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Abstract 

Traditional project evaluations rely mainly on Net Present Value methodology, and largely ignore the flexibilities 
available to the sponsor to vary the project after initiation. Real Options Analysis remedies this by applying option 
pricing theory to more fully evaluate investment decisions. Through several hypothetical gold-mining examples, we 
illustrate the economic valuation of multi-stage investment decisions as simple or compound options, possibly with 
barrier option features. We present analytic valuation formulae for the types of compound options arising in this 
context, which differ from standard compound options. Barrier options are common in foreign exchange markets, 
and also arise in our analysis. We also present formulae for the valuation of the compound options appearing in our 
analysis with barrier features. It turns out that the decision to delay commencement contingent on commodity prices 
rising requires an up-and-in barrier option feature, whereas the risk of project nationalization may be modeled by 
adding an up-and-out barrier feature. Other barrier option features also arise in a Real Options context. We apply 
recently developed valuation methods for compound and barrier exotic options to several gold-mining examples, and 
we implement examples of the closed form valuation formulae using Excel spreadsheet software.  

Keywords: Real options, NPV, Risk neutral valuation, Exotic options 

1. Introduction and Literature Review 

The concept of a real option was suggested by Myers (1977), who first identified many corporate economic assets as 
call or put ‘real’ options. Real options arise naturally where some economic decision needs to be made, as in 
manufacturing, production and other such situations. Some examples include: mine operators deciding what 
circumstances make it worthwhile to expand or alternatively abandon a mining operation; pharmaceutical firms 
making staged commitments to develop a new drug, from concept to research, trialing, legal approval, production 
and finally marketing. A real option is thus an option held by a corporation over some economic asset. It may be 
defined contractually or it may be more vaguely defined in terms of formal structure. The economic asset may be 
held or be under consideration for acquisition. Real options in the mining context arise naturally in the development 
of new plants, joint ventures and mineral exploration. 

In this paper we consider several Real Option examples arising in the context of mineral exploration and mining 
projects. In particular we consider valuing such projects when the mine operator has the flexibility to defer project 
commencement, to expand the project or alternatively to abandon the project after commencement, or some 
combination. A project with an embedded option to defer which may also be expanded or contracted at a later date 
can be valued as a non standard type of compound option. We will also consider real options with barrier features and 
present closed form valuation formulae for several examples. We go on to consider incorporating barrier type 
features into these real options and discuss how it is plausible for the mining projects to have such barrier features.  

Investment projects with the types of flexibility discussed above are typical of multi-stage investments, and they 
occur in mining, the pharmaceutical industry, real estate and IT. These have been extensively studied and attempts 
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made to value such projects as compound options, which are options which have other options as the underlying 
assets. They may be referred to as ‘options on options’. The first known valuation formulae for a European style 
compound option was that of Geske (1979),  namely for an option to buy or sell a European Call or Put option, both 
of which are themselvesoptions to either buy or  sell an underlying asset respectively. Compound options that arise 
in the analysis we present can be sequential with possibly several levels of compounding, making them more 
complex than those considered by Geske and hence more difficult to evaluate both analytically and numerically. The 
work of Hemantha et at (2002), Pendharker et al 2010 and Guj (2011) have explored the valuation of such sequential 
and compound options using numerical methods such as Monte Carlo Simulation and binomial lattices. The 
established closed-form option pricing formulae for standard compound and chooser options are not necessarily 
applicable to mining investment projects or to the examples considered in this paper.  

Analytic formulae for the valuation of such non standard compound options and their corresponding barrier versions 
is obtained using the techniques and mathematical theory recently developed in the works of Buchen (2001, 2004), 
and Konstandatos (2003, 2008) which allow a systematic method for deriving analytic valuation formulae for the 
types of compound structures discussed in this paper using notions of static replication in terms of standardized 
instrument. The detailed discussion of these methods and theory is beyond the scope of this paper. Application of this 
approach was also undertaken in Kyng (2011) and Buchen, Konstandatos and Kyng (2008). Our valuation formulae 
are readily implemented using Excel/VBA or more sophisticated packages such as Matlab and Mathematica. Our 
purpose is to demonstrate how these non standard types of compound and barrier options arise naturally in a mining 
context, and to present the original valuation formulae along with some numerical worked examples. This fills a gap 
in the existing literature as analytic valuation formulae for these types of compound and barrier real options, along 
with the methods employed here to obtain them, are new and not well known.  

This paper is structured as follows. Section 1 provides a brief introduction. Section 2 gives an overview of 
investment decision making and (standard) option pricing theory, and provides a context in which option pricing 
analysis arises naturally in the investment decision making process. Also provided is an overview of the non-standard 
methodology which we utilize to price the exotic options appearing in this paper. Section 3 contains the main 
contribution of this paper. In this section we analyze several investment decisions naturally arising in a hypothetical 
Gold-mining venture. These may include the flexibility to delay project commencement, the flexibility to abandon 
the project after commencement, the flexibility to expand production after commencement, or some combination. We 
demonstrate how such flexibilities are expressible as options with several exotic option features, and we provide 
closed-form formulae. Ultimately such flexibilities are seen to be equivalent to the introduction of compound and 
barrier option features in the ‘real options’ implicit in the project. We demonstrate their evaluation as exotic options 
over the underlying traded commodity, namely gold. Section 4 provides several numerically worked examples. 
Section 5 provides a brief conclusion. 

