
http://jms.sciedupress.com Journal of Management and Strategy Vol. 8, No. 4; 2017

Published by Sciedu Press 51 ISSN 1923-3965 E-ISSN 1923-3973

Importance of Data Flow Diagrams and Entity Relationships Diagrams

to Data Structures Systems Design in C++ “A Practical Example”

Mohammed H. S. Al Ashry (Ashry)
1

1
 Department of Computer Science, the Community College; Department of Computer Science, the College of

Sciences and Humanities, Shaqra University, Shaqra, Saudi Arabia

Correspondence: Mohammed H. S. Al Ashry (Ashry), Department of Computer Science, the Community College;

Department of Computer Science, the College of Sciences and Humanities, Shaqra University, Shaqra, Saudi Arabia.

Received: August 7, 2017 Accepted: August 17, 2017 Online Published: August 21, 2017

doi:10.5430/jms.v8n4p51 URL: https://doi.org/10.5430/jms.v8n4p51

Abstract

Structures have always been employed in designing software applications. In order to specify separate data structures,

however, classes should be introduced to facilitate the process. The development of databases, in this case is made

easier to specify records, data items, and simpler to identify unique keys within the database. The dataflow and entity

relationships diagrams help in the development process. This paper provides a simple set of diagrams emphasizing

the importance of these relationships.

Keywords: dataflow diagram DFD: the design of the flow of data and records prior to programming, entity

relationships diagram ERD: the diagramming design that identifies and specifies the type and category of association,

classes: an object or entity types, data structure: a set of related data objects or records

1. Introduction

Analysis and design software simplifies the process of building an actual small business application prototype. The

characteristics of the application‟s structure and its data components can be defined prior to the building process. Of

course, the relationship between the data within the separate structures in a program is made easier when linked on

the bases of both primary keys (PK) and secondary keys (SK), internally, within related routines, and using foreign

keys (FK) for external routines (Lipschutz, Seymour. (1986)). No literature has been defined specifically for the

purpose of researching the significance of employing data flow diagrams (DFD) and entity relationship diagrams

(ERD) in a program. Most literature is immersed in the actual DFD and ERD, within the unified modeling languages

UML, for the purpose of simplifying the generation of code for building software or web-based applications.

2. Literature Review

DFDs and ERDs are mostly used by systems designers to simplify designing management and decision support

systems. Software design processes, such as DFDs and ERDs simplify and reduce time consuming complex coding

routines; not to mention business management documentation processes. Research on DFDs and ERDs focuses on

new measures and criteria for their manifestations and implementations, in general, not their importance for

specifically designing data structures, and other related systems.

There is no literature specifically emphasizing the importance of DFDs and ERDs to the design of data structure.

Most related literature stressed the value of Unified Modeling Languages UML, and Systems Engineering Modeling

Processes to designing decision and artificial support systems and other management applications, as a whole. Data

structure is part of the process that leads to designing prototypes of all types of software applications. It simplifies

the process of identifying primary data keys and their relationship to other elements within the data structure as a

whole. This segment of the design procedure acts as a guide that relates the elements of a data-structure to the

function of that data in handling the specific coding of the related routine.

Available literature, in general, highlighted the whole process of systems design. The specificity of the relationship

between data structure systems design and DFDs and ERDs dampened the likelihood of finding literature employing

C++ to exemplify the process. This paper goes through the process of relating the DFDs and ERDs to the design of

data structure in the coding process utilizing C++.

http://jms.sciedupress.com Journal of Management and Strategy Vol. 8, No. 4; 2017

Published by Sciedu Press 52 ISSN 1923-3965 E-ISSN 1923-3973

3. The Approach

For this particular C++ data structures example, I chose to design a simple data processing system for a small

business, a grocery store chain. In any software, whether it is a web application or a computer processing program

the user is basically opening a set of data options. These options range from documentation menu tools – modules or

pop up plain data of commodity sale options that change as the user flips through the menu. The main analysis and

design process that leads to the final functioning application start with identifying entities and functions and defining

the data flow processes and entity relationships. Once the definitions are specified in details the processes and

relationships are diagrammed (Martin, James, & McClure, Carma. (1988)). In our grocery example it is followed

with structured tabulations of the sub-entities defining the products, employees, costing and their relative output.

