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Abstract 

This paper uses completely new data to study the variations in beta when it deviates from the constancy assumption 
presumed by the market model. The concentration of the literature on beta is based on post 1926 data. This makes 
the 19th century Brussels Stock Exchange (BSE) data a very good out-sample dataset to test beta variations. Various 
models proposed in the literature to capture the variations in beta were studied. Blume’s correlation techniques reveal 
that beta is not stable at the individual stocks level and that the stability can be fairly improved by portfolio 
formations. Using root mean square error (RMSE) criterion, it was shown that the market model betas are weak in 
predicting future betas. The predictability can be improved by adjusting betas with the Blume and Vasicek mean 
reversion techniques. Further results from this study reveal that few stocks have lead or lag relationship with the 
market index. Small sized stocks were detected to be more prone to outliers. In effect betas in the 19th century 
exhibits similar pattern as betas in the post 1926 era. 
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1. Introduction 

Beta stability, bias and robustness evaluations have become the centre stage of research in finance since the 
development of the Capital Asset Pricing Model (CAPM) by Sharpe (1964). Beta, one of the parameters of the time 
series regression, plays a key role in CAPM applications. Beta is usually estimated with the standard market model 
(MM). The MM is a statistical model that relates the return of any stock to the return of the market index. Beta 
estimated with the MM has been tested not to be stable over time. The financial literature has indicated that the 
stability can be improved by Blume’s and Vasicek’s autoregressive adjustment methods (Blume (1971), Vasicek 
(1973)). The objectives of these adjustment methods are based on the tendency of betas from successive periods to 
be mean reverting. While Vasicek considers the accuracy of the historical betas, Blume depend on how far the 
historical betas deviate from their average value. The literature has also shown that betas estimated by the market 
model are biased. That is when stocks are ranked based on their market capital (size); beta is biased downwards for 
small size stocks and upwards for large size stocks. Scholes and Williams (1977), Dimson (1979), Fowler and Rorke 
(1983) and Marsh (1979) developed methods to correct the bias. The method adopted by Marsh (1979) is MM 
estimation with returns calculated on trade to trade basis. Dimsom (1979) adopted the aggregate coefficient method 
which computes the lead and the lag betas in a multiple regression of the stock return on a number of lead and lag 
market returns. The sum of the estimated beta coefficients from the multiple regressions is the Dimson’s estimate of 
beta. On the other hand, Scholes and Williams (1977) lead and lag beta coefficients are computed from univariates 
regressions. The literature also highlights the impact of outliers (extreme observations) on the beta estimates. It 
proposes various techniques of minimizing the impact of outliers on beta estimates. The weighted least square 
estimation technique is one of the methods used in minimizing the impact of outliers on beta estimates. Based on the 
assumption that outliers have lower probability of occurring in the future, less weight is placed on them (Martin et al. 
(2003)). An alternative technique is to get rid of the extreme observations and perform the regression with fewer 
observations.  

To the best of my knowledge the financial literature has not traced the stability, bias and robustness of beta using 
data beyond 1926 in any country. Luoma et al. (1994) generated different artificial market returns data and 
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documented that different beta estimation techniques behave differently on different markets. This shows that there 
is no beta adjustment technique which has been accepted universally and performs well independent of the data.  

The objective of this study is to introduce a new set of data from the 19th Century Brussels Stock Exchange (BSE) to 
test the performance of the alternative techniques of estimating beta. By so doing one would know the beta 
estimation technique needed to estimate beta on this data. Individual and portfolio betas from the various estimation 
techniques will be compared based on their predictive accuracy. The root mean square error (RMSE) and the mean 
absolute error (MAE) criterion adopted by Blume (1971) and Klemkosky et al. (1975) are used as an error predictor 
of the various techniques. The 19th century data provide a very good platform to determine if betas before 1914 
exhibit similar pattern as betas after 1914.  

This paper is organized as follows: the next section provides a summary of related literature on stationarity, biased 
and robustness of beta. In section 3, various models of estimating beta are discussed. Section 4 provides a detailed 
description of the data and descriptive statistics of beta when estimated with the least square regressions of the 
market model. In section 5, Blume’s correlation technique of detecting the stability of beta is studied. Betas are 
adjusted with the Blume and Vasicek’s autoregressive techniques in section 6. The predictive accuracy of the 
adjustment techniques based on the root mean square error criterion is tested in the same section. The modified 
Diebold and Mariano test proposed by Harvey et al. (1997) is used to test for equal predictive accuracy of the models. 
Section 7 determines how the stocks in each period lead or lag the market index using the Dimson’s model. Betas 
estimated with the iterative reweighted least square (outlier resistant) techniques are compared to the benchmark 
market models betas in section 8. The final section presents the conclusion. 