2. Real Option Analysis  

2.1 Investment Decisions and Net Present Value 

The traditional investment decision rule is: invest only if the present value (PV) of the expected future cashflows 
exceeds the cost of acquiring the asset. NPV is the present value of the asset’s expected future cashflows less the cost 
of acquiring the asset. The traditional rule can be expressed as ‘invest if the Net Present Value (NPV) of the project is 
positive’: ܸܰܲ_݊ݓ݋ ൐ 0 ฺ  The NPV calculation uses risk adjusted discount rates to compute the present .ݐݏ݁ݒ݊݅
value of the expected future cashflows, and a ‘best’ cashflow estimate (guess). The risk adjusted discount rate is 
usually obtained via a financial economic model such as the well known capital asset pricing (CAPM) model. The 
NPV decision making rule has been recognized as flawed for some time. Dixit and Pindyk (1994) for example 
showed that it ignores the opportunity cost of making an immediate commitment, thereby giving up the option to 
wait for new information or better economic conditions. The opportunity cost can be thought of as the value of the 
option to defer the investment. A reformulation of the traditional investment decision making rule would thus be: 
‘invest now if ܰܲ ௡ܸ௢௪ ൐ max ሺܰܲ ௗܸ௘௙௘௥, 0ሻ, where ܰܲ ௗܸ௘௙௘௥ is the value of the investment if postponed until 
some later time. Trigeorgis (1993) refers to this reformulation as the ‘expanded NPV’ rule, and provides several 
numerical examples of real options to defer, expand, contract and abandon. 

2.2 Risk Neutral Valuation for Real Options 

The assets underlying the options encountered in many kinds of real options analysis (ROA) are often not traded in a 
financial market. Black-Scholes option pricing theory (and indeed any theory postulating other asset price dynamics) 
depends on freely traded securities in liquid markets for the underlying asset. Nevertheless many leading researchers 
argue that it is valid to apply risk neutral valuation approaches to real options, and in particular the Black-Scholes 
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framework. In his Nobel Prize lecture, Merton (1998) demonstrates that replication based valuation may still be used 
to price derivatives even when replication of the underlying security is not feasible because it is rarely traded. Arnold 
and Shockley (2002) demonstrate that the fundamental assumption of both the traditional NPV approach and the 
ROA approach is valuation by no arbitrage pricing principles. Trigeorgis (1993) implicitly assumes the 
Black-Scholes framework by numerically approximating the values of several examples via the Binomial pricing 
method. In our hypothetical gold mining examples however, we express the project flexibilities as options over the 
underlying gold price. As gold is actively traded in a highly liquid market, objections to applying option pricing 
theory due to an illiquid underlying asset are negated. This also holds for numerous mining examples we have not 
considered here. 

2.3 Compound and Barrier Option features 

Compound options are options to buy or sell another (underlying) option. Formulae for call and put compound 
options on European option underlying assets were developed by Geske (1979). Extensions include the work of Carr 
(1988) on the valuation of sequential exchange opportunities; the work of Buchen (2004) on the replication of dual 
expiry exotics in terms of standardized instruments; the work of Konstandatos (2003,2008) which gives formulae 
and methodology to price more generalized compound options with both barrier and lookback option underlying 
assets and features; the work of Lee et al (2008) on generalised sequential compound options, and the work of Kyng 
(2011) on the application of exotic option pricing theory to the valuation of compound and barrier real options. The 
type of compound options we consider are more complex than the standard compound options, which may involve 
options to buy or sell a combination of a call (or put) option and a forward contract. We refer to these as non standard 
compound options. We demonstrate that generalized compound options arise naturally in a real options context, with 
the underlying asset not necessarily a standard European call or put. In this paper we value several hypothetical gold 
mining projects with embedded flexibilities as generalized compound options and their barrier option versions, and 
provide several numerical implementations in Excel spreadsheets.  

Corporations are subject to resource constraints (capital rationing) and have alternative investment opportunities that 
compete for funding. Additionally, in certain circumstances governments and regulators may intervene to cancel or 
take over projects. During the ‘waiting period’ to proceed, it is also possible that project creditors (financiers) may 
cancel funding if the spot price of the commodity drops too low. We will demonstrate how this may be thought of as 
a down-and-out type barrier option. Alternatively, if the commodity price rises above some threshold, the sponsor 
might have the option to invest in another more profitable project, or the government may nationalize the project. 
Similarly, these possibilities give rise to up-and-out barrier options. Accordingly a real option to delay investment in 
a gold mine could involve up and out or down and out barrier option features. Barrier options over underlying 
equities contain provisions allowing effective cancellation if the price of the underlying asset (e.g. a commodity 
price) drops below (or rises above) some threshold price level B. In our context, this may represent some threshold 
for profitability. Alternatively, the option may come into existence when the commodity price rises above this 
profitability threshold.  

2.4 Review of Option Pricing Theory 

The Black-Scholes Option Pricing model, building on Samuelson (1965), was developed in the early 1970s and is 
now considered a classic result in the Finance industry. Using the idea of efficient markets, Black and Scholes (1973) 
demonstrated that an option over a stock has an economic value depending on x, (the market price of the stock) and t, 
(the time elapsed since the option was written). The model assumes the stock price process is geometric Brownian 
motion, and makes several idealized assumptions about market frictions. Let ܸሺݔ,  value of ݐ ሻ be the value at timeݐ
some option contract defined over an asset with current value ݔ. ܸሺݔ,  ሻ satisfies the Black-Scholes Partialݐ
Differential Equation (PDE) on the domain ܦ  ൌ ሼሺݔ, ݔ|ሻݐ ൐ 0, 0 ൏ ݐ ൏ ܶሽ , subject to the terminal boundary 
condition ܸሺݔ, ሻݐ ൌ ݂ሺݔሻ: 

డ௏

డ௧
൅ ሺݎ െ  ݔሻݕ

డ௏

డ௫
൅

ଵ

ଶ
ଶݔଶߪ డమ௏

డ௫మ െ ܸݎ ൌ 0
 
        (1) 

The parameters ሺݎ, ,ݕ ,ߪ ߬ሻ represent the risk free interest rate, the dividend yield, the volatility of the asset and the 
time to option maturity respectively. A European call of strike ܭ has payoff ݂ሺݔሻ ൌ max ሺݔ െ ,ܭ 0ሻ and satisfies 
ܸሺ0, ሻݐ ൌ 0, namely the option value is zero if the asset becomes worthless. The solution subject to the relevant 
boundary conditions for a European call is: 

,ݔሺܥ  ,ܭ ,ݎ ,ݕ ,ߪ ߬ሻ ൌ ௬ఛܰሺ݀ଵሻି݁ݔ െ  ௥ఛܰሺ݀ଶሻି݁ܭ
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PDE methods were first used to derive option pricing formulae. An alternative approach due to Harrison and Pliska 
(1981) obtains the option price by computing the expected option payoff under the equivalent martingale measure 
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(also known as the risk neutral distribution), discounted at the risk free rate of interest. That this is mathematically 
equivalent to solving PDE (1) subject to the boundary conditions follows from a celebrated theorem of Feynman & 
Kac (Kac (1949)).  

