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Abstract 
Prediction of nonlinear and nonstationary time series datasets can be achieved by using support vector regression. To 
improve the accuracy, we propose a new model ‘averaging intrinsic mode function’ which is a derivative of empirical 
mode decomposition to filter datasets of an exchange rate, followed by using a new algorithm of multiclass Support Vector 
Regression (SVR) for prediction. Simulation results show that the proposed model significantly improves prediction 
yields of the exchange rates, compared to simulation of SVR model without filtering and multiclass. 
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1 Introduction 
In terms of the classification and prediction of nonlinear and nonstationary time series data such as exchange rates, few 
models are migrated from different origins, including i) the Empirical Mode Decomposition (EMD) de-noising model, 
which emerges from the signal processing area and ii) the Support Vector Machine (SVM) model, which originates from 
the statistical learning theory. The following sections provide a background on EMD and Support Vector Regression 
(SVR). 

1.1 Background on the EMD algorithm 
The analysis of nonlinear and nonstationary data becomes relatively important in many applications such as bioinfor- 
matics [1, 2], signal processing [3, 4] geophysics [5, 6]; and finance [7, 8]. In 1996, Norden Huang et al, cited by Huang and  
Okine [4], invented a posteriori algorithm with adaptive control over a separate data structure. The invention was later 
called the Hilbert-Huang transform (HHT) [3]. This new transform enhances the limitation of Hilbert transform, which is 
only suitable for a narrow band-passed signal. The key part of the HHT algorithm is the EMD, in which any complicated 
dataset can be decomposed into a finite and often small number of Intrinsic Mode Functions (IMF) that admit a well- 
behaved Hilbert transform. Since the decomposition is based on the local characteristic time scale of the data, it is 
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applicable to nonlinear and nonstationary processes [4]. In signal processing, high frequency noise from input data may be 
considered as different simple intrinsic mode oscillations [3].  

The EMD uses a sifting process and curve spline technique to decompose a signal into a new oscillatory signal, intrinsic 
mode function (IMF). After a number of iterations of decomposition, the characteristics of the IMF meet the two 
conditions: i) in the entire dataset, the number of extrema (maxima plus minima) and the number of zero crossings must 
either be equal to or differ by at most one, and ii) at any point, the mean value of the envelope defined by the local maxima 
and the envelope defined by the local minima are zero [3]. The EMD algorithm, which is fundamental to the HHT, can 
reduce a high frequency noise from input data such as noise from retail trades in the stock exchange. 

1.2 Background on the multiclass SVR model 
In 1936, Fisher [9] invented the first algorithm for pattern recognition. A few decades later, Vapnik and Lerner [10] 
introduced the Generalized Portrait algorithm which has been the template for Support Vector Machine (SVM). Later in 
1973, Duda, Richard, and Hart [11] discussed large margin hyperplanes in the input space. At the Conference on Learning 
Theory (COLT) in 1992, Boser, Guyon and Vapnik [12] introduced SVMs by combining the Generalized Portrait algorithm 
comprising a large margin hyperplane and kernel functions. Nowadays, SVM has empirically shown a better performance 
than other machine learning methods, including artificial neural networks (ANN). This is because of the employment of 
structural risk minimisation, in which they can avoid multiple local minima. Moreover, the computational complexity of 
SVM does not depend on the dimensionality of the input space. This is what makes an SVM so flexible when selecting 
large controlling parameters. Therefore, the SVM model is suitable for handling datasets that are complex in dimen- 
sionality such as exchange rates [13]. 

In the regression analysis, the SVM model was first compared against the benchmark of time series prediction tests with 
the Boston housing problem, ANN, and (using artificial data) the PET operator inversion problem [14]. Technically, SVMs 
consist of a set of related supervised learning methods. The algorithm sets a hyperplane characterising a functional margin 
that holds all possible data points situated in a finite dimensional nonlinear space. A kernel function k(x, x׳), defines the 
cross-products that have been separated by the hyperplane. Each data point demonstrates its vector potential depending on 
its distance from the hyperplane. In the peak computational mode, the SVM model may have difficulty in finding the best- 
fit hyperplane. As a result it, can present overflow memory errors [14-16]. 

In the current methodologies in adopting SVMs to classification problems, Abe [17] reported that there are three main 
approaches, namely; i) multiclass ranking SVMs – one SVM decision function attempts to classify all classes, ii) one- 
against-all classification, in which is introduced by Vapnik [18] – there is one binary SVM for each class, and iii) pairwise 
classification – there is one binary SVM for each pair of class. 

1.3 Background on the mean reversion  
There are many definitions of mean reversion; in general, it is an asset model that shows that the asset prices tend to fall 
(rise) after hitting a maximum (minimum). The process of mean reversion is a log-normal diffusion, but with the variance 
not growing proportionally to the time interval. The variance grows in the beginning, and after sometime, stabilizes at a 
certain value. The most basic mean-reversion model is the arithmetic) [19], in which it is a stochastic process describing the 
velocity of a massive Brownian particle under the influence of friction. The process is, however, stationary, Gaussian, and 
Markovian. In another theme, it is an autoregression process in which the value drifts to its mean in the long run. 

