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Abstract

The aim of this paper is to develop high-order collocation methods for pricing American strangle options. The major
difficulty in pricing American strangles is to determine the optimal exercise boundaries. Chiarella and Ziogas (2005)
derived that the optimal exercise boundaries satisfy a system of integral equations. Since the analytical solutions of the
integral equation system cannot be found, it relies on numerical methods to solve the integral equation system. In the
literature, there are no efficient and reliable numerical methods for solving the integral equation system. This paper
develops a high-order collocation method to solve the integral equation system. Numerical example is carried out to
show that the collocation methods are much more reliable and efficient.
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1. Introduction

Pricing options has a long history (see a survey paper: Broadie and Detemple (2004)). As well-known, the key to pricing
American options is to identify the optimal exercise boundary. Since the close-form of optimal exercise boundary cannot
be obtained in general, numerical methods become the necessary tools to resolve the problems. One of the numerical
methods for pricing American options is the integral equation approach. The basic idea of this approach is to derive an
integral equation or integral equation system for the optimal exercise boundaries and then to solve the integral equations
to get the approximate solutions. The integral equations can be derived by the EEP representations: American option
price is equal to the corresponding European option price plus an early exercise premium (EEP). In the history, Kim
(1990), Jacka (1991), and Carr et al. (1992) derived the EEP representations for standard American options with the
underlying asset price following a lognormal process, and Detemple and Tian (2002) provided the EEP representation
under general diffusion process with stochastic volatility and interest rate. Huang et al. (1996), Ju (1998), Detemple and
Tian (2002) studied the implementations of the EEP methods for pricing the standard American options. However their
approaches for solving the integral equations are based on low-order approximations and not fast. Recently Ma et al.
(2010) constructed a high-order collocation method on non-uniform meshes for solving the integral equation arising in
the EEP representation of American put options under lognormal process. Ma et al. (2011) extended the approach to
pricing standard American options with stochastic volatility.

In this paper, we consider the valuation of American strangle options which consist of two sides, namely call side and
put side, automatically knocking out the other side when exercising one side. Chiarella and Ziogas (2005) derived a
system of integral equations for the optimal exercise boundaries. We aim at developing collocation methods (see
Brunner (2004)) to solve the system of integral equations. Numerical examples show that the collocation methods are
three times faster than Chiarella and Ziogas’s implementations. In the history, in addition to Chiarella and Ziogas (2005),
there are other papers discussing American straddles (a special case of American strangles with one strike price) : Elliott,
Myneni and Viswanathan (1990) derived an integral equation system for the optimal exercise boundaries for American
straddle; Alobaidi and Mallier (2002) used Laplace transform to price American straddle; Boyarchenko (2006) studied
perpetual American straddle under jump-diffusion process. Detemple and Emmerling (2009) studied a similar type of
American options --- American chooser options.

The remaining parts are arranged as follows: In the next section we describe the mathematical problems; In Section 3,
we introduce the collocation methods; In Section 4, we provide numerical examples to illustrate the efficiency of our
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approach. In the final section, we give a concluding remark.
2. Mathematical problems for pricing American strangles

Assume that the price of the underlying assets follows a geometric Brownian process
dS=(r - q)Sdt+cSdW ,
where r is riskless interest rate, q dividend rate, o volatility, and W, Brownian motion. American

strangle option has two strike prices: K, (put-side strike) and K, (call-side strike), K, <K, and the
payoff
V(S,Ty=max(K, -S, 0) + max(S-K_,0). )

WhenK, =K, the American strangle is called American straddle. As shown in Figure 1, the exercise

region for American strangle has two optimal exercise boundaries, a (t) anda,(t) . Using the

framework of Black and Scholes (1973), we can derive that the value of American strangle satisfies the following partial
differential equations (PDEs)

V +(0’S’ /2)V +(r—q)SV, —rV=0, )
fora (t)<S<a,(t), with the following conditions
(1) V(S,Ty=max(K, -8, 0)+max(S-K,,0), 0<S<too.
(2) V(@,(®),0)=K, —a,(t), V(a,(t),t)=a,()-K,, t>0.

(3) lim_ V. =-1, lim__ V =1, t>0.