Various numerical methods exist for option pricing, most notably Monte Carlo simulation (Boyle (1977)) and the 
binomial method (Cox, Ross and Rubinstein (1979)). The binomial method is a discrete time, discrete state space 
approximation which models the asset price distribution as “log-binomial” rather than log-normal. Another approach 
is to apply finite difference methods for parabolic PDEs to the Black-Scholes equation: Hull and White (1990). 
Numerical methods are typically applied when it is not possible to derive analytical valuation formulae.  

2.5 Barrier options and their pricing 

Barrier options are a class of path dependent options introduced in Merton (1973). The path dependence of barrier 
options is the simplest possible, consisting of a payoff dependent on whether the realised asset path reaches a certain 
barrier level. There are two major types of barrier contracts. The knock-in barrier option features are triggered if the 
asset reaches the barrier level, whereas the knock-out barrier option expires worthless if the barrier level is hit. The 
down and out barrier option ஽ܸைሺݔ, ,ݔሻ satisfies PDE (1) and expiry condition ஽ܸைሺݐ ܶሻ ൌ ݂ሺݔሻ, but with an extra 
boundary condition ஽ܸைሺܾ, ሻݐ ൌ 0, ݐ ൏ ܶ on the restricted domain ܦ ൌ ሼሺݔ, ݔ|ሻݐ ൐ ܾ, 0 ൏ ݐ ൏ ܶሽ. This option is 
‘cancelled’ if the asset price crosses the level B (the barrier level) from above before the option maturity date. 
Otherwise, the same payoff as the standard option (e.g. call or put) results.  

Barrier options with a single, constant, knock-out boundary were first considered in Merton (1973). Given any 
payoff ݂ሺݔሻ, four basic types of barrier option are possible. These are the down and out, the down and in, the up and 
out and the up and in barrier options. There are two fundamentally different ways to price barrier options, the 
‘standard’ expectations approach (Rubinstein and Reiner (1991), Rich (1994)) and the PDE method. The 
expectations approach requires the determination of risk-neutral densities as the barrier level is breached by use of 
the reflection principle of Brownian Motion (see Harrison (1985)). On the other hand, the PDE approach (see 
Wilmott et al (1995)) involves solving the Black Scholes PDE subject to an extra boundary condition representing 
the knock-out or knock-in feature.  

Our approach to barrier option pricing was pioneered in Buchen (2001). A full account of the methodology is 
provided in Konstandatos (2008) in the constant barriers case, including extensions of the theory to options with 
double barrier, lookback and complex compound and hybrid exotic option features. This approach was recently 
extended to exponential and time-varying barrier levels in Buchen and Konstandatos (2009). These authors 
demonstrate that prices for all four types of barrier options may ultimately be expressed as portfolios of European 
(path independent) options, considerably simplifying the explicit valuation of such instruments. The authors also give 
methods to deal with double barrier features. The basic approach is illustrated in the following. 

Theorem [Image Solution]. Let ஻ܸሺݔ, ܦ ሻ satisfy PDE (1) on domainݐ ൌ ሼሺݔ, ݔ|ሻݐ ൐ 0, 0 ൏ ݐ ൏ ܶሽ with terminal 
boundary condition ஻ܸሺݔ, ܶሻ ൌ ݂ሺݔሻܫሺ௫வ஻ሻ. Given any such solution, the ‘image’ function ஻ܸ
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the barrier level ݔ ൌ  :is another solution of PDE (1) defined by a transformation of dependent variable and scaling ܤ
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Clearly, the ‘image option’ as defined above is an abstract construction. However, Buchen (2001) derives the prices 
of the standard knock-out barrier call and put options by use of several image function properties, and provides 
symmetries for determining the knock-in option versions. The Buchen (2001) approach is readily extended to solve 
the general knock-out barrier problem as a simple difference (Konstandatos (2003, 2008)): 

஽ܸைሺݔ, ሻݐ ൌ ஻ܸሺݔ, ሻݐ െ ஻ܸ
,ݔሺכ  ,ሻݐ

for any payoff ݂ሺݔሻ. An equivalent result holds for the general up-and-out barrier option pricing problem. We thus 
convert the difficult problem with a knock-out barrier condition into a simpler European option problem for 
computing ஻ܸ

,ݔሺכ  ሻ either analytically (as we do in this paper) or numerically, from which the knock-out (whetherݐ
D/O or U/O) barrier option price follows. The corresponding knock-in barrier option prices are obtained by use of 
the symmetry properties of the image operation. Konstandatos (2008) gives details and mathematical proofs. Buchen 
and Konstandatos (2009) provides further details and extensions to time-varying and double-knock-out boundaries.  

3. Hypothetical Gold Mining Project Real Options 

Option pricing theory naturally arises when expressing the flexibility inherent in real managerial decisions. To 
motivate the discussion of barrier and compound barrier real options, we consider a hypothetical gold mine project. 
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Gold is a mineral, a commodity and an investment asset actively traded on financial markets. The market price is 
readily observable, along with gold futures prices, and the prices of options on gold and other financial derivatives. 
We begin by considering a simple mining project without any options to expand or abandon, after possible project 
initiation at some future point in time. Later we include flexibilities to expand or abandon mining operations, making 
the valuation more complex. 

