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Abstract 
Cancer chemotherapy causes many side-effects, including joint pain. We speculate that a better understanding of the 
common biology of cancer and osteoarthritis could help us to find out ways to cure the cancer and to alleviate pain if their 
shared mechanisms are responsible for joint pain and/or related side-effects. In this mini–vision and reflection, we focus 
on the networks of miR-140 that are involved in both cancer and osteoarthritis during development and carcinogenesis. 
Frontiers including autophagy, potential stem-cell therapy and early nanotechnological diagnosis of those diseases will be 
briefly discussed.  
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1 Introduction 
MicroRNA (miRNA), first discovered in nematode (Caenorhabditis elegans) two decades ago, play a significant role in 
cancer [1, 2]. They are single-stranded, non-coding RNAs that regulate mRNA expression at the post-transcriptional level 
with base-pairing repression of gene expression in 3 untranslated regions (UTR) of targeted genes and play important roles 
in many fundamental biological processes, such as differentiation, proliferation and migration. MiR-140 was first reported 
around 10 years ago [3]. Later, it was also associated with mesenchymal stem cells (MSCs) and chondrogenesis [4-6]. The 
unique miR140 is evolutionarily conserved among vertebrates and is abundantly and almost exclusively expressed in 
chondrocytes. The differential expression of miR-140 was also validated in hematopoietic stem cells during activation [7]. 
Carcinogenesis and chondrogenesis are likely to be related to the differentiation of stem-like or progenitor cells [8-10]. The 
emerging evidence has shown that there is common biology between cancer and osteoarthritis (OA), two complex 
ageing-related diseases, which thus far the overall effects and quality of life of patients have not improved significantly 
over the past decade despite recent advancements in multidisciplinary treatments, but have many details remaining to be 
determined. Among many factors that may cause joint pain, we speculate that these shared mechanisms are possibly 
responsible for joint pain and/or related side-effects, along with cancer chemotherapy and OA. Since joint pain is the 
primary symptom associated with osteoarthritis, thus a better understanding of these points will be helpful to develop a 
strategy to reduce some side-effects. Normally, the function of cartilage relies on collagens, proteoglycans and 
chondrocytes. Chondrocytes usually break down and get rid of old proteglycan and collagen forming new ones to take 
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their place. When the cartilage that cushions bone ends no longer does its jobs, the joint pain begins. OA is the result of the 
breakdown of cartilage inside the joint. In this mini-vision and reflections, we briefly summarize some important recent 
findings of the involvement of miR-140 in both cancer and OA during development and carcinogenesis. Their common 
biology, potential stem cell-related therapy and a novel means of diagnosis for cancer and OA will also be briefly 
discussed.  

2 MiR-140 and cancer   
UL16-binding protein (ULBP)1-specific miR-140 is expressed in HeLa and Jurkat cells, and the involvement of this 
miRNA is via a 3' UTR-mediated mechanism of regulation of ULBP1 at the post-transcriptional level [11]. The 
stress-inducible ULBP1 cell surface ligand for the activating immunoreceptor NKG2D allows recognition and lysis of 
tumor cells by natural killer and T-cells. Nicotine increases expression of miR-140, coordinated with the 
nicotine-augmented expression of its host gene, WW domain-containing protein 2 (WWP2). Furthermore, miR-140 
targets the 3'-UTR of the dynamin 1 gene (Dnm1) by direct base-pairing [12]. In HeLa cells, inhibition of miR-140 
downregulates cell growth, according to another report [13].  

 

 

 

 
 
 

 
Figure 1. The network of miR-140 in cancer. 
In red: direct inhibition or repression; In green: promotion or 
activation.  