2. Related Papers 

There is substantial evidence in the financial literature that has established that security betas are not stable over time. 
Particularly, previous studies have indicated that portfolio betas are more stable as compared with individual security 
betas. Blume (1971 and 1975) pioneered the research on beta stability focusing on the cross-sectional correlation 
between beta estimates for successive periods. His study is based on the assumption that beta is stationary within 
each period. He concluded that beta instability can be attenuated by the formation of portfolios. Subsequent 
publications on beta stability assume that beta variations exhibit stochastic behavior. They formally propose a model 
to capture the variations in beta overtime and conduct a test to confirm the model. For instance, Fabozzi and Francis 
(1978) found strong evidence of beta following the Hildreth-Houck random coefficient model. Collin et al. (1987) 
utilized Ohlsen and Rosenberg’s model to analyze the variations in beta for both individual and randomly formed 
portfolios. Their findings were in support of the mixed sequential and purely random variations of the beta. It was 
clear from their results that individual securities and portfolio betas exhibit the mixed sequential and purely random 
variations. Faff et al. (1992) used Australian data to establish evidence in beta nonstationarity. Details of their result 
indicates a relationship between beta nonstationarity, the market index as a proxy for the general market movement, 
the magnitude of the betas (degree of riskiness) and the market capital. Further investigation by Gregory-Allen et al. 
(1994) confirm that when the variance of the beta estimate is taking into consideration, there is no evidence that 
portfolio betas are more stable than individual security betas (as claimed by Blume (1971)).  

The focus of the above literature is on the stability of beta, but the issue of beta bias is worth consideration. The bias 
in beta estimates is traced in the literature to be due to infrequent trading. Ibbotson et al. (1997) documented that beta 
estimates for small stocks are severely downwards biased that is they exhibit severe infrequent trading. They 
recommend the inclusion of lagged market returns in the estimation of beta when securities are infrequently traded. 
On the other hand Bartholdy and Riding (1994) found on the New Zealand Market, the MM betas are less biased, 
more efficient and consistent compared to the Dimson’s, Scholes and Williams betas (corrected for bias). In effect, 
the literature has shown that nonsynchronous trading biases betas estimated with the MM. When stocks are ranked 
based on their market capital (size), beta is biased downward for small size stocks and upward for large size stocks. 
Scholes and Williams (1977), Dimson (1979) and Fowler and Rorke (1983) developed methods to correct the bias. 
Dimson (1979) adopted the aggregate coefficient method, which computes the lead and the lag betas in a multiple 
regression of the stock return on a number of lead/lag market returns. The sum of the estimated beta coefficients 
from the multiple regressions is Dimson’s estimate of beta.  

In the MM least square estimation, it is assumed that the return residuals follow a normal distribution, and that 
influential points are rare. Practically this assumption fails most of the time. The failure is connected to the 
occurrence of a small fraction of exceptionally large or small returns (outlier or influential points) observation. 
Chatterjee and Jacques (1994) studied the effect of these points on the beta parameter. They established that the 
market model beta estimation method shield the outliers and aggregate their influence on the beta due to the square 
of their errors. They proposed that the effect of these observations on beta can be reduced by applying least square 
method that can detect and assign zero weights to the outlying observations in the estimation process. Chan and 
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Lakonishok (1992) emphasized the robust method (outlier detecting methods) of estimating beta are good for stocks 
which are susceptible to outliers (mostly due to stock splits, dividend cuttings, and initial public offerings (IPO’s)). 
Stocks which exhibit this behavior are mostly small sized stocks. Martin and Simin (2003) confirmed the outlier 
resistance beta better predicts future beta than the market model beta. They also reveal that, small sized stocks betas 
are more vulnerable to outliers.  

3. Various models for estimating beta 

Firstly, beta will be estimated from the market model (MM) which is basically the statistical model that relates the 
return of any given stock to the return of the market index. Thus for returns of a stock j  in period p  we write: 

 jpmpjjjp RR   ,                                           (1) 

Where (Note 1)   0jpE   and   jjpVar   , jpR  and mpR  are the period p  returns on the stock j

and the market index return respectively. jj  ,  and 2
j  are the estimated parameters of the market model 

peculiar to stock j . The MM assumes that the estimated parameter j  is constant over time but empirical evidence 

confirm otherwise. One has to establish a model to capture the variability of the beta. Beta coefficients estimated in 
successive periods have been shown to be mean reverting by Blume (1971). Blume uses this autoregressive tendency 
to improve the accuracy of beta forecasts. The estimation procedure adopted by Blume is obtained from 
cross-sectional regression of the betas of period p on the betas of period 1p . The betas of period 1p  are 

then substituted for period p  betas to predict period 1p  beta coefficients. 