Currently, there are two outstanding methodologies used for measuring mean reversion, namely; i) variance ratio and  
ii) regression. Cochrane [20] used the variance ratio to measure the relative importance of the random walk component. 
Poterba and Summers [21] and Lo and Mackinlay [22] compared the relative variability of returns over different time 
horizons with the variance ratio in the discrete time series. Bali and Demirtas [23] confirmed that those reports showed that, 
in the ‘high variance’ scenario, mean reversion causes a negative drift, and vice versa. With regard to using regression 
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tests, Fama and French [24] determined a correlation in currency asset returns, and Chen and Jeon [25] measured its mean 
reversion behaviour and found that the returns were positively autocorrelated over shorter periods but negatively 
autocorrelated over longer periods.  

1.4 Objectives 
We propose a new class of prediction model combining with an algorithm averaging intrinsic mode function, termed 
‘aIMF’, and a new multiclass SVR model using ‘mean reversion and CV’ technique which is explained in Section 3.3. The 
aIMF serves to filter datasets of an exchange rate which characterised as nonlinear nonstationary time series. Design of the 
aIMF filter is a new algorithm by Premanode and Toumazou [26] using derivation of EMD in conjunction with a new 
algorithm using coefficient of variance (CV) to achieve multi kernel parameters under SVR model. It is expected that the 
proposed model will improve prediction yields of the exchange rates significantly. 

Section 2 is a collection of exchange rates and other relevant datasets, in addition to, a test to verify nonlinear and 
nonstationary characteristics of the dataset. Following to this, we introduce mathematical considerations of the aIMF 
algorithm and the multiclass SVR model. Section 3 consists of simulations and results of the proposed model, including 
their measurements and robust test of the proposed model. Finally, Section 4 concludes this paper and summarises the 
discussion. 

2 Methods 
In Section 2.1, we first collect daily trading data of EUR-USD, later called EUR-USD, and other relevant data from 
Bloomberg. In Section 2.1, since each time span of data may not be fully matched to the same day, we then adjust all the 
datasets by using linear interpolation. The next step is to test their relations with Granger causality test. For a test of 
nonlinear nonstationary time series, we introduce normality and unit root tests. The datasets after testing will be injected as 
input to EMD process. 

 

Figure 1. Block diagram of the proposed aIMF algorithm and multiclass SVR model 

The EMD algorithm commences by using a sifting technique to decompose the original signal/datasets of the EUR-USD, 
as demonstrated in Figure 1 and detailed in Section 2.2. The output from iteration of EMD process is called intermediate 
mode frequency (IMF). The new algorithm starts by averaging every IMF and then subtracts the averaged IMF from the 
original datasets. The averaged IMF is later found to be normally distributed, similar to the characteristics of white 
Gaussian noise. Inevitably, it is safe to assume that removing the averaged IMF can reduce any unwanted signals i.e. white 
Gaussian noise. Finally, a new digital filter is created. Following, we simulate SVR using multiclass technique, which 
employs reversion of coefficient of variance (CV) partitioning and classifying the datasets that have been filtered from the 
aIMF algorithm.  
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2.1 Data preparation  
Foreign exchange (FX) data are numbers with two to six decimal points coded in ASCII, and are nonlinear and 
nonstationary with exogenous influence. Normally, official FX data cannot be obtained publicly, but they are available at 
financial institutions and media companies, such as Bloomberg and Olsen Associates. The datasets used in this paper are 
EUR-USD, trade exchange rates, commodity indices, major foreign exchange rates, and other macroeconomic data such 
as interest rates and government bonds, and so on. In regression analysis, the SVR model requires both dependent and 
independent variables [26].  

We collected day-to-day trading data from Bloomberg, excluding weekends and holidays from January 2, 2001 to June 1, 
2012, totalling 2322 sets. The data first had different time-spanned bases since some datasets changed every minute, while 
others altered on an hourly or daily basis. We then adjusted those deviations by linear interpolation, converting them to 
daily deviation. This was done to ensure that the time span of all 65 datasets which are fully matched to the same day, 
without any irregularities. The datasets collected are divided to four groups, namely: i) Foreign exchanges (FOREX); 
EUR-USD, EUR-GBP, EUR-CNY, EUR-JPY, EUR-RUB, EUR-AUD and EUR-CHF, ii) Money market interest rate 
(MMIR); 1-month, 3-month, 6-month and 12-month EURIBOR, 1-month, 3-month, 6-month and 12-month LIBOR, 
EONIA and Federal fund rate; iii) Government bonds; 2-year, 5-year, 10-year and 30-year US Treasuries, 1-year, 3-year, 
5-year and 10-year ECB, 5-year, 10-year, 15-year and 20-year  UK gilts, 1-year, 5-year, 10-year, 15-year and 20-year 
Japanese, 1-year, 5-year and 10-year German, 1-year, 5-year and 10-year French, 1-year 5-year and 10-year Italian, 2-year, 
5-year and 10-year Swiss,  1-year, 5-year and 10-year Australian; iii) Indices; Dow Jones, Euro50, NASDAQ, US 
S&P500, Nikkei225,  FTSE100,  Dax and CAC; and iv) commodities;   platinum, nickel, zinc, silver, gold, tin, cooper, and 
cacao. Table 1 Normality test for EUR-USD datasets. 