3.1 The basic project 

Suppose the project sponsor has the option to commence some Gold mining project at some future time ଴ܶ. By 
deciding to invest, the sponsor must outlay an initial amount of capital ܭ଴. In return, profits are received at times 

ଵܶ, ଶܶ, … , ௡ܶ of amount ்ܺ೔
െ at time ௜ܶ respectively, where ்ܺ೔ ܥ

is the time ௜ܶ market price of gold and ܥ is 
the cost of extracting and processing the gold each period. We assume the cost of extraction is constant, and that by 
committing the sponsor is ‘locked’ into the project and the cashflows. When using NPV methodology to decide 
whether to invest at time ଴ܶ, we compute the expected present value (PV) of the project’s future cash flows:  

ܸܲ ൌ ݁ି௥ሺ்೔ି బ்ሻ ෍ ൛൫்ܺ೔ܧ
െ ൯หܺܥ

బ்
ൟ

௡

௜ୀଵ

 

Using arbitrage arguments, Hull (2009) demonstrates that the risk neutral expectation of the gold price at future time 
௜ܶ conditional on its time ଴ܶ price equals the time ଴ܶ forward commodity price at time ଴ܶ for delivery at time ௜ܶ. 

The relationship between the forward price for delivery at time ௜ܶ  and the commodity price at time 

଴ܶis ܧ൛்ܺ೔
หܺ బ்ൟ ൌ ܺ బ்݁ିሺ௥ି௤ሻሺ்೔ି బ்ሻ, which is a standard result from financial economics. The parameter q is the 

income yield on the mined commodity, adjusted for storage costs, convenience yield and so on. It may be estimated 
from the prices of futures or forward contracts over the commodity.  
Assuming that the extraction costs are uncorrelated with stock market returns, the capital asset pricing model (CAPM) 
allows us to discount these costs at the risk free rate of interest, namely:  
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where ܣሺݎ, ݉, ݊ሻ ൌ  ∑ ݁ି௥ሺ்೔ି ೘்ሻ௡
௜ୀ௠ାଵ  is an annuity factor. Note that for ݉ ൏ ݊ we have  
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The time ଴ܶ value of the project’s future cashflows is therefore a function of the ଴ܶ gold price, namely ܲ ଴ܸ ൌ
,ݍሺܣ 0, ݊ሻܺ బ் െ ,ݎሺܣ ܥ  0, ݊ሻ. The NPV of the project at time ଴ܶ can be written as ܰܲ ଴ܸ ൌ ଴ሺܺߙ బ் െ ଴ܭ

ᇱሻ, which is 

଴ߙ ൌ ,ݍሺܣ 0, ݊ሻ units of a forward contract over gold with delivery price ܭ଴
ᇱ ൌ ଴ߚ ൅

௄బ

ఈబ
 and maturity date ଴ܶ, where 

଴ߚ ൌ ܥ
஺ሺ௥,଴,௡ሻ

஺ሺ௤,଴,௡ሻ
 . 

3.2 The option for future commencement 
Suppose an investor has the option to invest in a gold mine project at time ଴ܶ for capital outlay ܭ଴. The investor has 
the choice to delay the project start in the hope of more favourable market conditions. At time ଴ܶ however, the 
sponsor is not obligated to commence operations if conditions remain unfavourable. Using NPV methodology, they 
proceed with the investment if the NPV is positive and don’t proceed otherwise. The sponsor will exercise the right 
when ܺ బ் ൐ ଴ܭ

′ . Therefore the sponsor’s option to ‘delay’ the commencement of the project and incur the relevant 
costs has time ଴ܶ cashflow max ሺܸܲ െ ,଴ܭ 0ሻ, i.e. ߙ଴ሾܺ బ் െ ଴ܭ

′ ሿା. This is the payoff of ߙ଴ units of a call option 

over gold, with strike price  ܭ଴
′ ൌ ଴ߚ ൅

௄బ

ఈబ
. The project with an option for future commencement may thus be valued 

for ݐ ൏ ଴ܶ using the Black-Scholes formula for a European call option with ଴ܶ maturity and modified strike ܭ଴
′ .  

3.3 The option to abandon the project 
Assume the project sponsor has the right (but is not obligated) to permanently abandon the project at some future 
time ௠ܶ ൏ ௡ܶ after commencing at ଴ܶ, and to receive the mine’s salvage value ܵ௠ if so chosen. The value of the 
project’s foregone cashflows at time ௠ܶ  is given by  ܲ ௠ܸ ൌ ,ݍሺܣ ݉, ݊ሻܺ ೘் െ ,ݎሺܣ ܥ  ݉, ݊ሻ . The sponsor will 
abandon the project if the salvage value exceeds ܲ ௠ܸ. The right to abandon can be written as an option payoff: 

ሺܵ௠ ൅ ,ݎሺܣ ܥ ݉, ݊ሻ െ ܺ ೘்ܣሺݍ, ݉, ݊ሻሻା ൌ ,ݍሺܣ  ݉, ݊ሻ ቆ
ܵ௠ ൅ ,ݎሺܣ ܥ ݉, ݊ሻ

,ݍሺܣ ݉, ݊ሻ
െ ܺ ೘்ቇ

ା
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where ሺܺሻା ൌ max ሺܺ, 0ሻ, so can be valued for times ݐ ൏ ௠ܶ as ܣሺݍ, ݉, ݊ሻ units of a European put option over 

gold, with maturity date ௠ܶ and modified strike price ܭ௠ ൌ
ௌ೘ା஼ ஺ሺ௥,௠,௡ሻ

஺ሺ௤,௠,௡ሻ
.  

At time ௠ܶ the sponsor chooses between abandoning the project or continuing based on whether the salvage value 
exceeds the present value of the foregone cash-flows, namely covering project times ݐ ൒ ௠ܶ they choose the ௠ܶ 
cashflow:  
 max ሺܵ௠, ܺ ೘்ܣሺݍ, ݉, ݊ሻ െ ,ݎሺܣ ܥ ݉, ݊ሻሻ 

ؠ       ܺ ೘்ܣሺݍ, ݉, ݊ሻ െ ,ݎሺܣ ܥ ݉, ݊ሻ ൅ ሺܵ௠ ൅ ,ݎሺܣ ܥ ݉, ݊ሻ െ ܺ ೘்ܣሺݍ, ݉, ݊ሻሻା 
Using put call parity between European call and put options, we can rewrite this as:  

ܵ௠ ൅ ቀܣሺݍ, ݉, ݊ሻ ܺ ೘் െ ሺܣ ܥሺݎ, ݉, ݊ሻ ൅ ܵ௠ሻቁ
ା

ൌ ܵ௠ ൅ ,ݍሺܣ ݉, ݊ሻ ቀܺ ೘் െ
ௌ೘ା஼ ஺ሺ௥,௠,௡ሻ

஺ሺ௤,௠,௡ሻ
ቁ

ା
. 