 1,,  pjpj ba   for Nj ,...,2,1 ,                                    (2) 

where N is the number of stocks in the period. 
Vasicek (1973) also utilized the autoregressive tendency of beta in a successive period to improve the betas in a 
period based on prior information on betas. Vasicek (1973) applied the Bayesian correction method by utilizing the 
cross-sectional information of the previous period betas:  
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where 
pj ,  is the mean of the posterior distribution of beta for stock j  which serves as the beta forecast. 2

  is 

the variance of the market model regression coefficients
1, pj . 

1, pj  is the cross-sectional mean of betas in period

1p , and  1,var pj  is the variance in the cross-section of betas. Blume and the Vasicek Bayessian adjustment 

techniques above control the stability of beta.  
Unbiased beta can be obtained by adopting the biased-correction procedures proposed by Dimson (1979). The 
Dimson’s technique involves estimating a multiple regression of the form 

 


 
3

3
,

i
jpipmjjjp RR  ,                                       (4) 

The Dimson beta estimate is then given by 



3

3
dim

i
i . Here jpR  is the return series of stock j  and mpR  is 

the return series of the market index. The error term jp  is assumed to follow the assumptions of the classical 

linear regression model. More lag and lead terms will be required for very thinly traded stocks to correct for bias. 
Fowler and Rorke (1983) presented analytical evidence that the Dimson and Scholes-Williams methods do not 
sufficiently controls thin trading bias in beta estimation. They proposed a variant version of Scholes and Williams 
model which yields betas which are consistent and unbiased. We use only three months lag and lead because beta 
bias has been documented as not prevalent in monthly returns data (see Cohen, Hawawini, Maier, Schwartz and 
Whitcomb (1983)). 
The least square approach adopted for the market model minimizes the sum of square of residuals with respect to the 

model parameters j  and j :  
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Squaring the residuals magnifies the effect of the outliers on the estimated parameters. For instance, expected returns 
are likely to be shifted towards the outliers whereas covariance matrix will be inflated towards outliers. To reduce the 
influence of outliers, the statistics literature has emphasized on the use of iterative reweighted least-square (IRLS) 
method. This method estimates beta by iteratively minimizing a weighted function which depends on standardized 
return residuals:  
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with weight function W and j  the standard deviation of the return residual. First, estimate regression parameters 

from least square regressions and use these parameters as initial input for the iteration. A weight function is applied 
to the standardized residual. The bisquare weight function define as:  
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constant is considered in this case. Small values of T introduce more resistance to outliers, but at the expense of 
efficiency when return residuals are Gaussian. Statistically, the value of T is chosen in order for the method to be 
95- percent efficient when errors are normal and it will still provide protection against outliers. For the bisquare 
weight function the value of T is set to 4.685. With the initial input from the first least square regressions, 
standardized the return residual and use the weight function define above to transform them. Estimate the parameters 

by the weighted least square:   jRWWb 0'10'1 


 where  mpR  with   a vector of ones with the 

same size as mpR (market index returns). 0W  is an initial standardized weight diagonal matrix, 1b  the estimated 

parameter. The new set of parameters serves as input for the next iteration. The above procedure is repeated until the 
parameter of interest (beta) converges. With the above weight function, return pair observations whose absolute 
standardized residual exceeds the tuning constant is assigned zero weight (outlier).  
4. The Data and Beta Coefficient Descriptive Statistics 