 

MiR-140 has been shown to be among the driving miRNAs in colorectal tumours [14]. Moreover, in comparison with the 
normal ovary, miRNAs are aberrantly expressed in ovarian cancer. The most significantly overexpressed miRNAs include 
miR-200a, miR-200c and miR-200b, whereas miR-140 is among the most downmodulated miRNAs [15]. Additionally, the 
expression level of RAD51AP1 has been found to have a negative correlation with the expression of hsa-miR-140, which 
was significantly downregulated in the tumour samples, suggesting a direct causal dysregulation of RAD51AP1 by 
hsa-miR-140 in the ovary [16]. Interestingly, a 5-miRNA classifier including miR-140 could distinguish squamous cell 
carcinoma from normal lung tissues with a very high accuracy, further direction need explore if such classifier could be 
possibly predictive for early diagnosis [17]. In sporadic clinically non-functioning pituitary adenomas, five miRNAs 
predicted to target Smad3, including miR-140, were overexpressed [18]. In multiple myeloma, the occurrence of several 
allelic imbalances or a loss of heterozygosity were found to be significantly associated with the altered expression of 
miRNAs located in the regions involved, such as miR-140 at 16q22 [19]. During glioma progression, a group of 12 
miRNAs, including miR-140, have increased expression [20]. Tumor cells ectopically transfected with miR-140 became 
more resistant to methotrexate and 5-fluorouracil. Ectopic expression of miR-140 inhibited cell proliferation in both 
osteosarcoma U-2 OS and colon cancer HCT 116 cell lines. MiR-140 induced p53 and p21 expression accompanied with 
G(1) and G(2) phase arrest. Histone deacetylase 4 (HDAC4) was confirmed as one target of miR-140. The expression of 
endogenous miR-140 was significantly elevated in CD133(+hi) CD44/MMP-9(+hi) colon cancer stem-like cells that 
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exhibit a slow rate of proliferation and chemoresistance. MiR-140 contributes to chemoresistance via reduced cell 
proliferation through G(1) and G(2) phase arrest mediated partially through the suppression of HDAC4 [21]. In progressive 
stages of endothelial cell transformation cumulating in Kaposi’s sarcoma, miR-140 and Kaposi’s sarcoma-associated 
herpes virus miRNAs increased linearly with the degree of transformation [22]. The most remarkably downregulated 
microRNAs belong to several families, including miR-140, along with the lungs of rats exposed to environmental cigarette 
smoke. There was a strong parallelism between the dysregulation of rodent miRNAs and their human homologues, which 
are often transcribed from genes localized in fragile sites deleted in lung cancer [23]. Comparison of the global expression 
profiles of miRNAs in primary breast cancer and normal adjacent tumor tissues reveals that seven miRNAs, including 
miR-140, are down-regulated, more than twofold [24]. From one latest breast cancer study, we can understand that estrogen 
receptor alpha signaling regulates breast tumor-initiating cells by down-regulating miR-140 which targets the transcription 
factor , i.e. the stem cell self-renewal regulator SRY (sex determining region Y)-box 2 (SOX2) [25]. The network of 
miR-140 in cancer is summarized in Figure 1, and the cancer types linked with miR-140 are shown in Table 1. 

Table 1. MiR-140’s involvement in cancer 

Type References  

Colorectal tumor 13 
Ovarian cancer 14, 15 
Squamous cell carcinoma 16 
Non-functioning pituitary adenomas  17 
Glioma 19 
Kaposi’s sarcoma 21 
Lung cancer 22 
Breast cancer 23-24 

 

3 MiR-140 and cartilage  
The expression of several miRNAs is regulated during chondrogenesis. These miRNAs are coexpressed with miR-140, 
which is known to be involved in cartilage homeostasis and OA. When human OA cartilage was compared with cartilage 
obtained from patients with femoral neck fractures, the expression of both miR-140-5p and miR-455-3p was increased in 
OA cartilage [26]. Increased miR-145 levels cause greatly reduced expression of the critical cartilage extracellular matrix 
genes [type II collagen (COL2A1) and cartilage-specific proteoglycan core protein (AGGRECAN)], and of tissue-specific 
miRNAs (including miR-140) and increased levels of the hypertrophic markers RUNX2 and matrix 
metalloproteinase13(MMP13), characteristic of changes occurring in OA [27].  

One independent study shows that miR-140 had the largest difference in expression between chondrocytes and MSCs. 
During chondrogenesis, miR-140 expression in MSC cultures increased in parallel with the expression of SOX9 and 
COL2A1. Normal human articular cartilage expressed miR-140, and this expression was significantly reduced in OA 
tissue. In vitro treatment of chondrocytes with IL-1beta suppressed miR-140 expression. Transfection of chondrocytes 
with ds-miR-140 down-regulated IL-1beta-induced ADAMTS5 expression and rescued the IL-1beta-dependent 
repression of AGGRECAN gene expression [4].  