 
This is the salvage value plus the payoff from ߙ௠ ൌ ,ݍሺܣ ݉, ݊ሻ units of a European call option over gold with 
exercise price ܭ௠. This has time ଴ܶvalue:  
 

ܵ௠݁ି௥ሺ ೘்ି బ்ሻ ൅ ߙ௠ ܥ൫ܺ బ், , ௠ܭ ,ݎ ,ݍ ,ߪ ௠ܶ െ ଴ܶ ൯ 
 
where ܥሺ ሻ denotes the European call price as a function of the above arguments. We note that this is a monotonic 
increasing function of the gold price ܺ బ். The ଴ܶ value of the project’s future cashflows including the right to 
abandon at future time ௠ܶ ൐ ଴ܶ is therefore  
 

ܲ ଴ܸ ൌ ଴ ൫ܺߙ బ் െ ଴ ൯ߚ ൅ ܵ௠݁ି௥ሺ ೘்ି బ்ሻ ൅ ߙ௠ ܥ൫ܺ బ், , ௠ܭ ,ݎ ,ݍ ,ߪ ௠ܶ െ ଴ܶ ൯ 
 

where ߙ଴ ൌ ,ݍሺܣ 0, ݉ሻ; ߚ଴ ൌ  ܥ
஺ሺ௥,଴,௠ሻ

஺ሺ௤,଴,௠ሻ
 ; ௠ߙ  ൌ ,ݍሺܣ  ݉, ݊ሻ; ߚ௠ ൌ  ܥ

஺ሺ௥,௠,௡ሻ

஺ሺ௤,௠,௡ሻ
 . 

3.4 The option to expand the project 
The project sponsor may have the option to expand the project at future time ௣ܶ. This could involve a new deposit of 
ore, with differences in remaining life, cost of extraction and initial cost. For instance it may be that the cost of 
extraction is higher at ܥመ per period, and the new project produces cashflows at times ௜ܶ for݅ ൌ ݌ ൅ 1, ݌ ൅ 2, … , ܰ 
where ܰ ് ݊ and the initial outlay required at time ௣ܶ is of amount ܭ௣. The time ௣ܶ  value of the project 
extension cashflows is 

்ܸܲ ೛ ൌ ො௣ߙ  ቀܺ ೛் െ ො௣ߙ መ௣ ቁ, whereߚ ൌ ,ݍሺܣ  ,݌ ܰሻ and ߚመ௣ ൌ ෡ ܥ ஺ሺ௥,௣,ேሻ

஺ሺ௤,௣,௡ሻ
 . 

 
Suppose at time ௣ܶ the sponsor may expand by commencing this new project for cost ܭ௣. The payoff from the 

option to expand is thus ߙො௣  ቀܺ ೛் െ ෡௣ ቁܭ
ା

, namely ߙො௣ units of a call option over gold, with exercise price 

෡௣ܭ ൌ
௄೛

ఈෝ೛
൅   :መ௣ and maturity ௣ܶ. The ଴ܶ value of this option isߚ

଴ܸ
ா௫௣ ൌ ൫ܺܥ ො௣ߙ బ், , ෡௣ܭ ,ݎ ,ݍ ,ߪ ௣ܶ െ ଴ܶ ൯ 

3.5 Flexible versions of the project 

We now consider scenarios where a sponsor has several further ‘flexible’ project alternatives to vary the project 
down the track once commenced. Specifically, when commencing at time ଴ܶ the sponsor may have the further right 
to either expand the project, to abandon the project or possibly do either at some future time. We therefore conceive 
of three versions of flexibility: the right to commence the project plus the right to abandon only (i.e. without the right 
to expand); the right to commence plus the right to expand only (without the right to abandon), and finally the right 
to commence plus the right to expand as well as the right to abandon. The option to expand is independent of the 
original project, but the option to abandon is contingent on the existence of the original project. We will outline the 
evaluation of the first version, and present the result for a barrier version of the project. Similar results exist for all 
three versions of the project which we omit here. 

3.5.1 Compound option evaluation 

In this section we evaluate a flexible version of the mining project which includes options to both abandon and 
expand. Assume it costs ܭ଴ to enter into the project at initiation. The ଴ܶ value of the flexible version of the project 
including the option to abandon at time ௠ܶ ൐ ଴ܶ as well as the option to expand at ௣ܶ ൐ ଴ܶ is given by:  

்ܸܰܲ బ൫ܺ బ்൯ ൌ ଴ ൫ܺߙ  బ் െ ଴ ൯ߚ ൅ ܵ௠݁ି௥ሺ ೘்ି బ்ሻ െ ܭ଴ ൅ ൫ܺܥ ௠ߙ  బ், , ෡௠ܭ ௠ܶ െ ଴ܶ
 
൯൅ ߙො௣ ܥ൫ܺ బ், , ෡௣ܭ ௣ܶ െ ଴ܶ

 
൯ 
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This includes the cashflows for times ݐ ൑ ௠ܶ, and consists of a long forward contract, a zero coupon bond and two 
long call options. Since call option prices are strictly increasing with respect to stock price, ்ܸܰܲ బ൫ܺ బ்൯ is strictly 
increasing in argument ܺ బ். Namely, there will be a unique value ܺ బ் ൌ ܽ say for which ்ܸܰܲ బ

ሺܽሻ ൌ 0 and for 
which ்ܸܰܲ బ

ሺݔሻ ൐ 0 ฻ ݔ ൐ ܽ. It follows that this flexible project may be valued for ݐ ൏ ଴ܶ  as an exotic 
compound option:  