The data considered for this study was taken from the Brussels Stock Exchange (BSE). The data set was constructed 
at the University of Antwerp in Belgium (Studiecentrum voor Onderneming en Beurs (SCOB)). The data for our 
study start from 1832 and ends at 1914, just before the outbreak of World War I. During the World War I period, the 
BSE was closed and this can be regarded as a natural breaking point of the long time series of the stock returns. The 
BSE was considered one of the biggest markets in the world at that time, because Belgium was one of the first 
nations on the European continent to become industrialized (see Van der Wee (1996) and Neymarck (1911)). On the 
industrial output per head ladder, Belgium stood second after Britain in 1860, and third in 1913, after the UK and the 
USA (see Bairoch (1982)). During this period, highly developed banking system coupled with liberal stock market 
regulations attracted a great deal of domestic and foreign capital in Belgium. In confirmation, Van Nieuwerburgh, 
Buelens and Cuyvers (2006) document that the development of the financial sector, accompanied with the stock 
market-based financing of firms, played an important role in the economic growth of 19th century Belgium. The 
database contains monthly common stocks return from 1832 to 1914 for every stock listed on the BSE as of that time. 
The returns have been adjusted for dividends and stocks split. Considering the environment the BSE was operating, 
the period studied can be divided into two: thus the period of high regulatory environment (1837-1866) and the 
period of deregulation and expansion (1867-1911). Nowadays, the BSE is not recognized as one of the top stock 
exchange but it is ranked among the largest stock markets in the world during the 19th and the first half of the 20th 
centuries (Annaert et al. (2004)). Therefore, studying the return patterns on this market can be compared to the 
current UK market. The stocks on the BSE are well diversified across industries such as transportation, mining and 
extraction, financials, utilities and industrials. The BSE as of that time listed Belgium and foreign owned stocks. This 
study considers only Belgium owned stocks.  

The data sample is divided into fifteen five-year non-overlapping sub periods ip  for 15,...,1i . Stocks with 
complete return data for a period of five years are considered in each sub period. The removal of stocks that did not 
trade fully within the five-year estimation periods does not introduce survivorship bias since there is no significant 
difference in the beta coefficient descriptive statistics when stocks with at least 24 observations are added to the 
sample (not reported). For the proxy of the market portfolio we consider value-weighted market index constructed by 
the studiecentrum. The number of stocks in each period and the statistical characteristics of the betas estimated in 
each period are presented in Table 1. The Table displays the fifteen periods studied starting from January 1837 to 
December 1911. We ignore the first five years since the period can only boast of only one listed stock. The number 
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of stocks with full return data in each period ranges from 21 to 424 as shown in column 2. It can be seen in Table 1 
that the number of stocks that have five years of data does not exceed 100 before 1877. The beta coefficient of each 
stock in each period is estimated by simply regressing the monthly returns of the stock on the corresponding value 
weighted index using model 1 above. Cross-sectional statistics of the betas in each period are computed and the 
result is displayed. Equal and value weighted cross-sectional average of betas are displayed in column 3 and 4 
respectively. We compute the value-weighted mean beta by considering individual stock relative to market 
capitalization at the beginning of the period. One can easily see from the weighted average that small size stocks 
contribute relatively high beta values in almost every period.  
Table 1. Beta Coefficient Descriptive Statistics for the 15 estimated periods 

 

 

 

 

 

 

 

 

 

Note: This table displays cross-sectional descriptive statistics of betas estimated by market model (1) of returns on 
their market counterparts over the fifteen five year sub periods between January 1832 and December 1911. The 
number of stocks in the various periods ranges from 21 to 424 for stocks with full return data within a period. The 
table also reports the percentage of beta sample in a period that is less than zero. The maximum and minimum beta 

of each period is also recorded. The last column reports the average coefficient of determination  2R . Equally 

weighted (EQ) and value weighted (VW) mean betas are also displayed in the table. The value weighted mean is the 
average of the betas weighted by their market capital at the beginning the period.  

The figures in the last column show the average coefficient of determination  2R  in percentages, which is a 

measure of explanatory power of the market model. Surprisingly, the literature reports negative betas on different 
markets after World War I. For example, Altman, Jacquillat and Levasseur (1974), Dimson and Marsh (1983) 
recorded a large number of negative betas in their weekly returns interval estimation of beta on the French and the 
American markets.  
Table 2. Average Beta and Average Coefficient of Determination of the sized based sub-samples 

 

 

 

 

 

 

 

 

 

 
Note: In these table stocks in each period was sorted in descending order based on their market capital. The first 30% 
of stocks in the periods are classified as large stocks, the next 40% as medium stocks and last 30% as small stocks. 
Cross-sectional statistics of the betas of the sub-samples were computed and their equally weighted averages of betas 

and coefficient of determination  2R  are displayed. The L, M and S subscripts on betas indicates Large, Medium 

and Small stocks respectively. 
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Figure 1. Graph of the average beta of each period for large stocks and small stock 

Note: The average beta estimates for large and small stocks are plotted against their corresponding periods of 
estimation. The diamond points indicate the averages of large stock and the square points for small stocks. This 
depicts the extreme values of beta estimates recorded for the small stocks relative to the benchmark beta of one. 

It is also important to note the very high and low betas in the 19th century BSE compared to the post-1926 market 
betas recorded in the literature. The possible explanation for these extreme values of the beta and low coefficients of 
determination might be linked to the infrequent trading effect and the influence of extreme observations (outliers) in 
the returns series of the stocks. 