Downstream target identification reveals significance of miR-140 underlying mechanism in cartilage. Expression of 
mRNAs was profiled in both the cartilage-specific miR-140 overexpressed and silenced in cells it is normally expressed in 
separate experiments and the intersection of mRNAs repressed by miR-140 overexpression and derepressed by silencing 
of miR-140 was identified. The intersection contained only 49 genes, which showed a very strong enrichment for the 
miR-140 seed sequence. One of the potential direct target mRNAs, the CXC group of chemokine ligand 12(Cxcl12, also 
known as Stromal-derived factor 1; SDF-1) was experimentally validated [28]. MiR-140 is specifically expressed in the 
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cartilage tissues of mouse embryos during both long and flat bone development. HDAC4 was validated experimentally as 
target of miR-140 [29]. Analyzing mRNA expression identifies Smad3 is a miR-140 target regulated [30] (unpublished). 
Further, there was a significant reduction in miR-140 expression in OA compared to the normal chondrocytes. 
Transfection with pre-miR-140 significantly decreased IGFBP-5 expression, while transfection with anti-miR-140 
significantly increased it. Treatment with anti-miR-140 did not significantly increase the expression of both MMP-13 and 
IGFBP-5. MMP-13 and IGFBP-5 protein production had the same patterns as their expression profile. Therefore IGFBP-5 
is a direct target of miR-140 [31]. 

 

 

 

 
 

 
Figure 2. The network of miR-140 in cartilage. 
In red: direct inhibition or repression; In green:  promotion or 
activation; In blue: miR-145 specific promotion or activation. 

 

 

Other studies reveal the miR-140 cross-talks with other cell signalling pathways. In developing zebrafish (Danio rerio), 
sox9a mutant (sox9a-/-) and sox9b mutant (sox9b-/-) zebrafish and SOX9 small interfering RNA in human chondrocytes, 
T/C-28 cells, miR-140 is regulated by the cartilage master transcription regulator Sox9 [32]. The proximal upstream region 
of pri-miR-140 has chondrogenic promoter activity in vivo. There is an L-Sox5/Sox6/Sox9 (Sox trio) response element in 
the promoter region. Furthermore, the DNA binding and/or transactivation ability of Sox9 as a homodimer is boosted by 
L-Sox5 and Sox6 [33]. Intergenic and intronic miR-140 in whole mounts and histological sections showed that pri-miRNA 
ISH provides an attractive and cost-effective tool to study miRNA expression. The chondrocyte miRNA miR-140 lies 
downstream of Sox9 in the development of the craniofacial skeleton [34]. MiR-140 is uniquely expressed in the 
chondrocytes and suppressed by Wnt/beta-catenin signalling. The miR-140 primary transcript is an intron-retained RNA 
co-expressed by the Wwp2-C isoform, which was directly induced by Sox9 through binding to intron 10 of the Wwp2 
gene. MiR-140 in limb bud micromass cultures is required for maintenance of the chondrocyte proliferation. Sp1, the 
activator of the cell cycle regulator p15 (INK4b), is a target of miR-140 in maintaining chondrocyte proliferation [35]. 
MiR-140 is involved in the pathogenesis of OA by regulating a disintegrin and metalloproteinase with thrombospondin 
motifs (ADAMTS5) [36]. Mice with a miR-140 deficiency are dwarfs as a consequence of impaired chondrocyte 
proliferation [6]. The network of miR-140 in cartilage is summarized in (Figure 2). 