௧ܸ ൌ ݁ି௥ ఛబܧ൛ൣߙ଴ ൫ܺ బ் െ ଴ ൯ߚ ൅ ܵ௠݁ି௥ ఛ೘ െ ܭ଴ ൅ ൫ܺܥ ௠ߙ  బ், , ෡௠ܭ ߬௠
 
൯൅ ߙො௣ ܥ൫ܺ బ், , ෡௣ܭ ߬௣

 
൯൧ܫሺ௫வ௔ሻ|ܺ బ் ൌ  ൟݔ

which is decomposable into four expectations: 

  ௧ܸ ൌ ܧ଴ ݁ି௥ ఛబߙ ቄܺ బ் ܫ൫௑೅బவ௔൯|ܺ బ் ൌ ቅݔ  ൅ ݁ି௥ ఛబܧ ቄሺܵ௠݁ି௥ ఛ೘ െ ଴ܭ  െ ܺ|൫௑೅బவ௔൯ܫ ଴ ሻߚ ଴ߙ బ் ൌ ቅݔ   

൅ ܧ௠ ݁ି௥ ఛబߙ ቄܥ൫ܺ బ், ෡ܭ  ௠ , ߬௣
 
൯ ܫ൫௑೅బவ௔൯|ܺ బ் ൌ ܧො௣ ݁ି௥ ఛబߙ ቅ  ൅ݔ ቄܥ൫ܺ బ், , ෡௣ܭ ߬௣

 
൯ ܫ൫௑೅బவ௔൯|ܺ బ்

ൌ  ൟݔ

where ߬௠ ൌ ௠ܶ െ ௣߬ ,ݐ ൌ ௣ܶ െ ଴߬ ,ݐ ൌ ଴ܶ െ  The result may be expressed as a sum of four standardised dual .ݐ
expiry (namely, generalized compound) options of the type defined and used in Konstandatos (2003), Buchen (2004) 
and Konstandatos (2008). Defining the arguments  

݀௔ሺݔ, ߬ሻ ൌ
1

߬√ߪ
൤lnሺݔ/ܽሻ ൅ ൬ݎ െ ݍ ൅

1
2

ଶ൰ߪ ߬൨ ,  ݀௔
ᇱ ሺݔ, ߬ሻ ൌ ݀௔ሺݔ, ߬ሻ െ  ߬√ߪ

the valuation formula ܸሺݔ,  involves both the ݔ and observed (market) gold price ݐ ሻ for the project at timeݐ
uni-variate and bi-variate normal distributions: 

ܸሺݔ, ሻݐ ൌ ,ݔ௤ఛబܰ൫݀௔ሺି݁ ݔ ଴ߙ ߬଴ሻ൯ ൅ ௠ܳ௔,௄෡೘ߙ 
ାା ሺݔ, ߬଴, ߬௠ሻ ൅ ො௣ܳ௔,௄෡೛ߙ 

ାା ൫ݔ, ߬଴, ߬௣൯

൅  ݁ି௥ఛబ൫ܵ௠ ݁ି௥ሺ ೘்ି బ்ሻ െ ଴ܭ െ ଴൯ܰ൫݀௔ߚ଴ߙ
ᇱ ሺݔ, ߬଴ሻ൯ 

where we have defined the following function for any ሺݔ, ܽ, ,ܭ ߬ଵ, ߬ଶሻ: 

ܳ௔,௄
ାାሺݔ, ߬ଵ, ߬ଶሻ ൌ ௤ఛమି݁ ݔ

ଶܰ ቌ݀௔ሺݔ, ߬ଵሻ, ݀௄ሺݔ, ߬ଶሻ; ඨ
߬ଵ

߬ଶ
ቍ െ ௥ఛమି݁ ܭ

ଶܰ ቌ݀௔
ᇱ ሺݔ, ߬ଵሻ, ݀௄

ᇱ ሺݔ, ߬ଶሻ; ඨ
߬ଵ

߬ଶ
ቍ 

The above function falls within the class of generalized dual-expiry exotic compound options defined in Buchen 
(2004). ଶܰሺݔ, ;ݕ  We may .ߩ ሻ denotes the bi-variate normal CDF with standard Normal marginals and correlationߩ
add a knock-out barrier window in the vesting period before project initiation knocking the project out if the gold 
price sinks to some lower level deemed too uneconomic, ݔ ൌ ܾ say. Denoting ܽᇱ ൌ max ሺܽ, ܾሻ and ݔᇱ ൌ ܾଶ/ݔ, by 
application of the method of images, the version of the project with a knock-out (barrier) feature has price: 

ܸሺݔ, ሻݐ ൌ ௤ఛబି݁ ݔ ଴ߙ ൭ܰ൫݀௔ᇲሺݔ, ߬଴ሻ൯ െ ൬
ܾ
ݔ

൰
ఈ

ܰ൫݀௔ᇲሺݔᇱ, ߬଴ሻ൯൱ ൅ ௠ߙ  ൭ܳ௔ᇲ,௄෡೘

ାା ሺݔ, ߬଴, ߬௠ሻ െ ൬
ܾ
ݔ

൰
ఈ

ܳ௔ᇲ,௄෡೘

ାା ሺݔᇱ, ߬଴, ߬௠ሻ൱

൅ ො௣ߙ  ൭ܳ௔ᇲ,௄෡೛

ାା ሺݔ, ߬଴, ߬௠ሻ െ ൬
ܾ
ݔ

൰
ఈ

ܳ௔ᇲ,௄෡೛

ାା ሺݔᇱ, ߬଴, ߬௠ሻ൱

൅  ݁ି௥ఛబ൫ܵ௠ ݁ି௥ሺ ೘்ି బ்ሻ െ ଴ܭ െ ଴൯ߚ଴ߙ ൭ܰ ቀ݀௔ᇲ
ᇱ ሺݔ, ߬଴ሻቁ െ ൬

ܾ
ݔ

൰
ఈ

ܰ ቀ݀௔ᇲ
ᇱ ሺݔᇱ, ߬଴ሻቁ൱ 

Similar expressions are obtained for the other versions of the flexible project described above. The above formulae 
are easily programmed and valuated in Excel/VBA or Matlab.  

