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Abstract 

The focus of this study is to understand the previously ignored return generating dynamics of American Depositary 

Receipts (ADR) markets. The main objective of this study is to investigate the nature of the return generating process 

of the Indian ADRs market. Specifically, the study addresses following interrelated research questions: Do returns 

series of Indian ADRs market exhibit random walk behavior or rather depict persistence and nonlinear dynamics? Is 

there any cyclicity in the returns series of Indian ADRs market? Rescaled Range (R/S) method on daily and weekly 

return series of Bank of the New York Mellon Indian ADR index (BKIN) from 2002 to 2016 has been applied to 

address the above questions. Empirical findings revealed that returns series of Indian ADRs market: (a) do not 

exhibit random walk behavior and rather depict both nonlinear behavior and persistence (long range dependence); (b) 

possess non-periodic cycles of  0.793, 2.38 and approximately 7 years. The findings can work as crucial inputs to 

forecasting, risk-management and market regulation processes. The knowledge of the average cycle length and 

persistence will enhance preparedness to handle the opportunities and risks at all levels in the market. 
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1. Introduction 

Finance professionals need to decipher statistical processes which shape security prices because such understanding 

is crucial for forecasting security prices (Hinich & Patterson 1985). Extant empirical studies have confirmed the 

existence of nonlinearity and persistence in return series of equities, bonds and FX markets. However, such studies in 

Depositary Receipts (DRs) markets are almost non-existent. Notably, DRs are equity securities listed & traded on 

foreign markets, and therefore their returns are susceptible to the characteristics of host foreign markets (Choi and 

Kim 2000; Ely & Salehizadeh 2001). The additional factors of the host market make DRs different from the pure 

domestic equity securities, and quite logically, it is conjectured that return series of DR markets may possess some 

unique statistical attributes. With this view, this study focuses on investigating the nature of the return generating 

process of Indian American Depositary Receipts (ADRs) market. Specifically, following interrelated research 

questions are addressed: Do returns series of Indian ADRs market exhibit random walk behavior or rather depict 

persistence and nonlinear dynamics? Is there any cyclicity in the returns series of Indian ADRs market? 

Numerous studies have used linear methods to assess the predictability of varied financial return series depending on 

whether they follow random walk or not (Malkei 2003; Kasman et al. 2009; Cevic & Emec 2013). If a return series 

doesn’t follow a random walk, the inference drawn is that it contains predictable patterns, long memory or 

persistence (Note 1). Although the long memory can be generated by both linear and nonlinear (Note 2) processes, 

yet the stylized facts of financial time series data (Note 3) suggest that long memory is more likely to be generated 

by nonlinear stochastic processes rather than by linear processes (McKnzie 2001). Linear methods applied to 

nonlinear processes are prone to incorrectly accept the null hypothesis of random walk in security returns. Such 

erroneous conclusions result in wrong investment, policy and risk management decisions. In time series analysis, 

non-parametric methods have inherent advantages over parametric methods as the former class doesn’t require any 

structural assumption about the underlying data generating process (Kreiss & Lahiri 2012). An observed time series 

can be generated by infinitely many processes, and the fact that non-parametric methods are not based on a specific 
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set of assumptions about the underlying data generating process, make them flexible enough to identify the true 

dynamics of a process (Fan & Yao 2005). The Rescaled Range (R/S) method is a robust nonparametric method. This 

study used the R/S method to detect non-linearity and persistence in Indian ADRs market during the period 

2001-2016. The superiority of the R/S method is that it not only detects persistence in the data series, but also 

identifies regular and irregular cyclic patterns in the underlying data generating process (Peters 1989; Yao & Tan 

2000). The findings of our study revealed that returns series of Indian ADRs market: (a) does not exhibit random 

walk behavior and rather depicts both nonlinear deterministic behavior and persistence (long range dependence); (b) 

has non-periodic cycles of 0.793, 2.38, and approximately 7 years. The rest of the study is organized as follows: 

Section 2 discusses the existing literature; Section 3 documents methodology, data sources and sample; Section 4 

contains the empirical findings and discussion; Section 5 has conclusions and recommendations. 