4 MiR-140 and development 
MiRNA are essential for the aforementioned chondrogenesis and for many other processes of development. For example, 
down-regulation of miR-140 is associated with body growth and particularly useful for Nile tilapia (Oreochromis 
niloticus) breeding programs [37]. Ethanol and nicotine co-regulated miR-140, as ethanol suppressed the expression of 
miR-140-3p, while nicotine at the concentrations attained by cigarette smokers induced a dose-related increase it in fetal 
neural stem cells [38]. MiR-140 has been identified as a functional regulator of dedifferentiation/proliferation and 
remyelination in mouse Schwann cells, which is critical for nerve regeneration. MiR-140 targeted the transcription factor 
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Egr2, a master regulator of myelination [39]. It has been proposed that endogenous old astrocyte specifically induced 
substance (OASIS) protein is expressed at low levels in pancreatic beta-cell lines and rodent islets, possibly due to the 
abundant levels of miR-140 present in these cells [40]. One analysis of miRNA expression in whole blood of 12 patients 
with CAD (coronary artery disease) and 12 healthy control subjects revealed a number of differentially expressed 
miRNAs, including hsa-miR-140. By using whole blood as a 'surrogate tissue' in patients with CAD, differentially 
expressed miRNAs such as miR-140 and modulated pathways warrant further investigation in the setting of cardiovascular 
function through such a novel non-invasive strategy [41]. MiRNA-140, miRNA-200c and others showed distinct temporal 
and spatial expression patterns in the postnatal mouse inner ear [42]. MiR-140 was also found to regulate palatal 
development [43]. MiR-140 was found to regulate important genes related to the beta-catenin pathway: WNT5A, ZIC1 and 
TGFB1 [44]. MiR-140 suppressed the TGF-beta pathway through repression of Smad3, and TGF-beta suppressed the 
accumulation of miR-140, forming a double negative feedback loop [30]. When exposed to IL-1beta, TNF-alpha and 
IFN-gamma, airway smooth muscle cells decrease expression of miR-140 [45]. Examination of the miRNA expression 
profiles showed time-dependent increases in miR-140 [46]. Interestingly, miR-140 is also critical for metamorphosis of the 
Japanese flounder (Paralichthys olivaceus) [47]. Finally, miR-140 regulates endochondral bone development and targets 
Dnpep to modulate bone morphogenetic protein signaling [48]. 

The network of miR-140 in development is summarized in Figure 3. 

 

 

 

 
Figure 3. The network of miR-140 in development. 
In red: direct inhibition or repression; In green:  promotion or 
activation; In blue: miR-145 specific promotion or activation. 

 

 

5 Discussion 
MiR-140 networks are partially overlapped between cancer and OA, such as the sharing HDAC4 downstream activities 
and SMAD3-TGF-beta pathway. We can speculate that the critical stemness genes-related pathway such as 
SOX2/miR-140 in breast cancer might have important roles in OA too. Further, some developmental roles of miR-140 
raise the possibility to find out more shared underlying mechanisms for cancer and OA. In addition, we believe that a better 
picture of miR-140 in normal physiology and development at a system level can benefit our future OA and cancer 
prevention as well as therapeutic implications. Clearly, we understand that early steps to avoid disease are always the best 
cure.   

But beyond the abovementioned, many remarkable common features between cancer and OA emerge, in the near future, 
we need explore how miR-140 gets involved in such features: the dysregulation of extracellular matrix and 
matrix-resolving properties (CD44/MMP9 and MMP13) [21] and hypoxia (i.e. low-oxygen conditions) inducible properties 
(HIF1, HIF2) [32], coupled with mesenchymal cells (e.g. the CxCL12-CXCR4 axis) [49]; sensitivity to antirheumatics; 
constitutive activation of NFkappaB, the Wnt/beta-catenin cell signalling pathway, the shared cytokine and chemokine 
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signalling pathways, and the COX-2/PGE2 pathway [50]; finally some overlapping extraterritorial osteoclast traits of 
primary cancer cells [51].  

As for joint pain, it is the primary symptom associated with OA and also a common side effect of hormone therapy for 
breast cancer treatment because it halts estrogen production in post-menopausal women. These treatments can slow the 
production of estrogen, which means that there is less of it to fuel breast cancer cell growth. Tamoxifen treatment may 
produce OA-like aches and stiffness. While the mechanism causing joint pain is still rather open, we now start to know that 
estrogen receptor alpha signaling regulates breast tumor-initiating cells by down-regulating miR-140, which targets the 
transcription factor, i.e. the stem cell self-renewal regulator SOX-2 [25]. Consequently, we could speculate such 
chemotherapy might disturb those shared underlying mechanisms to some extent and hence likely cause joint pain in OA 
as well [52]. However, rare gene or miRNAs is abundantly and almost exclusively expressed in chondrocytes as 
miRNA-14. In one hand, because studies of miR-140 have experienced for less than 10 years, currently it remains 
tempting to see how miR-140 alone or together with other factors may affect joint pain, thus further investigation needs. In 
another hand, complex diseases such as cancer and OA, like an avalanche, are likely due to a failure of self-organisation 
system within epigenetic landscape [53]. Understanding the roles of such chondrocytes -specific exclusively expressed 
miR-140 in joint pain could provide some insights on system failure of OA and cancer. Among many other miRNAs, 
miR-200, miR-145, miR-140 are known to involve in both cancer and OA [10, 27, 54-56], so there would be miRNAs -network 
rather than miR-140 alone to orchestrate such complex diseases [2]. Then some self-organisation map tools such as gene 
expression dynamics inspectors (GEDI) [57, 58] or the like [59] can be helpful for early prediction and diagnosis of complex 
diseases, such as cancer and OA. 