Table 1. Normality test for EUR-USD datasets 

Methods Statistics p-value 

Anderson-Darling  A = 36.095 < 2.2e-16 

Cramer-von Mises W = 5.6641 7.37e-10 

Kolmogorov-Smirnov  D = 0.1029 < 2.2e-16 

Pearson chi-square normality P = 1128.76 < 2.2e-16 

Table 2. Independent variables that are correlated with EUR-USD 

Independent variables F-Statistic  p-value 

FOREX   
        EUR-CNY 2.45847 0.0001 
        EUR-GBP 2.30192 0.0003 
        EUR-JPY 2.19065 0.0007 
        EUR-RUB 1.90520 0.0051 

 EUR-CHF (Swiss) 1.83181 0.0082 

Government bonds   
15-year Japanese 1.59032 0.0344 
20-year Japanese 1.79611 0.0102 
1-year Australian 1.96054 0.0035 
10-year Australian 1.75448 0.0132 
20-year UK gilts 1.55266 0.0424 

Commodities   
silver 2.39814 0.0002 
gold 1.71102 0.0171 

For a definition in regression analysis, we assign the EUR-USD as ‘dependent variables’, and the other data as 
‘independent variables’. The next step aims to test nonlinear and nonstationary attributes of dependent variables by using 
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Normality test. The testing results shown in Table 1 indicate that dependent variables are nonlinear and nonstationary. 
Finally in Table 2, we test intra and inter correlations of dependent variables and independent variables by using Granger 
causality test, and found that in the level of confidence at 95%, only 12 independent variables from the three groups are 
correlated with dependent variables. Those group details are: i) FOREX; EUR-CNY, EUR-GBP, EUR-JPY, EUR-RUB 
and EUR-CHF (Swiss), ii) Government bonds; 10-year and 20-year Japanese, 1-year and 10-year Australian, and 20-year 
UK gilts, and iii) commodities; silver and gold.  

2.2 EMD algorithm 
In terms of signal processing, the EMD algorithm is seen as an a posteriori method based on adaptive characteristic scale 
separation. This process is useful when the input signal oscillation is nonlinear and/or nonstationary. The EMD is not a 
sampling with a fixed time slot in the time series; its local mean of a signal is defined through enveloping without resorting 
to any time scale. In general, EMD employs a sifting process and cubic spline technique for smoothing and filtering a 
signal [4]. The cubic splining technique performs as a two-sided filter, improving confident interval of the dataset 
distribution. The generic EMD algorithm is followed by the following steps [3] and shown from (1) to (8). The new add-on 
procedure after (8) until (9) is new algorithm set that generates a filtered dataset.  

A nonlinear and nonstationary time series dataset is denoted as Xi(t).The IMF, ci(t) is defined under the conditions [5] that 
(i) the numbers of extrema (maxima plus minima) and zero crossings in the entire data series must either be equal or differ 
by at most one, and (ii) at any point, the mean value of the envelope defined by the local maxima and that defined by the 
local minima, must be zero; and these conditions are provided by 

 
( ) ( ) ( ), ( ) ( )

0
2( ) ( ) ( ) 1

nU t nL t nZ t U t L ti i i i i
nU t nL t nZ ti i i

               

+ = +
= =

+ = ±
 (1) 

 
where nUi(t), nLi(t), and nZi(t), are the numbers of maxima (upper peak), minima (lower peak) and zero crossing, 
respectively. The aIMF algorithm can be presented as follows: 

Steps 1: Spline Xi(t) by interrelating with Ui(t) and Li(t) which is given by 
 

{ }f U (t),X (t) =U (t),U (t),U (t),....,U (t)int i i nint1int 2int 3int  
                                                     (2)

{ }L (t),X (t) =L (t),L (t),L (t),....,L (t)i i 1int 2int 3int 1int                                                          (3)
 

The algorithm used for a parabolic interpolation can be described as follows: 

i) When constructing the upper and lower envelopes, we calculate the parabola coefficients of 

2aX bX c+ +  using ( 1), ( ), ( 1)X k X k X k− + . 

ii) If the second-degree coefficient, a, equals zero, ( )X k is certainly not an extremum; thus the sliding 

window moves further on one discrete of X(k). 
iii) If the first-degree coefficient, b, equals zero, X(k) is an extremum, either a maximum or  minimum 

depending on the sign. We then calculate the top of this parabola by introducing
2

bttop a
−= . 

iv) Repeat ii) and iii) and stop after executing X(k+n). 
 