2. Literature Review 

2.1 Nonlinearity in Financial Asset Markets 

The traditional linear methods used to validate Random Walk Hypothesis (RWH) assume that linear processes 

entirely shape the prices of financial securities. This assumption, however, fails to explain many phenomena 

observed in securities markets such as episodes of volatility clustering, extreme volatility, bubbles & crashes (Abreu 

& Brunnermeier 2003), profiting from simple technical strategies (Schulmeister 2009) etc., and leads to incorrect 

acceptance of the existence of  random walk (Alharbi, 2009). DeBondt (1993) argues that market realities like 

institutional arrangements, human elements and investor heterogeneity in knowledge and information processing 

capabilities, possibilities of arbitrage, long-lived agents and competition etc. should not be ignored in financial 

market research. Deneckere and Pelikan (1986) suggests that the pervasiveness of market imperfections and human 

elements in financial markets can potentially give rise to non-linearity in returns series of these markets. Henry and 

Zaffaroni (2003) suggests the use of nonlinear methods like ARCH, two-shock nonlinear MA, GARCH etc. in 

studying financial time series. Such methods are capable of discerning linear as well as nonlinear relationships. 

Within the subset of nonlinear techniques, non-parametric methods provide a superior understanding of the true 

dynamics of the data generating process as they do not require restrictive assumption of normality of data (Fan 2005; 

Kukolj 2012). The R/S method is one such nonlinear, non-parametric approach, which can detect persistence and 

also reveal cyclicity in the returns series (McKnzie 2001). Hinich and Patterson (1985) in a pioneering study of 

nonlinear dynamics defines nonlinearity in terms of non-constant skewness. The study reports nonlinearity in returns 

of 15 common stocks listed at NYSE through the application of the bi-spectrum test. The stock market crash of 1987 

provided further impetus to use of non-linear methods in financial research aimed at testing the validity of the 

random walk hypothesis (Lima 1998).  In recent years, there has been spurt in studies which have refuted random 

walk and have documented nonlinear dynamics in a variety of financial return series (Ozer and Ertokatli, 2010; 

Mishra et al., 2011; Webel, 2012; Yilanci, 2012; Lim and Hooy, 2013; Madhavan 2014).  However, existing 

literature provides mixed evidences on existence of non-linearity in financial return series.  

2.2 Persistence in Financial Asset Markets 

The RWH suggests that security prices follow a random walk, and don’t possess persistence (Osborne, 1959; Fama, 

1965; Niederhoffer & Osborne, 1966; Fama et al., 1969; Fama, 1970). However, the available empirical literature 

provides mixed evidences on the applicability of RWH in security markets. Some studies support it (Godfrey et al., 

1964; Fama, 1965; Fama, 1970; Fama, 1991; Alford & Guffey, 1996; Dow & Gorton, 1997; Barkoulas & Baum, 

1997), and many others refute it (Grossman & Stiglitz, 1980; Shiller & Perron, 1985; Lo & MacKinlay, 1988; 

O’Brien & Srivastava, 1991; Barkoulas & Baum, 1996; Peress, 2010; Latif et al., 2011; Patel et al., 2012; Immonen, 

2015). The rejection of the RWH infers existence of dependence and predictability in security returns. Granger and 

Joyeux (1980) suggests that security prices don’t follow RWH because future prices reflect investors’ opinions 

which are influenced by their past experiences, and introduces the concept of fractional differencing to identify 

persistence. Sowell (1992) argues that financial markets are predictable as investors are not always logical and often 

don’t consider the entire market information carefully in their investment decisions. Mandelbrot (1971) proposes the 

concept of time-lagged statistical dependence within time series to identify cases where strength of statistical 

dependence of asset prices decreased rather slowly, indicating presence of persistence. Ding, Granger and Engle 

(1993) finds significant autocorrelations between lagged observations in equity markets. Keim and Stambaugh (1986) 

empirically proves that equity returns show persistence and are forecast able. Fama and French (1988) shows that 25 

to 40 percent of the variation in the longer-run holding period returns is predictable from past returns. Willinger et al. 

(1999) reports evidences of persistence in equity market of the USA. Similar results supporting the presence of 

persistence are reported by: Karp et al., 1972; Clark, 1973; Hsu et al., 1974; Greene & Fielitz, 1977; Kasman et al., 
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2007; Cevic & Emec, 2013; Ferreira & Dionisio, 2016. Several other studies have completely or partially negated the 

existence of persistence. Lee and Robinson (1996), using semi-parametric methods, reports that several stocks/index 

return series out of 26 stocks & 2 market indices don’t possess persistence. Henry (2002) analyses 9 stock indices 

from developed markets using both parametric and semi-parametric methods, and reports existence of persistence 

only in 4 markets. Other studies which negate existence of persistence are: Aydogan & Booth, 1988; Lo, 1991; 