S—a,

Chiarella and Ziogas (2005) used Laplace transform for equation (2) to derive that
V=V(S,53, (0.2, ()= [p‘ S )+ @!a,)8, ,s)ds] + [ct S+ @@y (9).8, ,s)ds:| , (3)
where V is the price of American strangle options, p, the value of European put options with strike price K, , ¢, the value
of European call options with strike price K, , and <I)1 , (I)[2 are the cash flows. The explicit formulas are given below:
p,(S,)=K e"™N(-d, (S,,T-tK,))-Se""'N(-d, (S,.T-tK,)),
c,(S,)=S.e"""N(d, (S, T-tK,))-K,e""N(d, (S, T-tK,)),
@' (a,(s),S,,s)=rK e "N (-d, (S ,s-t;a,(s))) —qS,e "N (-d, (S,.s-t:a,(s))),

@’ (a,(s),S,,5)=qS e "N (d, (S,.s-ta,(5)))-1K,e™'N(d, (S ;st:a,(s))),
where

d (S.,uy)= ln(s‘/7)+(\r/:Q+cz/2)r |

d (S[ ,’E;'Y) =d (S‘ ,r;y) - 0\/;.
Replacing S in equation (3) by a, (1), a, (t), we derive the integral equation system for the optimal exercise boundaries:
K —a,()=V(a,(t)sa,(t).a, (), “4)

a,(t)-K, =V(a,(txa,(v.a,(). (5)
In addition the following conditions are associated to the integral equations (4), (5), see Chiarella and Ziogas (2005),

rK
a, (T)=min (—‘,KI j,
q

K
a, (T)=max (—',KZ )
q

In the following section, we will develop collocation methods to solve the integral equations (4) , (5).
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3. Collocation methods

Using the following transformation we simplify the integral equations (4), (5) and then the collocation methods are
proposed to solve the simplified forms of integral equations. To this end, lett=T —t,

a,(ty=a, (T - r)=€11 (1), a,(t)=a,(T- T)=a ,(®),
and

y,(v)=Ina, (1), y,(t)=Ina, (7).
Then integral equations (4), (5) can be written as
K1 —e” ® :\7(6)’1 (f);eh (O] ’e)’z (T)), (6)

e}’z(f) _ K2 :\N/(eh('f);eyl ® ’e)’z(f) )’ (7)
where V is defined by
\7(81 (1):9,(1),8,(v)= [f)I (61 (r)) +J‘0I (i)'I (8,(v),0, (r),v)dv} + [EI (81 (r)) %—J‘OI (i)f (6,(v),0, (‘r),v)dv} where

p.(8,(1)=K e™N(-d, (5, (1),t:K,)) =8, (1)e "N (-d, (8, (1)K, )),

¢, (3,(1)=3, (e "N (d, (3,(®tK,)) - K,e"N(d, (3,1).TK, ),
(3,(v).3,(1),v)=rK e N(-d, (3, (1),1-v;8, (v)) ) — 43, (1) ““'N(-d, (8, (x),7-v,(v))),
@2 (8,(v).8,(1),v)=q8, (1) ““N(d, (8, (1),t-v;3,(v) ) ) - 1K ,e ™" N(d, (3, (1),7-v;8,(v)) ).

Now we introduce collocation methods to solve integral equations (6) and (7) to get the optimal exercise boundaries for
the American strangle options. We first define graded meshes:

. 2
£ =T (i) . i=0,1,..L
L

and piecewise continuous polynomial spaces:
H;l (0,T]={p: p(t) e P,, t e (t, .t ],1=0,1,.. ,.L-1},
where P, denotes polynomials of degree less than three. The collocation methods are defined as:
FindY'(r), Y’ (1) e H;l such that the following equations
Kl _ eY (® :V(eY (r);eY @ ,CY (I)), (8)

ev‘(r) _ Kz :{](ev'(r) ;CY (@) ’ey'u))’ (9)

hold true at the collocation points

] . .
Gt (), T1234 0Ll

On the interval (t, .t ], polynomials Y' (1), Y’ (1) can be represented by

4 4
Y@= YL, Y= Y10, (10)
1 i1
wherel () , j=1,2,3,4; are Lagrange basis functions,
t—t
Lo=]] =
g Ly by
J |