In order to capture the effect of size (market capitalization) on the average beta and 2R  values, we computed the 
same cross-sectional statistics for betas in each period. However, the stocks in each period are sub-divided into three 
mutually exclusive size-based sub-samples. The composition of the sub-samples is as follows: the sample of stocks 
in each period is sorted in descending order based on their market capitalization (size) at the beginning of the period.  

The first 30 percent of stocks are classified as the large stocks portfolio, next 40 percent as medium stocks portfolio, 
and the last 30 percent as the small stocks portfolio. Table 2 reports the average beta and the 2R  values for each 
sub-sample in each period. Generally, the high values of 2R  recorded for large stocks are striking because on the 
UK market, Dimson (1979) recorded a similar pattern with 15 years of monthly data. This might be attributed to the 
value-weighted index used in the computation, since the index will have more explanatory power for large-sized 
stocks. Figure 1 depicts the cross-sectional average beta of each period for large stocks and small stocks. It is clear 
from Figure 1 that small stocks record comparatively low betas in the periods before 1867 and high betas thereafter. 
The result in the periods before 1867 corroborates the assertion of Dimson (1979), Scholes and Williams (1977) and 
Beer (1997). They said that if trading frequency is highly correlated with the market capitalization of the stock, betas 
of small stocks (infrequently traded stocks) are lower when estimated with the market model. On the contrary, 
Ibbotson et al. (1997), based on NYSE data between 1926 and 1994, found that small stock returns due to infrequent 
trading show a high degree of autocorrelation and that they are capable of recording high betas. On the 19th century 
BSE, we confirm their result in the periods after 1867. The only anomaly is the period between 1882 and 1886, 
where the small stock average beta lies slightly below the average beta of large stocks.  

5. Beta Stability 

Here, we adopt the Blume (1971) and Altman et al. (1974) correlation method of investigating the stability of beta 
estimates. Blume (1975) shows that the beta coefficient between two successive periods is stationary if (Note 2) 
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  where 

ip  are the betas in period ip . Betas 

in period ip  are used to rank stocks existing in periods ip  and 1ip   in ascending order. In period ip  equally 

weighted portfolios of ,...3,2,1s stocks are formed as follows: the first portfolio consists of stocks with s  

smallest beta estimates. The next portfolio consists of stocks with the next smallest beta estimates. This process of 
portfolio formation is repeated until the number of stocks left is less than s. For each s, the betas of all portfolios in 

period 1ip   are also computed. We compute the correlation and Spearman rank order correlation of the betas 

between each two adjacent periods. Table 3 reports the weighted average correlation across all the sub-periods 
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studied. The weighted average correlation takes into account the number of stocks or portfolios in each adjacent 
ten-year period. The weighted average correlation across the successive periods ranges from 0.54 for individual 
stocks to 0.95 for portfolios of 20 stocks. These values indicate that the beta of individual stocks have, on average, 
less information about their future beta than the portfolio beta. Blume (1971) found a similar result on the US market. 
Due to the limited number of stocks, we were not able form up to 50-sized portfolios on the BSE. Blume finds 
0.62(0.67) and 0.91(0.93) mean correlation (rank correlation) for 1- and 10-sized portfolios using 84-month 
estimation periods respectively. Furthermore, based on 52-week estimation periods, Levy ( 1971) records 0.44 and 
0.82 mean correlation for 1- and 10-sized portfolios on the same exchange. On the UK market between 1955 and 
1979, Dimson and Marsh (1983) used value-weighted market index, monthly returns interval measurement and 
sixty-month estimation periods to obtain an average correlation of 0.56 and 0.91 for 1- or 10-sized portfolios 
respectively. The correlations in Table 3 show that the betas from the 19th century BSE are stable compared to the 
betas in post-1926 US and UK markets. 
Table 3. Weighted Average of Correlation and Spearman Rank Order Correlation across successive Periods 

 

 

 

 

 

 

Note: This table shows the weighted average correlation and Spearman’s Rank correlation of betas of individual 
stock and portfolios in successive periods across the fifteen periods studied. For a stock to be included in this 
analysis it has data for completely two consecutive periods. Betas in a period (estimation period) are used to rank the 
betas in that period and the next adjacent period (prediction period) in ascending order. Portfolios are formed with 
their constituent as follows: The first portfolio is the first s  stocks for )20,10,7,4,2,1(s . The second portfolio 
contains the following s  stocks and so on until available stocks is less than s . Assuming equal amount is invested 
in each stock then the portfolio beta will just be the mean of the betas of stocks included in the portfolio. We 
computed the weighted average correlations weighted by the number of portfolios in each ten year period. 