Finally, we explored the upper maxima and lower minima under (2) and (3).   

Step 2: Average the maxima and minima in order of the time series, which is represented as 
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U +L U +L U +L U +L1int 1int 2int 2int 3int 3int nint nintm (t)= , , ,...,i 2 2 2 2

 (4) 

  
Step 3: Subtracting the original datasets Xi(t) 

from the average of the local extrema (maxima and minima) mi(t) In order of 
the time series, the new decomposed signal is  

 
( ) ( ) ( )h t X t m ti i i= − .

                                                                  
(5) 

 

Step 4: Repeat steps (i) through (iii) k times until h1k(t) equals c1(t). Referring to (5) where h (t)-m =h (t)
1(k-1) 1k 1k

, we 

designate c1(t) as the first IMF. 
 
Step 5: Find other IMFs by calculating the first residual, given by 
 

R (t)= x (t)-c (t).1 1 1                                                                     (6) 

 

We derive c (t),c (t),c (t),...,c (t)n42 3 so that R1(t) is treated as a new dataset in the next loop; and complete obtaining 

Cn(t).This procedure is represented by 
 

R (t)=R (t)-c (t)2 1 2                                                                         (7) 

            …………. 

R (t)=R (t)-c (t)n n n-1 .                                                                  (8)
 

 2.3 Proposed aIMF algorithm 
The EMD process in (8) stops when the residual Rn(t) becomes either over-distorted or mono-component from which no 
further IMF can be decomposed. Characteristics of all IMFs decomposed cn(t)appear to be different, detail in Figure 2. We 
average out all the IMFs decomposed cn(t), and termed to ca(t), in which represents by 

n

i
i=1

a

c (t)
c (t)=

n


.                   (9) 

We measured distribution of the averaged IMF ca(t) using Normality test and found to be normally distributed, in which 
details are demonstrated in Figure 2 and Table 3. Having analysed, we discovered in Section 3.2 that characteristics of the 
averaged IMF, ca(t) similar to the properties of white Gaussian noise which is normally distributed,. Therefore, it is safe to 
assume that removing ca(t) inevitably reduces white Gaussian noise. Followed this, we subtract the original datasets Xn(t) 
with ca(t), given by  

n n a
Y (t)= X (t)-c (t)                                                                         (10) 

where Yn(t) is a function of the aIMF algorithm. 
 

On conclusion, we create a now algorithm that filter and smooth nonlinear and nonstationary time series datasets whereas 
details of simulations of the EMD process and the aIMF algorithm are demonstrated in Section 3.1 and 3.2. 

2.4 Proposed data classification using mean reversion and CV 
We introduce a new technique for the multiclass SVR model using a mean reversion with coefficient of variance (CV) to 
partition time horizon (span) of the datasets that have been decomposed by the aIMF algorithm. As a typical curve of 
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exchange rates tends to shift towards the mean, the point being reversed can be used to determine changes in its directions 
i.e. from up to down, and vice versa. At the reversed point, the datasets are partitioned.  Since the standard deviations of a 
nonstationary dataset are not the same, we measure datasets between the reversed points and input them to the SVR model 
as per detail in Section 3.3. The procedure using mean reversion with CV is presented as follows: 

i) Compute the mean µn(t) of random variables Xn(t). 

ii)    Compute the variance Vn(t) of Xn(t).  

iii) By normalising each Vn(t) through µn(t) we obtain  
( )
( )

n

n

V t

tμ
 

iv) In an upward scenario where 1 2V (t)<V (t),...,n,or a downward where  

a. if 
V (t) V (t)2 1<μ (t) μ (t)2 1

or
( ) ( )2 1>
( ) ( )2 1

V t V t
t tμ μ , mark the intercept point on the x-axis and denote it as M1, the value 

is Xrn(t), where r = 1,2,…,c. Here c is last class generated by CV;  or 

b. if
V (t) V (t)nn-1 =
m (t) m (t)nn-1

, do not  the intercept point on the x-axis.  

v) Repeat iv) and stop when 
( )
( )

n

n

V t

tμ
becomes the last data point (n); next, plot M ,...,Mn2 and draw the line or 

curve between them.  
vi) Compute CV of the data Xrn(t) in blocks of  M1, M2,…, Mn, where n is the number of  partitions/blocks.  

The original datasets Xn(t) have been classified into different classes of CV. The next step indicated in Section 3.3 aims to 
individually simulate Xn(t) that are in every CV’s group with the SVR model. As a result, we create multiple kernel 
parameters that are suitable for every class of CV.   