Cheung & Lai, 1995; Barkoulas & Baum, 1997; Lobato & Savin, 1998; Tolvi, 2003; Grau-Carles, 2005. The 

incomprehensiveness of literature in the area of persistence lies in the fact that the major focus of these studies is 

equity markets, and very few focus on other types of security viz. bonds, FX or DR markets (Malkei, 2003; Beine & 

Laurent, 2003; Oh, Kim & Eom, 2006; Kumar and Maheswaran, 2013; Madhavan, 2014; Anagnostidis and 

Emmanouilides, 2015; Ferreira & Dionisio, 2016; Sensoy & Tabak, 2016; and Masa and Diaz, 2017). 

2.3 Nonlinearity & Persistence in DRs Markets 

The field of literature in nonlinearity and persistence in DR markets is still very nascent, as evident from the 

following review. Rosenthal (1983) examines weak-form of efficiency in the ADRs market during 1974-1978 using 

serial correlation and finds it to be efficient. However, detection of persistence was not the objective of this study, it 

rather assessed the possibility of arbitrage created by short run dependencies. Wahab & Lashgari (1993) examines 

stationarity of co-movements of ADR & S&P 500 index returns for portfolio optimization, rather than for detecting 

persistence. Patro (2000) analyzes ADR returns to understand the risk exposure and not to detect persistence. Urrutia 

& Vu (2006) records presence of nonlinearity and chaotic structure in ADR returns by using BDS (Brock, Dechert, 

and Scheinkman) and EGARCH method. There exists a large gap in the existing literature which deal with 

nonlinearity and persistence in DR Markets. This study attempts to fill this void in literature. 

3. Methodology, Data Sources and Sample 

This study applied R/S method to daily and weekly adjusted closing return series of Bank of New York Mellon India 

ADR Index (BKIN) (Note 4) from January 2002 to July 2016 to detect persistence and nonlinearity. The data used 

are collected from Bloomberg Database. R/S method is probably the best-known test to assess persistence in 

financial time series (Zivot and Wang, 2007). Application of R/S method is justified as follows. First, its application 

doesn’t warrant any prior assumption about data series and it is also superior to spectral analysis as it can detect 

non-periodic cycles (Mandelbrot, 1972).  Second, it provides reliable results even for series with large skewness and 

kurtosis, which are common features of financial time series (Jacobsen, 1996). In contrast, conventional methods, 

such as analysis of autocorrelations etc. are not robust to such features. Third, as noted by Mandelbrot (1972), R/S 

method can be used even for stochastic processes with infinite variances, i.e. stable Paretian (Note 5) distribution 

suggested by Fama & French (1965). It doesn’t rule out the possibility of such distributions in advance, which lends 

higher flexibility. As evident from Table 1, non-normality, high skewness and excess kurtosis of Indian ADR return 

series make the R/S method highly suitable for analyzing underlying return generating process. With 𝑃𝑡  𝑎𝑛𝑑 𝑃𝑡−1 as 

closing index values on two consecutive days (or weeks), we use the following formula to calculate the daily and 

weekly returns series 

                                 𝑅𝑡 = (log10 𝑃𝑡 − log10 𝑃𝑡−1) ∗ 100                         (1) 

The R/S method requires one to calculate Hurst exponents, which governs the behaviour of a process. The first step 

is to pre-whiten the return series using an Autoregressive (AR) model. This was done to reduce short term 

dependencies in the residual or pre-whitened series, which otherwise would have emerged as an unwanted output in 

the process of detection long run dependencies (Brock et al. 1996; Jacobsen 1996). The pre-whitened series, each 

having N data points, are split into k non-overlapping sub-samples (shorter time series) of length n, which is chosen 

in a way that k = N/n is always an integer. The number of data points is considered to maximize the number of 

sub-samples and each sub-sample must contain at least 10 data points. Our study considers 3600 and 760 daily and 

weekly data points respectively. The R/S statistic is calculated as the range of partial sums of deviations of a time 

series from its mean, rescaled by its standard deviation (Jacobsen, 1996). For a sub-sample with data points 

as  𝑋1, 𝑋2, 𝑋3 … … . . 𝑋𝑛, the range is calculated as:  

𝑅𝑛 = 𝑚𝑎𝑥 (𝑍1,𝑍2, 𝑍3, … … . . , 𝑍𝑛) − 𝑚𝑖𝑛 (𝑍1,𝑍2, 𝑍3, … … . . , 𝑍𝑛)             (2) 