6. Blume and Vasicek stability adjustment techniques 

Individual stock betas estimated from the MM are noted as unstable in the previous section (also in Blume (1971), 
Collins, Ledolter and Rayburn (1987), Faff and John (1992), Gregory-Allen et al. (1994), Eisenbeiss, Kauermann 
and Semmler (2007)). There is a tendency for a high beta estimate to overstate its true value and vice versa. 
Therefore, we use the Blume (1971) autoregressive adjustment model to improve the stability of beta estimates for 
both individual stocks and portfolios. 

Table 4. Measurement of Regression Tendency of Estimated Beta Cofficients for Individual Stocks 
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Table 4 presents regression tendencies implied between adjacent periods, where a  and b  are the constant term 
and slope coefficients, respectively. The values of the coefficients in the periods between 1837 and 1867 are striking. 
It is not consistent with the Blume assertion that all the coefficients lie between zero and one. The last two Columns 
show the t-statistics of the test of a hypothesis of the slope coefficient equal to zero or one. The t-statistics of the 
slope coefficients show that the null hypothesis of the slope coefficient equal to zero is rejected in the adjacent 
periods after 1872. In addition, the null hypothesis of the slope coefficient equal to one is rejected in all the adjacent 
periods (except the first two periods). The R2 values also show that the betas in the periods after 1872 have more 
explanations for their prior betas than those before 1872. As can be seen in Table 4, the coefficients change over time, 
but there are extreme coefficients outside the interval between zero and one in the first two periods. The extreme 
values may be attributed to the number of stocks in a period as we record less than 50 stocks in our first two 
five-year periods. A result not reported shows that increasing the length of the estimation period (such as seven years 

in Blume (1971)) improves the 2R  values and the t-statistics but at the expense of losing more stocks, since fewer 
stocks have complete returns' data for longer periods.  
With the regression tendencies, suppose we want to forecast the beta for any stock or portfolio in the period 
1842-1846. We compute its beta in 1837-1841. The forecast of the beta is obtained by substituting it for βp-1 in 
equation (2) with the coefficients in the first row of Table.4. βp is then computed from the equation and used as the 
forecast. The adjustment process is repeated for stocks in the subsequent 13 adjacent periods using their respective 
coefficients. We also introduce the Vasicek adjustment model (3) to adjust betas in successive adjacent periods. We 
test the predictive performance of the various adjusted betas by using the root mean square error (Note 3) (RMSE) 
criterion. The RMSE tests the performance of the autoregressive methods based on variation and unbiasedness of 
their beta forecast. The adjustment method is repeated for all adjacent periods on equally weighted portfolios of size 
2, 4, 7, 10 and 20. In order to compare the predictive performance of the MM betas and the autoregressive-adjusted 
betas, we compute the RMSE of betas estimated with MM in adjacent periods. Table 5 displays the average RMSE 
of the adjusted betas and MM betas across the 15 periods studied. It is clear from the Table that the average RMSE 
of the adjusted betas is lower than that of the market model betas. Table 5 also shows that the predictive performance 
improves as the number of stocks in a portfolio increases for both adjusted and the MM betas. For individual stocks, 
the Bayesian adjustment technique proposed by Vasicek is superior to Blume’s adjustment as reflected in the small 
average RMSE. Blume (1971) and Klemkosky and Martin (1975) recorded similar patterns of the predictive 
performance on the NYSE market. Their adjusted betas mean square errors were smaller than their MM betas. For 
portfolios of size 7 or more, one cannot see much difference between the Blume adjustment method and the Bayesian 
approach. 
Table 5. Predictive Performance of Blume and Vasicek (Bayesian) procedures of estimating Beta 

 

 

 

 

 

 

Note: Average RMSE and MAE across the fifteen periods studied were used to compare the predictive performance 
of the various adjusted betas and the market model (MM) betas in successive periods. The average RMSE and MAE 
across the successive adjacent periods for the various equally weighted portfolio formations are displayed.  

The conclusion is that on the 19th century BSE, the predictive accuracy of betas estimated by the MM can be 
improved by adjusting betas using either the Blume or Bayesian adjustment methods and a portfolio with a sizeable 
number of stocks.  