2.5 Proposed multiclass SVR model 
This section first introduces a generic SVM model and later optimises multiple kernel parameters following the logic in 
Section 2.4. In terms of prediction, variables Premanode and Toumazou (2012) used the SVR model which is  a set of 

training data can be defined as where denotes the input space of the sample, and 

  for i=1,…,l where l corresponds to the size of the training dataset. The idea of the SVM problem is to determine 

a function that can approximate future values ; and the generic SVM estimating function is given by  

                                                             
(11)  

where , , and denotes a non-linear transformation from  to a high dimensional space. In (11), the 

dot product can be replaced with a kernel function. This function enables the dot product to be performed in the 
high-dimensional feature space using low-dimensional space data input independently from the transformation . 
However, the kernel functions must satisfy Mercer’s condition that corresponds to the inner product of feature space. We 
introduce the Laplacian kernel function is the best kernel function which is given by 

( ) ( ), expk x x x xσ′ ′= − − .                                                                  (12) 

By substituting (11) with the kernel function (12), and the multiclass SVM with, for an example, the Laplacian function is 
obtained as   

( ) ( )f , ,T
j j jx w w k x x b′= +                                                                 (13) 

1 1{( , ),...., ( , )},x y x y 
n

ix R⊂

iy R⊂

iy

( ) ( ( ))iy f x w x b= = ⋅Φ +

b R⊂ nw R⊂ Φ nR

Φ



www.sciedu.ca/air                                                                                                         Artificial Intelligence Research, 2013, Vol. 2, No. 2 

                                        ISSN 1927-6974   E-ISSN 1927-6982 54

where j is the classes derived by block of the mean reversion in Section 2.4.  

To solve the (11), we must find the value of  and  such that values of can be determined by minimising the 
regression risk. Scholkopf and Smola [27] introduced the SVR equation, and is given as 

                                                        

(14) 

where is a cost function, and C is a constant. In (14), the constant C determines the penalties of estimation errors. A 

large value of indicates a more error free equation, whereas a small value indicates a high degree of error. In the 
simulation, the value of C value is optimised by a set of programming instructions.  

The vector w can be written in terms of data points using the Lagrange multipliers as follows 

                                                                     

(15)  

then, substitute (14) into (11), the generic equation can be rewritten as 

 

(16) 

In (14) the cost function can be substituted by -insensitive loss functions which is 

                   

(17)

 

then, the regression risk in (13) and the -insensitive loss function (17) shall be minimised to  

 

(18) 

subject to 

   

Referring to (18), the Lagrange multiplier and represent a solution to the quadratic problem. Simulating the SVR 

model, we use the Lagrange multipliers in (17) that is in the  state; because being in the other stage, 

simulation results will be biased. To continue solving variable b, we thus define (15) and (16) to  

                              

(19) 

and 

   

(20) 

where 
 
and 

 
are slack variables used to measure errors outside the -tube. Since the Lagrange multipliers

, and for the variable  can be computed as follows 
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3 Simulations and results 
This section discusses the simulation works and results of a combined mode consisting of the aIMF algorithm and the 
multiclass SVR model. The simulations in Section 3.1 and 3.2 are executed by EMD decomposition introduced by Kim 
and Oh [28] respectively; and the results are demonstrated in Figure 2 and Figure 3. We introduce out-of-sample prediction 
with ratios between training and test data at 30:70, 50:50, and 70:30; and later found that the ratio of 70:30 performed the 
best. This serves to imply that 30% of original datasets will be left for comparing with the results from proposed model, 
aIMF and multiclass SVR. 

3.1 Simulations of EMD  
To decompose the EMD process, the original datasets in Section 2.1 are simulated with the R-Programming introduced by 
Kim and Oh, 2009 [28], followed by the steps in Section 2.2. The process terminates once the number of extrema and zero 
crossings are equal to or differ by at most one inasmuch as the mean of each local IMF is zero. In this particular case, the 
last IMF is found to be the 8th IMF since the 9th IMF becomes mono-component; therefore, it is not useful to decompose 
the EMD further [3]. For ease in presentation, Figure 2 (a) to (e) shows only five samples out of ten from the EMD process. 

 

(a) (b) 

 

(c) (d) 

(e) 

Figure 2. For ease in presentation, graphs (a) to (e) show our plots of IMF1, IMF3, IMF5, IMF7 and IMF8, respectively 
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3.2 Simulation of the aIMF algorithm 
Following to Section 3.1, we test normally distributed characteristics of all of the IMFs including the averaged IMF, ca(t)  
with the Anderson-Darling, Kolmogorov-Smirnov, and Pearson chi-squared methods. From the results indicated in Table 
3, we noticed that the averaged IMF8 represented the highest degree of normal distribution, given a p-value of more than 
0.05 whereas the second highest one was IMF7 and so on. Therefore, we reject null hypothesis that all IMFs are not 
normally distributed. 