Here 𝑍𝑗 represents a cumulative deviate series calculated from the mean adjusted series of deviations. The R/S 

statistic for each subsample is calculated by dividing the range by their respective standard deviations. The 𝑅/𝑆 

statistics of k sub-samples corresponding to a set value of n are then averaged to calculate (𝑅/𝑆)𝑛 for a given n. In 

order to detect departure of (𝑅/𝑆)𝑛 from random walk, we compare them with their corresponding expected values, 

a random number calculated through an empirically proven formula provided below, which was initially developed 

by Anis and Lloyd (1976) and later on modified by Peters (1994) by adding a correction factor: 
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For a non-random process, (𝑅/𝑆)𝑛 values will deviate from E(R/S)n values. To detect such deviations, values of 

𝐿𝑜𝑔(𝑅/𝑆)𝑛 and 𝐿𝑜𝑔(𝐸(𝑅/𝑆)𝑛) are plotted against 𝐿𝑜𝑔 (𝑛). This plot also indicates the presence of cyclicity in the 

underlying return series by revealing break points (Note 6), where slope of  𝐿𝑜𝑔(𝑅/𝑆)𝑛 becomes positive from 

negative. Shortcoming of this approach is that it may miss some cycles due to potential superimposition of a large 

number of cycles of different frequencies (Peters, 1994). V-statistics are calculated to overcome this inadequacy. The 

V statistic 𝑉𝑛 is (𝑅/𝑆)𝑛 normalized with √𝑛: 

                          𝑉𝑛 =
(

𝑅

𝑆
)

𝑛

√𝑛
, 𝑓𝑜𝑟 𝑠𝑎𝑚𝑝𝑙𝑒 𝑜𝑓 𝑠𝑖𝑧𝑒 𝑛                        (4) 

V statistics for (R/S)n and E(R/S)n and plotted against 𝐿𝑜𝑔(𝑛). If (R/S)𝑛 scales at a rate = √𝑛, (which signifies 

a random process), the 𝑉𝑛 line should be a horizontal line and deviations implies non-randomness. Cycles are 

identified and starting of a cycle is marked at points where the slope of the 𝑉𝑛 line for (R/S)𝑛 becomes positive 

from negative. Values of the Hurst exponents H are estimated for various intervals which are constructed to cover a 

complete cycle. Values of H for various intervals are calculated by fitting the following OLS equation:  

                         Log10(𝑅/𝑆)𝑛 = Log10 𝐶 + 𝐻 Log10 𝑛 + 𝜀                     (5) 

For a value of 𝐻 = 0, the underlying process implies a random and independent process. In the range 0.5 < 𝐻 ≤ 1, 

H implies a persistent process, and for such a process what happens today impacts the future forever (Peters, 1994). 

In the range 0 ≤ H < 0.5, H signifies a mean reverting process. In order to assess statistical significance of estimated 

H we use two approaches: 1) the usual t-test of linear regression where p-value indicates how significantly values of 

H were different from zero 2) a confidence test of R/S Analysis proposed by Peters (1994) to observe the deviation 

of H from 𝐸(𝐻), an IID random variable obtained by regressing another independent random variable 𝐸(𝑅/𝑆)𝑛 on 

n as follows: 

                          Log10 𝐸(𝑅/𝑆)𝑛 = log10 𝐶 + 𝐸(𝐻) Log10 𝑛 + 𝜀            (6) 

If the values of the estimated H are approximately two standard deviations (Note 7) greater than 𝐸(𝐻) values for 

same n, then H values represent processes which are significantly different from random.  

4. Empirical Findings and Discussion  

Table 1 reports the descriptive statistics of the daily and weekly ADR return series. The series possess negative 

skewness, leptokurtic, and exhibit non-normality. Presence of leptokurtosis supports the existence of systematic bias 

in the return series (McKenzie 2001), which could be revealed by R/S Analysis. 