Functions and their definitions are then planed using simple structured English, algorithm, and the code that links the

functions with the data structures is laid out. An important note is that the word functions will be used

interchangeably with processes, a function can be a process however a process can be a set of functions.

4. The Technical Analysis

The average pap‟s and mom‟s grocery store basically sells regular grocery products along with meat and vegetables

for medium to large grocery stores. To simplify the process a small to medium store is designated for this example.

The following diagram Figure 1 (Schach, Stephen R. (1993)), to be discussed, in the next segment, is a context

diagram of a neighborhood grocery store. The assumption is that the store deals with multiple distributers and

multiple sale functions through direct sales along with phone and or internet requests.

4.1 The Initial Diagramming Analysis

The grocery store‟s main- context process, Manages Grocery Store is in the center of the diagram, the rest are

external entities that can be linked to internal functions in the DFD‟s through the ERD‟s, to be explained in the

following section. For example, In-store and off the store customers can purchase or order items and place

complaints and requests. Purchased items are either taken directly by the customer or delivered depending on the

purchase method.

Figure 1. The grocery store financial transaction

The context diagram

The grocery store manager process

 Figure I:

The Grocery Store Financia l Transaction

 The Context Diagram

 The Grocery Store Manager Process

0

Manage
Grocery
Store

Wholesale
Dealers and
Local
Distributers

InStore and
Other
Customers

Outging
Delivery

Incoming
Delivery

Requested

Items

Grocery Items

Requested

Customer Complaints and

Requests

Local Shopper

Purchases

Purchased Items

Requested

Foreign

Items

Customer Phone and Internet

Purchases and Other Requests

Other

Customers

Delivery

Phone and

Internet

Purchases Delivered

Foreign

Requests

DeliveredServ ices Prov ided

http://jms.sciedupress.com Journal of Management and Strategy Vol. 8, No. 4; 2017

Published by Sciedu Press 53 ISSN 1923-3965 E-ISSN 1923-3973

The external entities, in this case the peripheral four boxes, are not essential to the entire process, and may not be

integrated in the programming code; nevertheless, are encompassed in the data stores for procurement, sales, credit,

and liability purposes. For example, dealers and customers change, however, consumers‟ purchasing habits are

essential for procurements.

4.2 The Data and Entities Analyses

The following diagram Figure 2 (Martin, James, & Leben, Joe. (1988)), is spawned from the main process of the

context diagram. It is the next level in the data flow diagram, level one, and it houses the main processes handling

the main functions of the grocery application. Looking at the diagram we see only the main processes and the related

data stores. The arrows into and out of the processes are the data flows representing either functional transactions or

structured data input or output. Data stores contain financial databases of employees, products, and lists of available

employees, products, customers, and distributers.

The databases are divided into two partitions, active databases for ongoing business activities and transactions, and

inactive databases for concluded activities and transactions. Open ended arrows are either incoming out of or going

into external entities. Each of the processes encompasses a set of functions within the nested procedures in the next

lower level of processes. Most actual source codes are written at the lowest level in the diagramming hierarchy,

subject to relative entity relationships that may indulge certain functions within higher level processes.

Figure 2. The grocery store financial transaction

The grocery store manager process

Level one diagram

Commodity procurement sales and customer services

There are four processes within this diagram level, procurement, sales, customer service, and employees departments.

Each of these processes houses hierarchical nests of processes ending at the level where the activities are specific

 Figure II:

 The Grocery Store Financia l Transaction

 The Grocery Store Mana ger Pro cess

 Level One Diagram

Commodity Procurement Sa les and Customer Services

Requested Items

Customer Complaints and Requests

Local Shopper Purchases

Requested Foreign Items

Customer Phone and Internet

Purchases and Other Requests

Grocery Items Requested

Purchased Items

Other Customers

Delivery

Serv ices Prov ided

1

Procure
Commodities

2

Sell
Products

3

Serve and
Relate to
Customers

4

Manage
Employees
Department

Procure Commodities Employees Info

Procure Commodities Employees Data

Soldout and

Discontinued Items Lis t

Groceries Costs

D1 Groceries
DataBase

Procured Groceries Data

All Groceries Lis t Sell Products

Employees Data

Sell Products Department Employees Info Customer Phone

and Internet Purchases

Available Grocery

Lis t

Serve and Relate Employees Info

Serve and Relate Employees Data

D2 Employees
DataBase

D3 Customers
Shopping DataBase

Employees

Records

Employees

Data

Customers Info

Customers Data

http://jms.sciedupress.com Journal of Management and Strategy Vol. 8, No. 4; 2017

Published by Sciedu Press 54 ISSN 1923-3965 E-ISSN 1923-3973

enough for structured English and program coding. The following two diagrams are the employee department

process and its nested lower level functions.