Table 3. Normality test of all IMFs decomposed and averaged IMF 

IMF no. Anderson-Darling Kolmogorov-Smirnov Pearson chi-square 

1 < 2.2e-16 1.543e-10 < 2.2e-16 
2 < 2.2e-16 1.925e-15 1.997e-09 
3 < 2.2e-16 1.28e-08 1.824e-08 
4 < 2.2e-16 < 2.2e-16 < 2.2e-16 
5 < 2.2e-16 3.616e-13 < 2.2e-16 
6 4.737e-05 0.006598 < 2.2e-16 
7 3.288e-14 8.593e-09 < 2.2e-16 
8 0.0593 0.0656 0.05808 
ca(t)

1 0.6875 0.6020 0.68391 

Note. 1=averaged IMF 

The next step is to obtain the aIMF values from (10), and later compare it with test it the original datasets. The results 
demonstrated in Figure 3 indicated the upward and downward directions of those two graphs which are fully synchronised. 
For ease in presentation, we show a graph, in Figure 3, plotting only 50 samples of the results from the aIMF algorithm, 
compared to the original datasets of EUR-USD. 

 

Figure 3. Graph of simulation results of the aIMF algorithm compared with the graph of original datasets. The x-axis 
represents 50 samples of the exchange rates the y-axis represents EUR-USD. 

We verify the results generated from the aIMF algorithm using Normality test, namely: Anderson-Darling, Cramer-von 
Mises, Kolmogorov-Smirnov and Pearson chi-square normality methods, detail in Table 4. 

Table 4. Normality test of the aIMF algorithm 

Methods Test statistic p-value 

Anderson-Darling  A = 36.0954 < 2.2e-16 
Cramer-von Mises W = 5.66410  7.4e-10 
Kolmogorov-Smirnov  D = 0.10290 < 2.2e-16 
Pearson chi-square normality P= 1128.761 < 2.2e-16 
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3.3 Simulation of SVR with multiclass with mean reversion and CV 
technique 
 In this section, we compute CV of the Original datasets and the filtered dataset using the aIMF algorithm with the data 
points are between two reversed points (up and down), and then classify them manually into groups. For this eample, there 
are six groups out of 48 blocks of the datasets reversed in time series, as detail shown in Table 5. The datasets in every 
block are then simulated by the SVR model which automatically optimises parameters and distribution of kernel functions. 
As the results in each block, we select the best kernel functions and parameters from which different parameters and 
distributions of the kernel functions being used in the simulations. Apparently, the input datasets to the SVR simulation 
are: i) original datasets, ii) the filtered datasets by the aIMF algorithm in Section 3.2, and iii) the 12 independent variables 
from Section 2.1. In order to fit the kernel functions and parameters, we simulate the SVR model using R-programming [29]. 

Next, we re-introduce the SVR model to perform a simulation of test data, in which input datasets are i) 30% of the 
impendent variables, and ii) kernel parameters generated from the SVR model in the training data stage. Finally, we 
created two new datasets that is a prediction result of the EUR-USD –one is the Original datasets and the other is the 
filtered datasets using the aIMF algorithm. 

3.4 Performance measurements of the aIMF and multiclass SVR model  
Considering a prediction of the EUR-USD, we introduce cross validation technique to optimise the ratios of training and 
test data which are 30:70, 50:50, and 70:30. Table 5 indicates that the ratio of 70:30 presented the best result. As a result 
from Section 3.3, the training data (70%) of new aIMF blocks of datasets, which have been computed by mean reversion 
and CV technique, are injected into the SVR model one by one. For each block, we simulate it with different sets of the 
kernel functions, namely; Radial, Polynomial, Linear, Laplacian, Hyperbolic, Bessel, and ANOVA. We have found that in 
each CV class, the kernel parameters and functions used in the SVR model are different. Next, we select the best 
performance of the parameters and distributions from each block and rearrange them into a new dataset in time series. The 
different parameters and numbers of CV groups are demonstrated in Table 5. Having simulated the multiclass SVR model, 
we found that the Laplacian kernel function performed outstandingly, compared to the other kernel functions. 

Table 5. Details of parameters of CV, numbers of blocks per CV class and its corresponding to the Laplacian kernel 
function 

Class Blocks    CV Parameter of Laplacian kernel function 

1 5 1.022778  

2 7 0.025920  

3 5 0.020776  

4 17 0.053612  

5 5 0.018410  

6 6 1.012593  

For a performance verification of the proposed model, aIMF and multiclass SVR by comparing to the test data (30% of the 
original datasets of EUR-USD exchange rates) with datasets generated in the following scenarios: 

i) The generic SVR model simulating the EUR–USD exchange rates (dependent variables) and 12 independent 
variables from Table 2 without multiclass algorithm and the aIMF algorithm; called ‘SVR only’ 

ii) The generic SVR model simulating the EUR–USD exchange rates ( dependent variables) and 12 independent 
variables from Table 2 with the aIMF algorithm, but without a multiclass algorithm; called ‘aIMF and SVR’ 