Table 1. Descriptive Statistics of the Daily and Weekly ADR Return Series 

Particulars Daily Return Series Weekly Return Series 

No. of Observations 3600 760 

Mean 0.0004987 0.002105 

Standard Deviation 0.021427 0.044015 

Skewness -0.1899589 -0.6582007 

Kurtosis (Excess) 8.95617 4.31066 

JB Statistic 12071 648.79 

4.1 R/S Analysis of Daily Return Series of BKIN Index 

Table 2 and Figure 1 depict results of R/S Analysis of daily return series of BKIN Index. Figure 1 depicts that 

𝐿𝑜𝑔(𝑅/𝑆) values were greater than 𝐿𝑜𝑔(𝐸(𝑅/𝑆)) values for all the sub-periods. Till the point 1.3979 (n=25), both 

the lines move parallel to each other, and beyond this point systematic deviations appear. The dispersion becomes 

more prominent from the point 2.352 (n=225) and subsequent breaks are observed at points 2.477 (n=300), 2.778 

(n=600), and 2.954 (n=900). The presence of these breaks indicates the possibility of existence of multiple cycles.  
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Table 2. R/S Analysis of Daily Return Series of BKIN Index: Results of R/S analysis of the residual of AR model 

fitted to daily return series of the BKIN index from 13 May 2002 to 22 July 2016. The daily series containing a total 

of 3600 data points was split into non-overlapping sub-samples.  

n R/S E(R/S) Log(n) Log(R/S) log(E(R/S)) 

10 3.0775 2.6503 1 0.4882 0.4233 

12 3.4482 3.0374 1.0792 0.5376 0.4825 

15 3.9493 3.5605 1.1761 0.5965 0.5515 

16 4.1382 3.7228 1.2041 0.6168 0.5709 

18 4.4117 4.0323 1.2553 0.6446 0.6056 

20 4.6648 4.3247 1.3010 0.6688 0.6359 

24 5.0718 4.8677 1.3802 0.7052 0.6873 

25 5.1186 4.9961 1.3979 0.7092 0.6986 

30 5.7802 5.6018 1.4771 0.7619 0.7483 

36 6.3219 6.2642 1.5563 0.8008 0.7969 

40 6.7049 6.6749 1.6020 0.8264 0.8244 

45 7.2698 7.1599 1.6532 0.8615 0.8549 

48 7.4284 7.4379 1.6812 0.8709 0.8715 

50 7.6789 7.6186 1.6989 0.8853 0.8819 

60 8.2719 8.4704 1.7782 0.9176 0.9279 

72 9.0681 9.4026 1.8573 0.9575 0.9732 

75 9.5828 9.6231 1.8751 0.9815 0.9833 

80 9.8425 9.9809 1.9031 0.9931 0.9992 

90 10.2943 10.6642 1.9542 1.0126 1.0279 

100 11.1496 11.3103 2 1.0473 1.0535 

120 12.1433 12.5111 2.0792 1.0843 1.0973 

144 12.6157 13.8258 2.1584 1.1009 1.1407 

150 13.7797 14.1369 2.1761 1.1392 1.1504 

180 14.9234 15.6058 2.2553 1.1739 1.1933 

200 16.1534 16.5175 2.3010 1.2083 1.2179 

225 17.0763 17.5949 2.3522 1.2324 1.2454 

240 16.7091 18.2127 2.3802 1.2229 1.2604 

300 20.2179 20.5083 2.4771 1.3057 1.3119 

360 20.2206 22.5831 2.5563 1.3058 1.3538 

400 23.3353 23.8710 2.6021 1.3680 1.3779 

450 26.0891 25.3932 2.6532 1.4165 1.4047 

600 30.4884 29.5099 2.7782 1.4841 1.4699 

720 32.3628 32.4421 2.8573 1.5100 1.5111 

900 38.3789 36.4139 2.9542 1.5841 1.5613 

1200 41.6190 42.2332 3.0792 1.6193 1.6257 

1800 51.2993 51.9939 3.2553 1.7101 1.7159 

3600 69.1445 74.0233 3.5563 1.8398 1.8694 
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Figure 1. Plots of 𝐿𝑜𝑔 (𝑅/𝑆) & 𝐿𝑜𝑔(𝐸(𝑅/𝑆)) against 𝐿𝑜𝑔(𝑛) 

V statistics 𝑉𝑛 for (𝑅/𝑆)𝑛 and 𝐸(𝑅/𝑆)𝑛 for sub-periods are calculated (Table 3) and plotted against 𝐿𝑜𝑔(𝑛) 

(Figure 2). Figure 2 shows that till the point 1.398(n=25), both the 𝑉𝑛 lines are smooth. In between  𝑛 ≥ 25 

and 𝑛 ≤ 300, the lines deviate from each other, and breaks appear. After 2.477(n=300), breaks become more 

prominent, and beyond 3.255(n=1800) the two lines converge. Figure 2 indicates presence of multiple cycles at break 

points: 1.398(25), 2.477(300), 2.778(600), 2.857(720), 2.954(900), 3.255(1800).   
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Table 3. 𝑉𝑛 for (𝑅/𝑆)𝑛 and 𝐸(𝑅/𝑆)𝑛 for Various Sub-Periods 

n Log(n) 