5. The Technical Design

The following set of DFD‟s and ERD are set up to include the relative structured English (Lipschutz, Seymour.

(1986)), and some of the draft source code intended to execute the functions of the software independently or as a

web based application. The second level diagram is the child diagram of the Manage Employee Department process.

It covers checking employment applicants‟ resume‟s, delegating and designating job positions and tasks in

accordance to qualifications, experience and rank; which includes employees‟ wages and financial report. In order to

understand the technical aspects of the diagramming the arrows need to be examined methodically.

The „Check Employees Resume‟‟ process handles employees‟ assessments, resume‟ examination, and provide data

requisite to employees‟ financial reports. There are, for example, four arrows leaving the process “Check Employees

Resume‟”. “Procure Commodities Employees Info”, which is the data related to the procurement department‟s

employees delivered to the “Setup Employees Position and Functions” department regarding one or more of its

employees from the company‟s employees‟ management department. The same applies to the other two arrows:

“Sell Products Department Employees Info” and “Serve and Relate Employees Info”. The fourth arrow relays the

data regarding new employment applicants‟ category and rank assessment. There are also four arrows incoming into

this process: “Procure Commodities Employees Data, Sell Products Department Employees Data, and Serve and

Relate Employees Data”. These arrows are data sent from base departments of employment to the department of

employees‟ management on these employees regarding their conduct, work quality and so forth. A simple example

of structured English for the „Check Employees Resume‟‟ process is included.

Figure 3. The grocery store financial transaction

The grocery store manager process

Level 2 diagram

Manage employees department

The „Prepare Employees Wages and Financial Report‟ process receives employees‟ positions and functions data to

prepare and store employees‟ records. The spawned offspring of this process provides us with the lowest level

 Figure III:
 The Grocery Store Financial Transaction
 The Grocery Store Manager Process
 Level 2 Diagram
 Manage Employees Department

Procure Commodities Employees Data

Sell Products Employees Data

Serve and Relate Employees Data

Employees Data Sell Products Department Employees Info

Serve and Relate Employees Info

Employees Records

4.1

Check
Employees
Resume'

4.2

Set up
Employees
Position and
Functions

4.3

Prepare

Employees

Wages and

Financial

Report

Employees

Job Category

and Rank Data

Employees Position

and Functions Data

Procure Commodities Employees Info

An example of s tructured English to process employee resume':

if (empname == 'aa') (holds degree = 'A'; processes functions = 'x2', rated = 'B+'; ranked = 'Dd', hourly rate = 'y4';)

(renew 'aa' contract). els e (cancel 'aa' contract) if (empname == 'bd' == new recruit) (holds degree = 'AB',

has experience = 'BB+'; age of 'bd' >= 25, rated ='A+';) (hire as rank ='Bb', hourly rate ='y2'.) else (reject applicatant.)

if (empname == 'dd') (holds degree = 'A'; processes functions => 'x3', rated => 'B++'; ranked = 'Dd', hourly rate = 'y4';)

(renew 'aa' contract, change hourly rate ='y3';change rank ='De'). else keep rank, keep hourly rate

http://jms.sciedupress.com Journal of Management and Strategy Vol. 8, No. 4; 2017

Published by Sciedu Press 55 ISSN 1923-3965 E-ISSN 1923-3973

processes that can be employed to create structured language and code to execute the functions of the related set of

entities and functions. The following diagram lays out the practical functions related to the Employees Department.

Figure 4. The grocery store financial transaction

The grocery store manager process

Level 3 diagram

Prepare employees wages and finbancial report

In this diagram, examples of the structured data tables for the „Setup and Process Employees…..‟, „Process

Employees working ….‟ and „Process Employees Annual….‟ are included to simplify structuring of the data within

the databases. Another simple structured English database of the „Process Employees working ….‟ is also included.

It presents a simple basic code that is used as basis for the source code. A portion of the employee class-structure

source code for the employees‟ wage calculations and records displays the variables within each of the structures and

how their nesting simplifies processing the data. In each of the data structured tables the links are usually made up of

the components used to relate the entities to each other within the related structured databases.