( ) ( ), exp 0.09112303256Tf x w w x x b′= − − +

( ) ( ), exp 0.10402077809Tf x w w x x b′= − − +

( ) ( ), exp 0.09951566635Tf x w w x x b′= − − +

( ) ( ), exp 0.16360524402Tf x w w x x b′= − − +

( ) ( ), exp 0.83084376701Tf x w w x x b′= − − +

( ) ( ), exp 0.28321301519Tf x w w x x b′= − − +
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iii) The multiclass SVR model simulating the EUR–USD exchange rates, (dependent variables) and 12 independent 
variables from Table 2 without the aIMF algorithm, but the multiclass SVR still remained; called ‘multiclass 
SVR’. 

The prediction results of the three scenarios compared with the plots of the test data are displayed in Figure 4 using 
classification or ‘accuracy test’, which is used to compare up and down movements of the original datasets and datasets 
generated from the model. It is confirmed that our proposed aIMF and multiclass SVR model be outstandingly performed 
among others. For an ease of presentation we plotted 30 data points out of the test data.   

 

Figure 4. For ease of presentation we plotted 50 data points out of the test data. Graph of simulation results of the aIMF 
and multiclass SVR model compared with the graphs of original datasets, SVR only, aIMF and SVR, and multiclass SVR.  

With respect to measure prediction performance of the proposed aIMF and multiclass SVR, we introduce loss estimators, 

namely; MSE, MAE, MAPE, R2-squared, AIC ( where  is the maximum likelihood achievable 

by the model and k the number of parameters of the model), and BIC (where N is the number of data points used in 

the fit. It comes from approximating the evidence ratios of models, known as the Bayes factor) including accuracy test. In 
Table 6, Under Laplacian kernel function with ratio of training and test data at 70:30, the performance accuracy of ‘aIMF 
and multiclass SVR’ is 86.92%, compared to those of ‘SVR only’, ‘aIMF and SVR’, and ‘multiclass SVR’ which are 
73.21%, 80.52% and 79.88%, respectively. Additionally, the estimation losses, namely; MSE, MAE, MAPE, R2-squared, 
AIC and BIC derived from the simulations of ‘aIMF and multiclass SVR’ are better than those from simulating ‘SVR 
only’, ‘aIMF and SVR’, and ‘multiclass SVR’ as detailed in Table 6 and in Figure 4. 

Table 6. Simulation results of the proposed ‘aIMF and multiclass SVR’, compared to simulations of ‘SVR only’, ‘aIMF 
and SVR’ and ‘multiclass SVR’ using the original datasets as a based reference 

Loss estimators SVR only aIMF and SVR Multiclass SVR aIMF and multiclass SVR 

Accuracy test (%)     
    30:70 70.26 77.66 78.21 85.11 
    50:50 70.60 79.81 78.92 85.33 
    70:30 73.21 80.52 79.88 86.92 
MSE 0.0001429 0.0001448 3.242E-05 1.089E-05 
MAE 0.0098611 0.0097964 0.0046254 0.0025102 
MAPE 0.6946638 0.6735869 0.3602532 0.3602532 
R2-squared 0.9827 0.9981 0.9992 0.9999 
AIC -4213.8360 -5738.339 -5209.846 -3173.644 

max2ln 2 ,k= − + max
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3.5 Robustness test of the propose model (aIMF and multiclass SVR) 
In this section we aim to test robustness of the proposed model (aIMF and multiclass SVR) by using different datasets, 
namely; EUR-JPY, EUR-CHF, EUR-RUB and EUR-GBP exchange rates as new dependent variables including the 
independent variables in Section 2.1. These independent variables will be simulated at the same way as happened in the 
early stage. Next, we test Normality for EUR-JPY, EUR-CHF, EUR-RUB and EUR-GBP exchange rates and using 
Grange causality test to select the datasets that correlated with each of them (new dependent variables). Following, from 
the new dependent variables we simulate EMD, the aIMF algorithm and SVR with multiclass using ‘mean reversion and 
CV’ technique under the criteria and procedures listed in Section 3.1, 3.2, and 3.3, respectively. 

We measure the new dependent variables, using the same cross validation technique to optimise the ratios of training and 
test data which are 30:70, 50:50, and 70:30, and found that the ratio of 70:30 presented the best result. We then employed 
the same procedure in Section 3.3 and simulated the multiclass SVR model, we have found that the Laplacian kernel 
function performed outstandingly, compared to the other kernel functions. 