The reliability of the conclusion above can be confirmed by performing an additional test on the root mean squared 
error values. The possible method is to test whether the differences in the values of the RMSE’s are statistically 
significant. Harvey et al. (1997) presented a modified Diebold and Mariano test statistic that will be used for this 

purpose. Therefore, suppose we want to compare the forecasts of Blume (BL) and Vasicek (VA) models.  BL  

and  VA are the forecasting errors from the Blume and Vasicek models, respectively. In our case, we consider the 

root mean square error function,  BLf   root mean square error of the Blume adjusted betas. The test is based on 

the loss differential function    BL VA
j j jd f f   for 1,...,j H . The null hypothesis of expected equal predictive 
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performance is H0:   0jE d   and the alternative hypothesis of the Blume model predicting worse than the Vasicek 

model is aH :   0.jE d   The Modified Diebold-Mariano (MDM) statistic is:  
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d H d



  ,  cov ,i j j id d  , h is the horizon of forecast and 
, 1(0,1)Ht 

 a student’s t  distribution 

with 1H   degrees of freedom and v is the significant level usually set at 5%. The test compares the 
Diebold-Mariano test statistics to critical values from the student’s t  distribution. We reject the null hypothesis of 
equal predictive accuracy when the test statistic is greater than the critical value at   level. In order to apply this 
test, betas estimated with the Market, Blume and Vasicek models in all periods are pooled together to form three 
series of length H. Then we perform the test on the three series.Table 6 reports the modified Diebold-Mariano test 
statistics between the various models under study. Betas estimated from the various models are considered across the 
entire period studied.  
Table 6. Modified Diebold-Mariano test statistics (p-value in parentheses). H0:E(dj)=0 and Ha:E(dj)>0  

 

 

 

 

 

 

 

 

 

 

 

Once again the period studied is divided into two sub-periods based on the environment in which the BSE operated, 
a period of strict regulation and a period of deregulation and expansion. The values in the first row of the Table 
reveal that we can confidently reject the null hypothesis of one-step ahead equal predictive accuracy of the Blume 
and MM betas. For instance, in the overall period of our sample the null hypothesis can be rejected at the 5 percent 
level. During the strictly regulated period, we find that Blume-adjusted beta significantly outperforms the market 
model beta. Between the Vasicek adjusted betas and the MM betas, we can reject the null hypothesis of equal 
predictive accuracy for the deregulated and expansion period. The significance level of the rejection becomes weak 
in the strictly regulated period. The equality in the predictive performance of the Vasicek and the MM betas is 
strongly rejected in the entire period. The values from the bottom row of Table 6 show that there is no significant 
difference between the Vasicek betas and the Blume betas in terms of their one-step ahead forecast. Therefore, we 
cannot reject the null hypothesis of equal predictive accuracy between the two models. 

7. Beta Bias  

Considering the period of the study and the trading frequency of the market, we might expect that some stocks may 
not trade every month for economic reasons or because of regulatory conditions. These stocks may systematically 
lead or lag the market movement, producing biased betas when beta is estimated with the MM. In order to expose the 
presence of possible lead or lag effects, we test the significance of the coefficient of the returns on the lagged or lead 
market index. The Dimson bias adjustment equation with maximum lag or lead of three months is considered, that is 

3,...,3i . We use only three months lag and lead because beta bias has been documented as not prevalent in 

monthly returns data (see Cohen, Hawawini, Maier, Schwartz and Whitcomb (1983)). For each stock, the estimates 

of the parameters i  indicate the lagged, matched and lead beta coefficients. We test the hypothesis 0:0 iH   

against the alternative 0:1 iH   for each stock. Table 7 reports the cross-sectional average of the lag and lead 

betas in each period. The numbers in parentheses are the percentage of stocks that reject the null hypothesis. 
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Evidence from this Table indicates that beta coefficients i  for 0i  are not significantly different from zero for 

the majority of the stocks. This shows that the explanatory power of the model for 0i  is approximately zero for 
most of the stocks. Unsurprisingly, there are some stocks with lead and lag coefficients that are statistically 
significant, but their numbers does not exceed the coefficients corresponding to the match. This indicates that there is 
no severe timing problem in the 19th century data.  
As most of the lead and lagged coefficients are significantly equal to zero, we can interpret this as evidence of the 
market model (MM) producing statistically reliable beta estimates in relation to the other models, which incorporate 
the lagged and lead market indexes. These results can be compared to the results from the post-World War I markets. 
For example, Hawawini and Michel (1979) found a similar pattern of results on the Belgium stock exchange by 
using weekly interval returns data between 1963 and 1976. The result also follows Cohen et al. (1983) hypothesis 
that there is a strong relationship between beta estimates and the length of the interval over which returns are 
measured. They established that beta bias mostly shows up in the short length interval (daily) of returns, and the bias 
disappears when the difference of the interval is lengthened (monthly). Similarly, on the New Zealand market, 
Bartholdy and Riding (1994) used monthly data to establish that betas estimated from MM are less biased. On the 
contrary, Ibbotson et al. (1997) reports that lagged coefficients should be considered when estimating beta.  