Inserting (10) into (8) and (9) gives that

1 1 1 1 1 2 2 2 2

B (Y Y, Y YL YL Y Y LY )0, (11)
2 1 1 1 1 2 2 2 2

Fi,j (Yl] ’Yi,z ’Yi,3 ’Yi,4 ’Yi,] ’Yi,z ’Yi,3 ’Yi,4 ):O’ (12)

where Flj, Fj are given by
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Fy=e" —K V(e V"), (13)
2_ Y] YRR SUIR GG
Fi=e" -K,-V(e"“e ", 7). (14)
In (13) and (14), Yifl,Yifz ,Yig ,Yi;; Yii ,Yii ,le3 ,Yii‘ 1=0,1,...,L-1 are unknowns. Newton iteration methods will be
used to solve the system (13) and (14). Newton iteration methods require the calculations of Jacobians:
OF, OF, OF O

ay'’ ey’ ey’ oY’

ij i ij ij

oF o o oE
12 aYz’ 12 2 (kij)’

ik ik ik ik

which are given in the appendix.
4. Numerical implementations

In the example, we use collocation methods (13), (14) to find the solution of integral equation (6), (7). The result gives
the value of the optimal exercise boundaries. With the computational results, the value of American strangle options can
computed by solving the partial differential equation (2). The numerical results will be compared with the binomial tree
methods (Deng, Ma and Shan (2011)), Crank-Nicolson methods and Kim’s methods (Chiarella and Ziogas (2005)). In
this example, we set

r=0.05, =0.1, 6=0.2, K, =1, K =15, T-t=1.

Table 1 shows that the collocation methods converge to the exact solutions with five-digit accuracy. In particular, the
collocation methods have six-digit accuracy for S=0.75, 1.25 and 1.75. The computation used Matlab 7.1 on PC
computer with Pentium(R) Dual-Core CPU T4300, 2.10GHZ processor, 1.99GB memory. It took 53.875 seconds using
collocation methods to generate the early exercise boundaries, while Chialella and Ziogas (2005) took 195 seconds to
generate the early exercise boundaries. Obviously collocation methods are much faster than Chiarella and Ziogas’s
approach. Fig 2 and Fig 3 provide drawing of the computed early exercise boundaries using collocation methods. Fig 4
and Fig 5 sketch some Greeks.

5. Concluding remarks

In this paper we have developed the high-order collocation method for the valuation of American strangle options and
determination of the early exercise boundaries. The optimal exercise boundaries were resolved by solving a system of
nonlinear integral equations for the optimal using high-accuracy collocation methods. Numerical example showed that
our methods are much more efficient than that in the literature. Integral equation approaches, where the numerical
solutions of integral equations are the crucial steps, have been widely used to price American options. The adoption of
collocation methods to solving the integral equations accelerates the speed of computations. This approach will be
further investigated for pricing more complex American strangle options with stochastic volatility and interest rate in
this near future.
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Table 1. Valuation of American strangles

S Binomial | Binomial CN CN Kim Kim Collocation
4000 8000 60,000 120,000 400 800

0.75 | 0.275647 | 0.275648 | 0.275648 | 0.275648 | 0.275647 | 0.275647 0.275649
1.00 | 0.100326 | 0.100329 | 0.100322 | 0.100319 | 0.100322 | 0.100322 0.100335

1.25 | 0.038561 | 0.038560 | 0.038560 | 0.038560 | 0.038561 | 0.038561 0.038568
1.50 | 0.092335 | 0.092338 | 0.092316 | 0.092314 | 0.092341 | 0.092340 0.092348

1.75 | 0.255633 | 0.255633 | 0.255619 | 0.255619 | 0.255633 | 0.255633 0.255636

The Crank—Nicolson (CN): finite difference scheme involved four time steps per day, and involved 60,000 and 120,000
space-nodes, as indicated in the table. The numerical scheme for solving Kim's integral equations used n = 400 and 800,
respectively, as indicated in the table. The binomial tree methods (Binomial) used 4000 and 8000 steps. The numerics in
Column 2 and 3 were given by Deng, Ma and Shan (2011), Columns 4-7 by Chiarella and Ziogas (2005).

Holding region max (5 — K., 0

a. (=<5« ai{t}'i.

&

Exercizsing Exercizing region
5 5 =a(t)
a,(t) K, K. a.(t) S
Figure 1

Published by Sciedu Press 211



www.sciedu.ca/afr Accounting and Finance Research

Vol. 1, No. 1; May 2012
0.4

T
0.49

0.43

1)

0.47

o

0.46

0.45

0.44 !