Furthermore, we hypothesize that they both are likely to share some important features in autophagy-related pathways as 
well [60 61] (Zhang Y et al, in preparation). For instance, some autophagy-related genes, such as, at least ATG-5, EGR-1, 
and MAP1LC3A/LC3A/ATG8  predicted to be a direct target of miR-140, are involved in autophagy and are frequently 
inactivated in human cancers [62] and preliminary data shows that they are dys-regulated in OA (Zhang Y et al, in 
preparation). Interestingly, artificial hypoxia-like states, such as exercise, can induce autophagy [63]. The hypoxic state has 
a significant effects on understanding [64], prevention and stem cell/progenitor cell-related therapy for both cancer and  
OA [65, 66]. Elucidating the interplay between autophagy, cancer and OA will provide unique opportunities to identify new 
therapeutic targets [67] and to develop novel treatment strategies and reduction of the side-effects of those affected by 
cancer chemotherapy via targeting both cellular homeostasis mechanisms, such as autophagy, and miRNAs epigenetics. 
Hopefully, the inducers for autophagy such as rapamycin can be applied in “cocktail” therapies in combination with cancer 
chemotherapy and/or OA treatments in the future. 

Interestingly, latest research shows that stem cell therapy and nanotech diagnosis are promising frontiers for both diseases. 
Some labs have developed different protocols for cancer cell reprogramming and therapy [68, 69]. In OA settings, the adult 
MSCs are thought to repair injured tissue. The repair tissue from human articular cartilage during the late stages of OA 
harbours a unique progenitor cell population, termed chondrogenic progenitor cells, which exhibit stem cell characteristics 
combined with a high degree of chondrogenic potential. They offer new insights into novel therapeutic approaches for the 
late stages of OA [70, 71]. As aforementioned, miR-140 targets the stemness gene SOX2 in breast cancer, it might give us 
warrant to explore its contribution to adult stem cells in tissue repair in OA too. Moreover, a kartogenin promotes stem 
cells to make cartilage. Treatment with kartogenin allowed many mice with surgery to correct arthritis-like cartilage 
damage in a knee to re-use the joint without pain [72].  

For early diagnosis, nanotechnology made for Mars, known as “ARTIDIS”, holds promise for detecting breast cancer and 
OA in that it builds on the exquisite nanomechanical sensitivity of the atomic force microscope to detect and differentiate 
between the various stages of disease in soft human tissues – in a matter of minutes, while conventional breast cancer 
diagnostics often involve much longer times. Through it, one can also investigate degenerative arthritis. In comparison to 
conventional methods, the atomic force microscope has the potential to determine the onset of disease. The possibility of 



www.sciedu.ca/jst                                                                                                                   Journal of Solid Tumors, 2013, Vol. 3, No. 1 

                                ISSN 1925-4067   E-ISSN 1925-4075 44

diagnosis with ARTIDIS in the early stages is encouraging for better treatment options, with potentially higher chances of 
cure. Lastly, it is not unexpected that the nano-material combined with short non-coding RNAs such as miRNAs, 
including miR-140, could become feasible as an in vivo delivery therapeutic toolkit. Blocking endogenous miR-140 by 
locked nucleic acid-modified anti-miR partially sensitized the resistant colon cancer stem-like cells to 5-fluorouracil 
treatment. On the other hand, it is not unexpected that fine adjustment of miR-140 expression could alleviate joint pain and 
OA.  
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