The object oriented system processes entities-implementations on the bases of their inheritance, multi-operative

capacities (polymorphism), and whether they are public or private (encapsulation). These interface and related

implementation components default to private for classes, and subclasses, and public for structures, and for their

nested structures. For example, the following table I, is a list of simple structures with their primary, foreign and

secondary keys, whose methods are defined as public.

Employees Position and

Functions Data

Employees

Records

4.3.1

Setup and

Process

Employees

Taxes and

Income

4.3.2

Process

Employees

Working

Hours and

Hourly Rate

4.3.3

Process
Employees
Annual
Wages

Employees Working Hours

and Hourly Rate

Employees Income Data

Figure IV:
The Grocery Store Financial Transaction
 The Grocery Store Manage Process
 Level 3 Diagram
Prepare Employees Wages and Financial Report

the employees' table:

Employee Name SK

Employee Number PK

Employee Annual Income

Employee work process table:

Employee Number PK
Weekly hours
Hourly Rate
Annual Tax %

po rtion o f the employees

da ta processing co de:

using namespace std;

cla ss g s_empl

{ public:

 struct emplo y_ g iven_ data // g iven da ta structure

 { flo a t Number_weekly_w orkHours, Hourly_ pa yRa te, A nnua l_Tax _Percentag e;};

 struct emplo y_ ca lc_data // ca lcula ted structure

 { floa t Tota lAnnua lIncome, annua lTax ;};

 struct emplo y_ data // employee's da ta structure

 { string empna me;

 int empno;

 do uble annua lIncome;

 employ _g iv en_da ta gIncome;// nested structure w ithin emplo y_ data

 employ _ca lc_ da ta cIncome; // --------- -- -- -- -- -employ _data

 emplo y_data (int en=0 , string n= " ", double a i= 0 .00) // the employ ee's da ta co nstructor

 { empno = en;

 empname = n ;

 a nnua lIncome = a i ; } }; };

Employee's work hours table and

structured english:

Employee Number PK

Employee Tax Category

Employee Work Hours

Employee Hourly Pay-Rate

...............................

if Employee Number ='a1', (tax category =='t2',

work hours ='wh3', hourly rate ='hr6';

)process report; else check employee-work-data

http://jms.sciedupress.com Journal of Management and Strategy Vol. 8, No. 4; 2017

Published by Sciedu Press 56 ISSN 1923-3965 E-ISSN 1923-3973

Table 1. The main components

The main components Method protection definition

Employee‟s income table:

Employee number PK

Employee name SK

Employee annual income

Annual tax %

Public: Two ways to make the tables private: 1. Replacing the definition within

the class gs_empl to private instead of public. 2. To make a specific

database/data table private we add the word private to the constructor such as

employ_data shown in the employee portion of the source code within Figure 4,

in the same form applied with the class gs_emp.

Employee‟s work table:

Employee number PK

Weekly work-hours

Hourly pay-rate

Public: Private protects both the data and the code, and either or both accessible

only to the object they are created within. Private links the data to the code and

either is accessible only within that object through its interface. So, other parts of

the program, outside the object, cannot access the data or code

Employee‟s tax table:

Employee number PK

Tax category

Taxed work-hours

Taxed hourly pay rate

Public:

Can always be protected, data and code with adding protected or private at the

appropriate location within the appropriate routine, or structure.

Products‟ departments table:

Department name PK

Department code SK

Number of employees

Number of products

Public:

Can always be protected, data and code with adding protected or private at the

appropriate location within the appropriate routine, or structure.

Products departments input:

Department code PK

Department supervisor FK

Department annual product

value (DAPV)

Department sales

Department losses

Public:

Can always be protected, data and code with adding protected or private at the

appropriate location within the appropriate routine, or structure.

Products departments earnings:

Department supervisor PK

Department name SK

Department earnings

Public:

Can always be protected, data and code with adding protected or private at the

appropriate location within the appropriate routine, or structure.

The departments‟ and employees‟ tables mentioned above are basically entities with special relationships linking

each and every one of them (Turban, Efraim, & Aronson, Jaye E. (1988)). ERD is an example of the OOP essential

components utilized to simplify and facilitate building the programming code. The importance of a secondary key is

its value when the primary key is unknown. In cases where secondary keys are not available, search, locates the

primary key of that entity in a different table then extract the primary key. This takes us back to ERDs and their

utilization in data structure‟s design.