Options to delay a project may include further options to expand or to abandon in the future. It is conceivable that 
once a project is expanded, the expanded part of the project may itself include another option to expand, or 
alternatively to abandon the expansion, thus involving compound options on compound options and their barrier 
versions. Such scenarios naturally give rise to sequential compound options. Our approach is readily extended to 
price many such examples and their barrier versions not included here, with valuation formulae involving the 
cumulative bi-variate, tri-variate and higher dimensional Normal distribution functions.  

4. Numerical Examples 

For illustration, we present numerical valuations of several example projects and their associated real options. The 
calculations were implemented using Microsoft Excel spreadsheet software, which has many useful built-in 
functions and tools including the uni-variate cumulative Normal distribution. Calculations requiring the bi-variate 
normal cumulative density function were done using a VBA program implementation of Drezner’s algorithm 
documented in Hull (2009).  

Example 1: Assume a gold mining project with a three year life. Every three months we can extract 1,000 oz of gold 
and sell it into the market. The cost involved in producing the gold is $900.00 per oz. The current gold price is $1000 
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per oz. The risk free rate of interest is 8% p.a. and the current dividend yield on gold is 2% p.a. It will cost 
$2,000,000 to commence the project. If we proceed immediately, the value of the project’s future cashflows is 

ܸܲ ൌ ଴ ൫ܺߙ బ் െ ଴ ൯ whereܺߚ బ் ൌ ଴ߙ ,1000000 ൌ ଴ߚ ,11.870898 ൌ 900000
ଵ଴.ହ଺ଶଶ଻଺

ଵଵ.଼଻଴଼ଽ଼
ൌ 800786, giving a PV of 

2364849. The NPV is maxሺܸܲ െ ,ݐݏ݋ܿ 0ሻ ൌ 364849 ൐ 0, so we proceed with the investment.  
Example 2: Next we consider the value of the option to wait before committing to invest, as we think it likely the 
gold price will move down rendering future operations less viable. Assume a gold price volatility of 20% p.a., with 
an option to wait for three months before committing to the investment. By the preceding analysis, the option to 
delay the decision to invest is a call option over gold with a term of three months, a gold ‘spot price’ of $1000 / oz, 
an exercise price of  

෡଴ܭ ൌ ଴ߚ ൅
௄బ

ఈబ
 where ܭ଴ ൌ 2,000,000. This gives ܭ෡଴ ൌ 969265, and Black-Scholes parameters  

ݕ ൌ 0.02, ݎ ൌ 0.08, ߬ ൌ 0.25, ݔ ൌ 1,000,000, ܭ ൌ 969,265, ݀ଵ ൌ 0.512170, ݀ଶ ൌ 0.412170  
The value of the option to delay the commencement of the project is $775,385.63. The expected gold price in three 
months time is $1,015.113/oz, when the expected value of the project’s future cashflows is 
1015113 ൈ 11.870898 െ 900000 ൈ 10.562276 ൌ $2,544,254.91. This includes a range of outcomes both positive 
and negative. The expected NPV of the project in three months is $544,254.91. The project value today is 
$533,477.94. The right (not obligation) to commence the project in three months for a $2m outlay is worth 
$775,385.63.  
Example 3: Suppose one year after project commencement we have the right to abandon and recover the project’s 
salvage value, at which time the project has two years of remaining life. We can value this right to abandon at the 
date when the project commences. Assuming the project has salvage value $1,000,000, we compute the parameters 
for the valuation of the put option:  
The put option multiple is ߙ௠ ൌ ,ݍሺܣ 0, ݊ െ ݉ሻ ൌ 7.910634, the put option exercise price is  

෡௠ܭ ൌ
ܵ௠

௠ߙ
൅ ௠ߚ ൌ

1000000
7.910634

൅  832703.91 ൌ 959116.03 

where ߚ௠ ൌ ܥ
஺ሺ௥,௠ାଵ,௡ሻ

஺ሺ௤,௠ାଵ,௡ሻ
ൌ 900000

଻.ଷଵଽଵଶଽ

଻.ଽଵ଴଺ଷସ
ൌ 832703.91. The value of the right to abandon equals 7.910634 put 

options over 1000 oz of gold with exercise price 959116 and a term of one year. If the price of gold at the time the 
project commences is $1,015.11 / oz then the value of the abandonment put option follows with the following 
Black-Scholes parameters:  

ݕ ൌ 0.02, ݎ ൌ 0.08, ߬ ൌ 1.0, ݔ ൌ 1015113, ܭ ൌ 959116, ݀ଵ ൌ 0.683716, ݀ଶ ൌ 0.483716 
ܲ ൌ ௥ఛܰሺെ݀ଶሻି݁ܭ  െ ௬ఛܰሺെ݀ଵሻି݁ݔ ൌ 32,423.06 

The value of the abandonment put option is 7.910634 32,423 ൌ 256,487 . The time ଴ܶ  value (at project 
commencement) of the project’s future cashflows including the value of the right to abandon is computed as follows: 
the present value of the salvage value obtained by abandoning the mine project ($923,116.35) plus the present value 
of the mine’s cashflows during the first year of operation ($609,887.24) plus the value of 7.910634 call options 
over gold with the same parameters as for the put option above ($1,123,783.55), which sum to $2,656,787.13. This is 
the value of the mine project’s future cashflows allowing for the right to abandon one year after the project 
commences. The value of the project’s future cashflows at the time of commencement without the abandonment 
option is $2,544,254.91. The right to abandon the project after one year increases this value by $112,532.23 and 
increases the NPV to $656,787.13  

Example 4: Suppose one year after project commencement we have the right to expand by opening up a new mine 
with a different life and cost of extraction. The new project has a four year life once commenced and cost of 
extraction $1000/oz. Assume it costs $3m to initiate the project. Using the same parameters as above, the value of the 
option to expand the project in one year’s time is equal to  ߙො௣ ൌ 15.831163 call options over gold with an exercise 
price ܭ෡௣ ൌ 1045790, a term of one year and a spot price of 1015113.  

