securities (n), and the last line shows the approximated number of 

securities in the optimal portfolio (k). It can be read as if asking, “If I start with 500 securities, how many may I end 

up with in an optimal portfolio?” It can also be read the other way, “If I would like to have a portfolio of k securities, 

how many should I examine and analyze? The answer, start with 20 if you want to end up with a portfolio of 9, or 10 

if you want to end up with a portfolio of 6 is very reasonable in terms of search and follow up cost and effort. 

As we see, the integration of the EOQ and mean-variance models produces a very plausible approximation that 

complements other approximations of interests k = sqrt(n), and k = sqrt(2 n). The information presented suggests 

additional research on how further theoretical foundations for the heuristic presented could likely be found in the 

analysis by Brennan (1975), and Stigler and Becker (1977). In the context of this study, this appendix has presented 

as much information as needed to strengthen the foundations of a square root (i.e., quadratic) heuristic rule for 

portfolio construction. 
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