The following two ERDs represent a context ERD Figure 5 in which the departments in each of the separate grocery

stores are defined by the address of that store. The address, in this case, is a primary key in the department‟s table

however it is a secondary key in the main corporate grocery stores and management table. Here, the stores have their

http://jms.sciedupress.com Journal of Management and Strategy Vol. 8, No. 4; 2017

Published by Sciedu Press 57 ISSN 1923-3965 E-ISSN 1923-3973

codes used as the primary code for corporate financial analysis, and the address component is for departmental

financial analysis table. The departments‟ codes are used to examine the departments separately.

Figure 5. Grocery store ERD departments are defined separate from the main corporate store

The following second ERD diagram, Figure 6, puts more emphasis on departments dealing with both products and

customers directly and indirectly. For example, Procurement department procures both customers‟ special requests

along with other marketable and regular store items. Its direct contact with dealers and distributers provides for cost

effective consumable items‟ prices. The General Customers Database keeps track of the customers shopping habits,

special requests and their credit data. A simple draft of some of the related entities‟ tables and the source code‟s entry

to the program‟s main function is provided.

Grocery Store
Customers

Dealers and
Distributers

Grocery Store
Departments

sells products to customers

Purchase Commodities from

Grocery Store

Includes

many

departments

Manage

the

store

activities

Procure -Grocery and -

Commodities

Sell

Wholesale

Groceries

and

Commodities

groc ery s tore depar tments c odes

by s tore's addres s :

GS addres s PK

c anned food department c ode

meat department c ode

bak ery department c ode

fruits and v egetables department c ode

froz en meat department c ode

froz ed v egetables department c ode

c leaning agents department c ode

plas tic s department c ode

G S co d e PK

G S ad d ress SK

G S man ag er ID # FK

G S man ag er n ame SFK

G S man ag er p h o n e #

G S=g ro cery sto re

customer # PK
customer name SK
customer phone #
customer address
customer purchase history
grocery store code FK
grocery store address SFK

product code PK

Product name SK

product distributer code FK

product distributer name SFK

product distributer phone #

product distributer address

The class gs_product

routine draft:

class gs_product

{

 public:

 struct prod_given_data // given data structure

 { float Number_procured_products, Number_product_available,

Number_product_sold, taxPercentage; };

 struct prod_calc_data // calculated structure

 { float TotalCost, TotalSales, productTax; };

 struct prod_data // product's data structure

 { int productcode;

 int productName;

 int productCost;

 double totalEarn;

 prod_given_data g Cost;// nested structure within product_data

 prod_calc_data cRevenue; // --------- -- -- -- -- -product_data

 prod_data(int pc =0, string pn=" ", int pct=0, double te=0.00)

// the product's data constructor

 { productcode = pc;

 productName = pn;

 productCost = pct;

 totalEarn = te; } }; };

Figure V:
Grocery store ERD
departments are defined separate
from the main corporate store

http://jms.sciedupress.com Journal of Management and Strategy Vol. 8, No. 4; 2017

Published by Sciedu Press 58 ISSN 1923-3965 E-ISSN 1923-3973

Figure 6. Grocery store entity relationship diagram includes:

1. Some of the related data structures

2. Some of the related simplified source code

For C++ code, some may want to take advantage of its powerful pointer features, where data can be aggregated and

have a specific part of the hard disk‟s memory allocated for specific parts of the database. In this case, the main

function can be rewritten to accommodate such need. The following part of the main function‟s routine, as pointed

out in Figure 6, can be done utilizing the pointers. The following is an example of such implementation. The initial

code employed structures within classes, and the main function uses structured database indexing method as follows:

 int main ()