8. Impact of Outlying observations on Beta 

The extreme (maximum/minimum) beta estimates recorded by some stocks in Table 1 for the five-year periods 
studied might be due to the influence of outliers or unexpected movement by the stock or the market returns. The 
literature shows that outliers have a tendency to reduce or increase the magnitude of the beta when it is estimated 
with the MM (Chatterjee and Jacques (1994)). In such cases, reducing the impact of outliers in the estimation of the 
beta can significantly change the value of beta. We apply the IRLS (outlier resistant), which minimizes a weighted 
sum of squares of residuals. The weights given to each return pair observation depends on the distance between the 
observation and the fitted line (Martin and Simin (2003)). Table 8 reports how the presence of outliers affects the 
beta value. The number of stocks in each five-year period is grouped into two. As explained in previous section, 
stocks with identified outliers less than or equal to 4 are grouped into Category A and those with identified outliers 
greater than 4 are grouped in category B. We compute the average beta of each category. 

Table 7. Dimson Aggregate Coefficient (AC) beta Adjustment 
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In each period, we compare the cross-sectional average betas of the MM and IRLS for each category. For example, 
in the first period out of the 21 stocks, three fall in Category A with an average market model (MM) beta estimate of 
1.29 and IRLS beta of 0.46. In Category A, the difference between the average MM beta and the average IRLS beta 
is 0.83. Looking across periods, except for periods 1 to 3, the rest of the periods have more stocks in Category A than 
Category B. In each period, the difference between the MM betas and the IRLS betas for Category B is greater than 
the difference in Category A (last column). This implies that the more the outlier observations in the return series, the 
higher the market model overestimates beta. The MM beta is always greater than the IRLS beta in Category A 
(across periods in Figure 2). It confirms the result by Chatterjee and Jacques (1994) that the weighted least squares 
estimation reduces the MM betas by a certain percentage. We apply the modified Diebold-Mariano test to compare 
one-step ahead predictive accuracy of the MM and IRLS estimated betas.  

Table 8.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The modified Diebold Mariano test statistics proposed by Harvey et al. (1997) are employed to test the null 
hypothesis of equal predictive accuracy against the alternative of IRLS betas forecasting better than the MM betas. A 
pooled sample of betas within the period studied is considered. The modified Diebold- Mariano's test statistic 
between the two models is 1.37 with p-value of 0.09 for one-step forecasts in the period of our study (shown in Table 
9). This shows that we cannot reject the null hypothesis of equal predictive accuracy at the 5 percent significance 
level in the overall period. The null hypothesis can be rejected only at the 10 percent level. From the deregulation 
and expansion period, the null hypothesis of equal predictive accuracy is not rejected. From Table 9, we conclude 
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that on the 19th century BSE, the IRLS method can help to curb the influence of outliers on estimated betas, but it 
does not significantly outperform the standard MM in terms of their ability to predict one-step ahead in the period of 
deregulation and expansion. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Plot of average MM/IRLS betas for stocks with outlier observations less than 4 
9. Conclusions 

This study evaluates the relative performance of different methods of estimating beta based on their ability to predict 
subsequent beta on the 19th century BSE. The analysis of the different beta techniques reveals that beta estimated 
with the market model is not stable. Specifically, the study reveals that for individual stocks, the market model beta 
is weak in its ability to predict the future beta. The predictability can be improved by grouping 10 or more stocks to 
form a portfolio or adjusting betas with the Vasicek and Blume autoregressive techniques. The study also shows no 
significant difference between the Blume and Vasicek adjusted betas in terms of their predictive accuracy. Applying 
the Dimson method, correcting nonsynchronous trading effect reveals that returns of few stocks have a significant 
relationship with the lead and lag market returns. There is no significant difference in the predictive accuracy of the 
betas estimated with the IRLS method and the market model in the deregulation and expansion period. In the next 
chapter, we study the ability of beta to explain returns in the cross-section of stocks, which is the primary implication 
of the CAPM.  
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Notes 

Note 1.  E x  is the expected value of x  , ( )Var x  is the variance of x   

Note 2. ( , )corr x y  is the correlation between x  and y . 

Note 3. The root mean square error was calculated by  
1

2

i ijt jt

N
 


  for Nj ,...,1  