Next, we perform verification of the proposed model, aIMF and multiclass SVR comparing to the test datasets (30% of the 
original datasets of each new dependent variables) simulating each new dependent variables with their corresponding 12 
independent variables that has added back the EUR-USD exchange rates. By using classification or ‘accuracy test’, which 
is used to compare up and down movements of the original datasets and datasets generated from the model,  the prediction 
results of the aIMF and multiclass SVR model with the plots of the test data are displayed in Figure 5 (a), (b), (c), and (d). 
It is confirmed that our proposed aIMF and multiclass SVR model still be outstandingly performed similar to the result in 
Section 3.3. For an ease of presentation, we plotted 50 data points out of test data.   

 
(a) (b) 

(c) (e) 

Figure 5. For ease of presentation we plotted 50 data points out of the test data. Four Graphs of simulation results of the 
aIMF and multiclass SVR model simulating with the new dependent variables compared with the graphs of their 
corresponding original datasets (a) EUR-JPY, (b) EUR-CHF, (c) EUR-Ruble, and EUR-GBP 
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With respect to measure prediction performance resulted from of the proposed aIMF and multiclass SVR, we introduce 
loss estimators, namely; MSE, MAE, MAPE, R2-squared, AIC, and BIC including accuracy test. Under Laplacian kernel 
function with ratio of training and test data at 70:30, the performance accuracy of: (a) EUR-JPY is 81.18%, (b) EUR-CHF 
is 88.50%, (c) EUR-RUB is 83.33%, and EUR-GBP is 84.19%, detailed in Figure 5.  Additionally, these estimation losses 
derived from the simulations of ‘aIMF and multiclass SVR’ are better than those from simulating ‘SVR only’, ‘aIMF and 
SVR’, and ‘multiclass SVR’ as detailed in Table 7. We confirmed that the proposed model, aIMF and multiclass are highly 
robust in prediction the nonlinear nonstationary time series variables. 

Table 7. Simulation results of the proposed ‘aIMF and multiclass SVR’ of the new dependent variables compared to their 
corresponding original datasets  

Description EUR-JPY EUR-CHF EUR-RUB EUR-GBP 

Accuracy test (%) 81.18 88.50 83.33 84.19 
MSE 1.594129064 0.000115822 0.213858861 8.34811E-06 
MAE 0.815677713 0.005985487 0.140293456 0.001606438 
MAPE 0.565511583 0.338472120 0.337532199 0.196598220 
R2-Squared 0.9945 0.9937 0.9873 0.9989 
AIC 2294.993 -4374.498 896.4742 -6176.207 
BIC 2308.629 -4360.862 910.1102 -6162.571 

4 Conclusions and discussion  
Predicting nonlinear and nonstationary EUR-USD exchange rates is very challenging, since many correlated independent 
random variables are involved. This paper introduces a new model comprised the aIMF algorithm and the multiclass SVR. 
While the aIMF algorithm functions as a filter demonising any nonlinear and nonstationary time series datasets, the 
multiclass SVR model predicts the future value of the exchange rates; whereas the independent and dependent variables 
were retrieved from the Bloomberg terminal from 2001 to 2012.  

In Table 6, we employed a number of estimation losses, namely; MSE, MAE, MAPE, R2-squared, AIC, BIC, and accuracy 
tests for measuring the performance of the our proposed model, aIMF and multiclass SVR. The results showed that the 
aIMF and multiclass SVR model outperformed the following simulations: SVR only, aIMF and SVR, and multiclass 
SVR. In terms of out-of-sample prediction, the aIMF yielded 86.92%, compared to the other models. It is now prudent to 
confirm that the aIMF and the multiclass SVR model can be a candidate estimator for nonlinear and nonstationary time 
series class of random variables. As regard to testing robustness of the model, we used EUR-JPY, EUR-CHF, EUR-RUB, 
and EUR-GBP exchange rates as dependent variables in the aIMF and multiclass SVR model and found the results similar 
to the simulations for the EUR-USD. We therefore confirmed that the proposed model, aIMF and multiclass SVR is highly 
robust in the prediction of the nonlinear nonstationary time series variables.  

In the process of building up the aIMF and multiclass SVR, we encountered a complexity of creating a new novel, aIMF 
and multiclass SVR, in which are interdisciplinary exercise referring to digital signal processing and machine learning. 
Additionally, in the simulating process of the aIMF algorithm we experienced a computational limitation during the 
simulation process, which may be caused by the server – Intel(R) Xeon(R), with 2x2.4GHz E5620CPUs, 3.99GB RAM, 
and 64-bit Microsoft Windows Operating System. Having anticipated the issue and finally overcoming them, the proposed 
model is quite easy to use. In practice, we don’t need to run the aIMF algorithm all time because the current training 
datasets can be used until the ratio of training and test data exceeds a certain ratio which produce inaccuracy of the 
outcome. Alternatively, the filtered data can be updated by the aIMF algorithm during non-peak hours.  

Having created a model that can predict nonlinear nonstationary time series datasets with high accuracy of over 80% in 
less than one minute, we deem that our effort to build the aIMF and multiclass SVR model is worthwhile and justified. 
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