Since ݕ ൌ 0.02, ݎ ൌ 0.08, ߬ ൌ 1.0, ݔ ൌ 1015113, ܭ ൌ 1045790,  ݀ଵ ൌ 0.251135,  ݀ଶ ൌ 0.051135, ܿ ൌ 93778.53, 
the value of the expansion option is therefore $1,484,623.14  

Example 5: We numerically compute the critical gold price for which we would proceed with a flexible project 
which includes the rights to abandon and to expand at future times ௠ܶ and ௣ܶ, for a $2m outlay. The value of the 
cash-flows at time ଴ܶ ൏ ௠ܶ , ௣ܶ is :  

்ܸ బ ൌ ଴ ൫ܺߙ  బ் െ ଴ ൯ߚ ൅ ܵ௠݁ି௥ ሺ ೘்ି బ்ሻ൅ ߙ௠ ܥሺܺ బ், , ෡௠ܭ  ௠ܶ െ ଴ܶሻ ൅ ሺܺܥ ො௣ߙ  బ், , ෡௣ܭ  ௣ܶ െ ଴ܶሻ           (3) 
Now ߙ଴ ൌ 3.975093 ଴ߚ , ൌ 861,685.92 ො௣ߙ  , ൌ 7.910634 , ෡௣ܭ ൌ 1304462.92 ௠ߙ , ൌ ෡௠ܭ 7.910634 ൌ
959,116.03 and ܵ௠݁ି௥ ሺ ೘்ି బ்ሻ ൌ 923116.35. Excel’s goal-seek tool computes the critical gold price for which ்ܸ బ 
equals $2m to be $881.79/oz.  
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Example 6: We now compute the project value in Example 5 with a ଴ܶ ൌ 3 month option to delay before investing 
the $2m to initiate, and with the further options to either abandon or expand. Assume an initial gold price of $1000 
/oz. The time ݐ ൏ ଴ܶ values of the components in expression (3) are as follows.  
First, an asset binary option with value ݔ ݁ି௤ఛబܰ൫݀௔ሺݔ, ߬଴ሻ൯ ൌ 922949with the same parameters as in Example 5, 
and with ݔ ൌ $1m. 
Second, a first order bond binary option  ݁ି௥ఛబ൫ܵ௠ ݁ି௥ሺ ೘்ି బ்ሻ െ ଴ܭ െ ଴൯ܰ൫݀௔ߚ଴ߙ

ᇱ ሺݔ, ߬଴ሻ൯  where ݀௔
ᇱ ሺݔ, ߬଴ሻ ൌ

1.35797 and ܵ௠ ݁ି௥ሺ ೘்ି బ்ሻ െ ଴ܭ െ ଴ߚ଴ߙ ൌ െ4,502,170 
Third, a generalized compound option  ߙ௠ܳ௔,௄෡೘

ାା with parameters: 

߬଴ ൌ 0.25, ߬௠ ൌ 1.25, ො௠ߙ  ൌ 7.910634, ෡௠ܭ ൌ 959116.03 
݀௄෡೘

ሺݔ, ߬௠ሻ ൌ 0.6339, ݀௄෡೘
ᇱ ሺݔ, ߬௠ሻ ൌ 0.4103, ௠ߩ ൌ 0.447214 

ܳ௔,௄෡೘
ାା ൌ ௤ఛమି݁ ݔ

ଶܰ൫݀௔ሺݔ, ߬଴ሻ, ݀௄෡೘
ሺݔ, ߬௠ሻ; ௠൯ߩ െ ෡௠ ݁ି௥ఛమܭ

ଶܰ൫݀௔
ᇱ ሺݔ, ߬଴ሻ, ݀௄෡೘

ᇱ ሺݔ, ߬௠ሻ; ௠൯ߩ ൌ 142904 

Fourth, a generalized compound option  ߙො௣ܳ௔,௄೛෢
ାା  with parameters:  

߬଴ ൌ 0.25, ߬௣ ൌ 1.25, ො௣ߙ  ൌ 7.910634, ෡௣ܭ ൌ 1045790 
݀௄෡೛

൫ݔ, ߬௣൯ ൌ 0.246985, ݀௄෡೛
ᇱ ൫ݔ, ߬௣൯ ൌ 0.0233777, ௣ߩ ൌ 0.447214 

ܳ௔,௄෡೛
ାା ൌ ௤ఛమି݁ ݔ

ଶܰ ቀ݀௔ሺݔ, ߬଴ሻ, ݀௄෡೛
൫ݔ, ߬௣൯; ௣ቁߩ െ ෡௣ ݁ି௥ఛమܭ

ଶܰ ቀ݀௔
ᇱ ሺݔ, ߬଴ሻ, ݀௄෡೛

ᇱ ൫ݔ, ߬௣൯; ௣ቁߩ ൌ 98847.50 

The value of the project with an additional three month option to defer commencement before initiation therefore 
comes to $2,336,100. 

5. Conclusion 

Mining projects involve the extraction and processing of commodities where the commodity price determines a 
venture’s ultimate feasibility. In most real-world projects, operators may have several flexibilities available such as 
the option to defer commencement of mining operations, to expand mining operations and/or to abandon mining 
operations at some future time. Through examples motivated by a hypothetical gold mining venture, we have 
presented new analytic formulae for the evaluation of mining projects with the above flexibilities as non-standard 
compound options over the underlying commodity. We also discussed the extension to project versions with the 
further flexibility of project cancellation when the underlying commodity price falls below some threshold level of 
viability before project initiation, and presented analytical valuation formulae with knock-out barrier option features. 
Several example numerical implementations of our formulae using Excel/VBA were also presented. Option valuation 
is traditionally accomplished by numerical methods, although we presented closed-form formulae for our examples. 
Extensions to projects with knock-in barrier features are also possible, expressible in terms similar to the results 
presented here. Such versions model the situation where the commodity price needs to rise to meet some threshold of 
profitability for operations to be viable. More complicated extensions allowing for greater degrees of flexibility are 
also possible, but with increased complexity in the valuation formulae, which we leave for subsequent publications.  
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