𝑉𝑛 for 

(R/S) 𝑉𝑛 for E(R/S) 

10 1 0.9732 0.8381 

12 1.0792 0.9954 0.8768 

15 1.1761 1.0197 0.9193 

16 1.2041 1.0345 0.9307 

18 1.2553 1.0399 0.9504 

20 1.3010 1.0431 0.9670 

24 1.3802 1.0353 0.9936 

25 1.3979 1.0237 0.9992 

30 1.4771 1.0553 1.0227 

36 1.5563 1.0537 1.0440 

40 1.6021 1.0601 1.0554 

45 1.6532 1.0837 1.0673 

48 1.6812 1.0722 1.0736 

50 1.6989 1.0859 1.0774 

60 1.7782 1.0679 1.0935 

72 1.8573 1.0687 1.1081 

75 1.8751 1.1065 1.1112 

80 1.9031 1.1004 1.1159 

90 1.9542 1.0851 1.1241 

100 2.0000 1.1149 1.1310 

120 2.0792 1.1085 1.1421 

144 2.1584 1.0513 1.1522 

150 2.1761 1.1251 1.1542 

180 2.2553 1.1123 1.1632 

200 2.3010 1.1422 1.1679 

225 2.3522 1.1384 1.1729 

240 2.3802 1.0786 1.1756 

300 2.4771 1.1673 1.1840 

360 2.5563 1.0657 1.1902 

400 2.6021 1.1668 1.1936 

450 2.6532 1.2299 1.1970 

600 2.7782 1.2447 1.2047 

720 2.8573 1.2061 1.2090 

900 2.9542 1.2793 1.2138 

1200 3.0792 1.2014 1.2192 

1800 3.2553 1.2091 1.2255 

3600 3.5563 1.1524 1.2337 

Based on identified break points in Figure 2, five intervals are constructed and are shown in column 1 of Table 4. 

The Hurst exponents and their corresponding expected values are calculated using equations (5) and (6)  
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Figure 2. Plot of values of 𝑉𝑛 for R/S & E(R/S) against 𝐿𝑜𝑔(𝑛) 

Table 4. Identification of Cycles: H & E(H) are calculated as slopes of the least square lines between (R/S) & Log(n), 

& between E(R/S) & Log(n), respectively. The bracketed terms in H & E(H) column represent the standard errors. In 

P-value column, ***, ** & * represent significance at 0, 0.001, & 0.01 respectively. 

Interval H t stat. P-Value 
Adj. 

R
2
 

E(H) 
t 

stat. 
P-Value Adj. R

2
 

(25, 1800) 
0.561 

(0.005) 
111 0.000*** 0.998 

0.5457 

(0.003) 
190 0.000*** 0.999 

(25, 900) 
0.5661 

(0.006) 
96 0.000*** 0.997 

0.5512 

(0.003) 
191 0.000*** 0.999 

(25, 300) 
0.5571 

(0.007) 
83 0.000*** 0.997 

0.5651 

 

(0.003) 

184 0.000*** 0.999 

(360, 600) 
0.7848 

(0.121) 
6.5 0.023* 0.952 

0.5235 

(0.001) 
791 0.000*** 1 

(720,1800) 
0.4877 

(0.054) 
0.1 0.012* 0.965 

0.5147 

(0.001) 
692 0.000*** 1 

For all intervals, H values are found to be significant. High 𝑅2 values along with low standard error estimates 

illustrate the goodness of fit of the regression model used for estimation. For the intervals except for (720, 1800), H 

values are greater than 0.5 which signifies presence of persistence in the return series. For this particular interval, the 

return series is mean reverting. Applying Peter’s confidence test, we calculate the standard deviation of 𝐸(𝐻) as 

0.0167. The estimated H values are significant for intervals (360, 600) and (720, 1800), as H estimates in these two 

intervals are 15.67 and 1.62 standard deviations greater than the 𝐸(𝐻). We conclude that these H values represent 

processes significantly different from an independent & random process. Thus the daily return series is found to 

exhibit significant persistence and anti-persistence at two occasions, viz. (360, 600) and (720, 1800). For the other 

three intervals, the estimated H values are greater than 0.5, indicating non-randomness. However, Peter’s test doesn’t 

conclude them to be significant. Table 3 also confirms the presence of cycles in the return generating process. 