0 0.1 0z 03 04 05 0.6

0.7 0og 09
T-t

Figure 2. Put-side early exercise boundary for American strangles
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Figure 3. Call-side early exercise boundary for American strangles
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Appendix 1: The formulas of Jacobians are given by
OF!

aY‘f oYt (N (d| (ev.‘J 1K, ))+N (dI (eYL ,T|,j;K2))7 1)
i

2

d‘[e""“,r,‘,:]{,] d,(ev‘]‘,r”;Kz) “
Yi—anyo| ——— = Yiman,o| =
€ +e
+

6\/2mn

‘,‘ 2 Y‘ 2

re, ; -t ;

K.e +K,e

5 Y, -4, )

! ol 2
d,(ev” e “‘]
Y-t v ———————=

+qe

W | qe
+I° cs\/27t(ri_j -v)

1 1 2
Yi Y ()
dz[e et )

r(r,; -v)-{ 3
K e

dv

2
OF;

8Y‘2 = Vet (1 -N (d] (ey'i K, )) -N (dI (ey'i 15K, )))
i
+IO!"' [qey'i'q(["’v' (l -N (d1 (eY’i T el ™ )) -N (d] (ey‘l’ T el o )))}dv

d, [ey'%' T ,K,] ‘ dl(ev'%' T ,Kl) !
Ty Ty
K. +K,e

- @ 7/ y’i —qr;;- f
+e

G\/ZT[‘E”.
NN

K e

2 1 2
d, (CY” v “"J}

+1K e

0\/2"(% -v)

Yi-q(t,v)-| ————=

2 2

2 ol 2
dl(ev"’ ve” ‘”J
Y -q( v ———————=

qe +qe
- dv
G\/ZTC(‘EU -v)
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OF, OF; oF, OF, oF; OF,
—4 = 2 =0, o=, Y=, No=0, Y.
oY oY, oYy, oY, oY, oY,

Proof: (The quoted equation numbers are independent of those for the main sections.)
Step 1: Calculate the following partial derivatives:

AV (3, (1),5, (7)., (1)) _®B.6,) af(:<i>l(82(v),81(r),V)dv

33, (1) 09, (1) 85, (1) .
L6, 3 PIGm3 @y
681 (T) 661 (T)
p.00,(1) _ Ke o
23, (1) 3, (t)o/ 2 .

e 2
+e'qTN d (3. (t ,T;K e - 7
( 1( 1() 1)) G\/%
_qr—(MJZ -n—(dZ(L)’KKZ)T
L0 _ g e 2 K,e 2
————==¢"N(d, (9,(7),;;K, )+ ~ N
09, (1) 1( 1 z) oW 2nt 81(1?)(5\/%

5 . 2
-r(r-v)—(w]

of, ®L3, 3 @y | e

09, (1) 0 3, (t)o/ 2n(T-V)

_ qe-q(r-V)

-q(t-v)— w)
-q(t-v, qe

+qe q( )N(d ) (’[)"[.V;B (V) )+ v

(8, ) Yo

ajr (i)2 (63 (V),S] (v),v)dv .
0 1 — e N, (8, (1),5-v;5. (v
861(‘5) '[0 I:q ( 1( 1( ) 3( )))
_q(r—v)—[w)z _r(r_\,),(w)z (5)

+ 9° 3 K e "

04/ 2m(T-V) 3, (1)o+/27(T-V)

V3, (0.8,(D),8,(1)
26, (1) )

e (N(d, (8,(1),u:K, ))*N(d, (3,(1).1K, ) 1)

2 +e 2

o+ 2wt

(4(8,03K,) 4 (3, <r>.t:1<z)]’

Ke [ ? J +Kze-m( ?

9, (r)cx/%
[ [ae ™™ (N, (8, (0);7-v:8, (v)) N, (8, (1), 7-v38,(1)) ~1) Jdv

(&

J’_
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d,(3, (@)tvid, (v))]Z

-q(r—V)—( 2

qe

+qe 2

<q(t=v) -( 4(3, M3y, v)

)]Z

T
‘)
0

1

-1(T-v) —( 5
K e

04/ 27(1-V)

d, (8, (1)1-v;d, (v))

ol
+rK e

d, (8, ();7-v:3, (v)))2

dv

Step 2: We study the case k=j.
oF.

ij =i

3, (1)o/2(T-V)

~ Yi]» Y] Y:
+6V(e ie (r)’e (r))

Y.

ij
We need to calculate the second term on

~ 1 . 2 ~ 1 2
av(eY,.J ;GY [©) ,eY (r)) B 5V(51(‘rid.);ey (T),eY (r))

oY!