{ {

Procurement
Department Sale Department

Customers
Services and
Relations Department

Employees
Department

General Customers
Database

Dealers &
Distributers

procure

grocery

and

commodities

sell

grocery

commodities

and services

requests special

orders for customers

procure special

orders and requests

provide grocery and

commodities data

procure needed grocery and

commodities

request sale items

and credit data

advertise and provide

customer services

provide

and

manage

employees

provide

employees

data

provide and

manage employees

provide

employees data

provide and manage employees

provide employees data

Employees Depa rtmen t Ta ble:

emplo yee ID # PK

depa rtment cod e FK

emplo yee na me S K

emplo yee ph one #

emplo yee ad dress

emplo yee an nua l in come

Cu sto mers Table:

cu sto mer # PK

cu sto mer name SK

cu sto mer ph one #

cu sto mer add ress

cu sto mer pu rch ase h isto ry

grocery sto re co de FK

grocery sto re ad dress SFK

Dealers & Distributers table:

product code PK

Product name SK

product distributer code FK

product distributer name SFK

product distributer phone #

product distributer address

Figure VI:
Grocery Store Entity Relationship Digram
includes:
1. Some of the related data structures
2. Some of the related simplified source code

an en try to th e main fun ctio n

ro u tin e fo r th e emp loy ees' inco me:

in t main ()

{ {in t numWork ers, in dex ;

// emp loy ee's data ob jects

 string b uffer [50];

// strin g n ame memo ry buffer

 gs_ empl::emp loy _d ata emp loy ee[n umWo rk ers] ;

// an array of the class memb er stru ctu re

	co ut<<"Enter num ber o f Emp loy ees:";

 	cin >> nu mWorkers ;

 	co ut<<'\n ';

	 fo r(ind ex = 0 ; in dex < numWork ers+1; in dex++) {

// requ est the emp loy ee's nu mb er.

 co u t << "En ter the emp loy ee ID n umber fo r emplo yee nu mb er " <<

(in dex) << ": ";

 cin >> emplo yee[in dex].empn o;

// requ est the emp loy ee's name.

http://jms.sciedupress.com Journal of Management and Strategy Vol. 8, No. 4; 2017

Published by Sciedu Press 59 ISSN 1923-3965 E-ISSN 1923-3973

int numWorkers, index; // employee's data objects

 string buffer [50]; // string name memory buffer

 gs_empl::employ_data employee[numWorkers]; // an array of the class member structure where gs_empl

//is a class and employ_data is a structure. The employee[numWorkers] is an array string for accessing the data.

 cout<<"Enter number of Employees:";

 cin>> numWorkers ;

 cout<<'\n';.

for(index = 0; index < numWorkers+1; index++) { // request the employee's number.

 cout << "Enter the employee ID number for employee number " << (index) << ": ";

 cin >> employee[index].empno; // request the employee's name.

 cout << "Enter the name for employee number " << (index) << ": "; // get employee's name

 cin >> employee[index].empname; // Get the weekly hours worked by the employee.

 cout << "How many weekly hours did this employee work? ";

 cin >> employee[index].gIncome.Number_weekly_workHours; // Get the employee's hourly pay rate.

 cout << "What is the employee's hourly payRate? ";

 cin >> employee[index].gIncome.Hourly_payRate; // Get the annual tax percentage.

 cout << "What is the employee's annual tax percentage? ";

 cin >> employee[index].gIncome.Annual_Tax_Percentage;

 cout << endl; // get the employee's total income, get the annual tax and income after tax.

The previous indexing method can be replaced with indexing using pointer s. The following is an implementation of

the pointer features which assigns the addresses of employee‟s data to pointers and the values at these pointers to

facilitate memory allocation. For data memory allocation it is important to point out that addresses are sequential

while data are not. It is also important to know that 8 bit and 32 or 64 bit compilers are certainly different for

pointers‟ addressing allocation, subject to data types:

int main ()

{ {

int numWorkers, index; // employee's data objects

 string buffer [50]; // string name memory buffer

 gs_empl::employ_data employee[numWorkers], *p, y; // an array of the class member structure where

//gs_empl is a class and employ_data is a structure. The employee[numWorkers] is an array string for //accessing

the data, *p and y are pointer and structure member, respectively, to the string and data value.

 P = employee; //assigns the address of employee[numWorkers=0] to pointer p.

 y = *p;// assigns the value at p to y.

 cout<<"Enter number of Employees:";

 cin>> numWorkers ;

 cout<<'\n';.

 for(index = 0; p < employee+numWorkers; p++, index++) { // request the employee's number.

 cout << "Enter the employee ID number for employee number " << (index) << ": ";

 cin >> p->empno; // request the employee's name.

http://jms.sciedupress.com Journal of Management and Strategy Vol. 8, No. 4; 2017

Published by Sciedu Press 60 ISSN 1923-3965 E-ISSN 1923-3973

 cout << "Enter the name for employee number " << (index) << ": "; // get employee's name

 cin >> p->empname; // Get the weekly hours worked by the employee.

 cout << "How many weekly hours did this employee work? ";

 cin >> p->gIncome.Number_weekly_workHours; // Get the employee's hourly pay rate.

 cout << "What is the employee's hourly payRate? ";

 cin >> p->gIncome.Hourly_payRate; // Get the annual tax percentage.

 cout << "What is the employee's annual tax percentage? ";

 cin >> p->gIncome.Annual_Tax_Percentage;

 cout << endl; // get the employee's total income, get the annual tax and income after tax.