Statistically significant breaks are identified at points 𝑛 = 600 and 1800. Considering 252 trading days in a year, 

these breaks correspond to periods of 2.38 and 7.14 years respectively. Thus, it can be concluded that the Indian 

ADR market exhibits nonlinear dynamics with irregular cycles of 2.38 and 7.14 years. 
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4.2 R/S Analysis of Weekly Return Series of BKIN Index 

Table 5 and Figure 3 present the results of R/S Analysis of weekly return series. In Figure 3, the plots of R/S and 

E(R/S) move parallel to each other till 1.279(n=19). Beyond this point both the plots deviate from each other and 

these deviations are more pronounced beyond 1.580(n=38). At n=38 the first break point is observed, which marks 

the end of a cycle. Beyond this point the R/S plot kept altering directions till the point n=380, indicating the presence 

of multiple cycles in the return series. After the point n=380, the two plots converge. Additional breaks are observed 

at 2.182(n=152) and 2.580(n=380).  

Table 5. R/S Analysis of Weekly Return Series of BKIN Index: Results of R/S analysis for Weekly return series of 

the BKIN index from 4 January 2002 to 22 July 2016. There are 760 observations which are split into 

non-overlapping sub-samples. 

n R/S E(R/S) Log(n) Log(R/S) Log(E(R/S)) 

10 3.0398 2.6503 1.0000 0.4828 0.4233 

19 4.3445 4.1805 1.2788 0.6379 0.6212 

20 4.5496 4.3247 1.3010 0.6579 0.6359 

38 6.1469 6.4723 1.5798 0.7887 0.8110 

40 7.0392 6.6749 1.6020 0.8475 0.8244 

76 9.2468 9.6956 1.8808 0.9659 0.9866 

95 10.9660 10.9916 1.9777 1.0400 1.0411 

152 14.9488 14.2392 2.1818 1.1746 1.1535 

190 18.5335 16.0677 2.2788 1.2679 1.2059 

380 26.8845 23.2356 2.5798 1.4295 1.3662 

760 32.6328 33.3642 2.8808 1.5137 1.5233 

 

 

 

 

 

 

 

 

 

Figure 3. Plots of 𝐿𝑜𝑔 (𝑅/𝑆) & 𝐿𝑜𝑔(𝐸(𝑅/𝑆)) against 𝐿𝑜𝑔(𝑛) 

V statistic, 𝑉𝑛 for R/S and E(R/S) are calculated (Table 6) and plotted them against 𝐿𝑜𝑔(𝑛) (Figure 4). Evident 

from figure 4 is that the 𝑉𝑛 plots move coherently till the point 1.279(n=19), indicating that both the plots represent 

random movements. Beyond n=19, the 𝑉𝑛  plot for R/S contrasts the movements of the plot for E(R/S) and 

completes a cycle at 1.6020(n=40). This trend reverses soon and a new cycle starts at 1.8808(n=76), which continues 

roughly to 2.2787 (n=190) and ends at 2.5797(n=380). Breaks are observed at: 1.2787(19), 1.6020(40), 1.8808(76) 

and 2.5797(380). Presence of these break points clearly indicates the presence of irregular cycles in the weekly return 

series.  
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Table 6. Values of 𝑉𝑛 for (𝑅/𝑆)𝑛 and 𝐸(𝑅/𝑆)𝑛 

n Log(n) 𝑉𝑛 for (R/S)  𝑉𝑛 for E(R/S) 

10 1 0.9613 0.8381 

19 1.2788 0.9967 0.9591 

20 1.3010 1.0173 0.9670 

38 1.5798 0.9972 1.0499 

40 1.6021 1.1130 1.0554 

76 1.8808 1.0607 1.1122 

95 1.9777 1.1250 1.1277 

152 2.1818 1.2125 1.1549 

190 2.2788 1.3446 1.1657 

380 2.5798 1.3791 1.1919 

760 2.8808 1.1837 1.2102 

 

Figure 4. Plot of Values of 𝑉𝑛 for R/S & E(R/S) against 𝐿𝑜𝑔(𝑛) 

Based on identified break points in Figure 4, three intervals are constructed (presented in column 1 of Table 7), and 

Hurst exponents and their corresponding expected values are calculated using equations (5) and (6). 

Table 7. Identification of Cycles: H & E(H) ae calculated as the slopes of the least square lines between (R/S) & 

Log(n), & between E(R/S) & Log(n), respectively. The bracketed terms in H & 𝐸(𝐻) column represent the 

Standard Error values. . In P-value column, ***, ** & * represent significance at 0, 0.001, & 0.01 respectively. 