Lj
the right-hand side of (7):

v

de ™

ij

il

T,

0

1

35, (t,)

1
Yl L.
3 (t; i )=e M Y

ij

1 Y'Y
6(131 (6 K ERAY aev‘ )
i

oY!

Y')
de i

(6)

0

®)

The first term on the right-hand side of (8) can be given directly by formula (6). Now we calculate the second term.

Since

Y (v)=2 Y1,
k=1

we have

(v), VE [, ] whenv e [0, T,),

0

J.T._J 0! (" ,eY"" V)dv de”
. v
de¥' ™ aY;,l,.

1 1 2 | | 2
dz(em e vie" «\)) d,(em E vie¥ (v))
Ay | — R

2

K e —qe

oY' (v
oY.

7

ij

dv.

J“u
T

0\/ 2m(t,;-v)

We can see that (9) =~ O (Ar) , where At =1, —,. Similarly to the calculation of (9), we can obtain

Obviously, (10)~0O (A’E) , where At

216

¥ Y Y.
6(I>T (e e ’,v) e’ ®

oy dv

Y )
oe’ " r

1 2
uz[cy” v ‘”]
=r(t;;-v)| -

K ,e —qe

> y N
d,(c g vie “")
Y. g v —————2
574 5

G\/ 2n(t,;-v)

=1,,—7,. Now we calculate

2 oo V0 Y@
OF; _eﬁ_aV(e e Ve )

oY’ oY’

ij ij

1(v)
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with
a\"/(eY.; QCYI(T)aeYzm) _ av(Sl(Ti,j);eY Y (T)) de™
2 - ’ 2
N, ) ‘5] (5" 4,
e (12)
. 8<D2‘ (eY ™ e ,v) PR
+_[ ’ - . dv.

Y ) 2
0 de oY
In the same manner, the first term in the right-hand side of (12) can be calculated by formula (6). Using the same method
for calculation of (9), we can get
a&)jd (eYZ(v) ’eY.; ,V) aeYz »

T

o — dv
0 (v
Oe oY,
d [e\ﬁ . RS j q [e\'ﬁ iy IR )
(1 V) 5 Y,‘ZJ—Q(T.‘I v)— -5 (13)
| K e —qe
= Jr 2 1) (V) dV
o,/2n(t,;-v)
Again (13) = O(Ar), whereAt=1,, —1,.
Using the same methods, we can obtain that
oF r P (eY 0 &% ,v) e
1) :J‘ i Tij . v
! 0 Y'w) !
oY, oe" " oY,
dz[eY‘% ey -V;CYI (v)] ’ dl(e“ﬁ J”_v;ev'mJ ’
(155 V)| - Y,i—q(f,d-\’)— -, (14)
4| -tK e +qe
= J ! d 1 (V) dv
K o,/2n(t,;-v)

which is proportional to O (A’E) ,whereAt=1, —1,.
Step 3: We study the casek # j.

1 ~1 v! Y.l 1
OF, w| 0D (e “ev) oe' "
W J. . dv

! 0 Y' ) !
an k oe aYi‘k

d, [ey‘l’\‘ RS e ‘V'] d, [eY‘I“ RS ey ’]
_r(‘cLJ -v)—| 2 YIIJ —q(1:LJ -v)— f (15)
o | 1K e —qe
=I an (v) dv,

K 0,/27(T,;-V)
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From the previous computational results,

whereAt=1,_ —7T..
i+l i

218

de® oY:
d:(e\"l’J T -v;eYZ(“)) i d (ey'l’J T -v:eYZ“"J ’
(T V)| f ;AT -v)— 2 (16)
K e —qe
1, (v) v,
o,/2n(t,;-v) *
0! eV " g V) e’
. — (dv
L oe aYi,k
d{‘“t vie¥ d[”‘r veY”]2
ATV Yi; —q(‘rI| V)
2 2 a7)
K.e —qe
1, (v) {dv,
o,/2n(t,;-v) .
062 2V e v) aeY ©
e’
dz[c i £ -v;cv (V d,[cYﬁi T -v;cvz(V j i
-r(‘rLj -v)—| f Y;j‘CI(TLj -v)— p (18)
K e —qe
2 a 1, (v) dv.
cs\/27t(ri’j -v) ’
we can see that (15)---(18) are all proportional to O(Ar),
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