Intervals      H t 

stat 

P-Value 
Adj. R

2
 

𝐸(𝐻) t-stat

. 

p-value Adj. 

R
2
 

(19, 380) 
0.610 

(0.017) 
35 0.000*** 0.997 

0.574   

(0.007) 
79 0.000*** 1 

(19, 40) 
0.5718 

(0.078) 
7 0.018*    0.967 

0.528   

(0.002) 
397 0.000*** 1 

(76, 380) 
0.669 

(0.033) 
20 0.000*** 0.996 

0.543   

(0.004) 
153 0.000*** 1 
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For all the three intervals, H values exhibit high statistical significance, as indicated by p-values. Applying Petr’s 

significance test in the intervals (19, 40) and (76, 380), the estimated values of H are found to be 1.2 and 3.4 standard 

deviations greater than the 𝐸(𝐻) value (standard deviation is 0.0362). For these two intervals, H values represent a 

process significantly different from a random and independent process. Based on significance levels, cycles are 

discerned at n=40 and n=380 for these two intervals. These two values correspond to approximately 0.793 and 7.54 

years, respectively (considering 252 trading days in a year). The overall empirical findings suggest that the ADR 

market in India exhibits persistence and nonlinear dynamics with non-periodic cycles of 0.793 and 7.54 years 

respectively. The cycle of 7.54 years discerned from weekly data roughly matches the cycle of 7.14 years discerned 

from the daily data, and this is possibly the average cycle length. 

5. Conclusion and Recommendations 

Existence of nonlinearity and underlying deterministic processes in equity markets has been posited and tested by 

many empirical studies and theoretical frameworks. However, in Depositary Receipts markets such research studies 

are rare. This paper attempted to fill this void by applying Rescaled Range Analysis to the return series of Depositary 

Receipts market index of India, BKIN, to affirm the existence of persistence and nonlinearity. The results affirmed 

that the Indian ADR market possesses non-linear dynamics and persistence. The study also identified non-periodic 

cycles of length 0.793, 2.38 and approximately 7 years, using Daily and Weekly return series of BKIN. An average 

cycle of 7 to 8 years in the Indian equity market may be considered for comparison purpose. Detection of persistence 

or long memory and identification of irregular cycles have important implications for research in modeling prices of 

Depositary Receipts, and also for market participants for exploiting earning benefits, risk managements and policy 

framing etc. An important inference that can be made based on the results of this study is that if linear models 

applied to BKIN return series provide evidences of random behavior, such evidences should be considered carefully. 

This is because linear models can’t adequately capture the dynamics of complex deterministic underlying processes 

as exhibited by BKIN index. This study has the following limitations. Firstly, due to availability of limited data, we 

could identify only four cycles. If abundant data would have been there, we could have possibly identified more 

cycles using weekly data and possibly also conducted an analysis based on monthly data too. The later analysis 

would have further increased the robustness of our study results. Secondly, this study has only focused on the 

dynamics of ADRs issued by the Indian firms. In the future, researchers can better understand the dynamics of other 

Depositary Receipts markets by performing multi-country studies. This possibly will highlight the impact of country 

specific factors on the dynamics of DR markets.  
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Notes 

Note 1. A security market exhibits persistence or long memory if information at large lags are correlated to each 

other, and correlation between lagged variables show hyperbolic decay (Robinson, 2003). 

Note 2. Any time series process which can’t be modelled using linear ARIMA model is termed as nonlinear 

(Ammermman & Patterson, 2003).  

Note 3. Few well documented stylized facts of financial markets are: clustered volatility, positive kurtosis, low 

starting and slow-decaying autocorrelation function of squared returns and Taylor effect etc. (Sewell, 2011; 

Terasvirta & Zhao, 2011). 

Note 4. BKIN index tracks the performance of the Indian ADRs and is maintained by the Bank of New York Mellon.  

Note 5. A class of distribution for which variance does not exist or is infinite if exists. 

Note 6. The points where an existing trend changes is termed as break points, and a cycle is a region between two 

break points, where the graph resumes similar trend. 

Note 7. The standard deviation of  𝐸(𝐻) is  √1/N for sample size N & it is independent of both N & H (Peters, 

1994). For our Daily return series, total number of observations is 3600. Hence standard deviation of 𝐸(𝐻) for this 

series is √1/3600. 
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