In the rest of this routine we just replace the employee[index] with p-> in the data input of the loop.

Utilizing pointers can add the addressing feature for each of the array‟s strings by assigning the pointer p or another

variable, such as ptr to house the address of employee[index], ptr = &employee[index], within an empty sector in the

HD prior to the assignment of the structures‟ array of strings (Smith, Richard (2014)). This, of course, encompasses

the entire set of departments within the grocery store scheme.

Figure 7. The decision flow chart (DFC)

Employment process at the grocery store

Employee's resume
verified

Employee's
position and
function determined

Emplo yee's wag e and

benefits arranged and

appro ved

Employee's income
and taxes
ascertained

Employee's
working hours and
hourly rate prepared

Employee's
monthly pay
calculated

Yes

Yes

qualif ica tions meet requirements

No

Applica tion

Yes

Tasks defined

Yes

No

Yes

Rank bas ic income verified

yes

No

Yes

Work schedu le

setup

Yes

Yes

No

Wage and

benefits

determined

Yes

Yes
No

Figure VII: The Decision flow diagram
Employment process at the Grocery Store

http://jms.sciedupress.com Journal of Management and Strategy Vol. 8, No. 4; 2017

Published by Sciedu Press 61 ISSN 1923-3965 E-ISSN 1923-3973

Another related diagramming system used to simplify DFD‟s and ERD‟s and in the process help in processing data

structures is decision flow charting DFC. The DFC depicts the decision process of employee‟s recruiting and

handling of the recruits‟ applications within the employees‟ department. The decision flow, in this chart, emphasizes

lists of the employees‟ department‟s database which is based on lists of arrays of the data structures. It is

undoubtedly obvious that data structures are a lot simpler to design and code when utilizing the DFD, ERD and DFC

diagrams.

6. Results

It is obvious that DFDs provide both a big picture view and micro-view of the functions-system‟s designers seek.

Some processes represent single functions, others combination of functions subject to the level of the process, or

processes and their order within that level. The higher a process is the more likely that multiple functions fall within

its sphere; and the lower the more likely it performs a portion of a function. For example, the level-one process # 4:

“Manage Employees Department” performs all functions related to the employees within the grocery store, possibly

the entire chain, however, the level three, process #4.3.2: “Process Employees Working hours and Hourly Rates”

performs functions related to the employees working hours and hourly rates. This means this process houses another

level with a set of processes to perform the working and the hourly rates. Entity relationships provide limitations to

the intertwining functions and processes interactions. An example is the customer‟s database interacts with the

employees‟ department subdivisions dealing with customers: customers‟ services and customers‟ relations.

7. Conclusion

Data flow is the scheme in which data; strings, numbers or arrays, are moved from one department, memory space to

another department or memory space, respectively. In the process, these strings, numbers or arrays are either

assessed for clarity or accuracy, or just modified. Either way, these structures of data forms are used to provide or

improve information between two separate entities. Defining and diagramming the processing of such data-structures

simplify and facilitate their manipulation and implementation for designing and/or coding programs and software

systems. I recommend using modeling languages that employ the utilization of DFDs and ERDs and other related

modeling processes in designing software systems.

Refrences

Lipschutz, Seymour. (1986). Theory and Problems of Data Structures. Schaum’s outline series.

Martin, James, & McClure, Carma. (1988). Structured Techniques: The Basis for Case. Printice Hall, Englewood

Cliffs, New Jersey.

Schach, Stephen R. (1993). Software Engineering. Aksen Associates Incorporated Publishers, Richard D. Irwin Inc..

Martin, James, & Leben, Joe. (1988). The ARBEN group Inc. Data Communication Technology. Printice Hall,

Englewood Cliffs, New Jersey.

Turban, Efraim, & Aronson, Jaye E. (1988). Decision Support Systems and Intelligent Systems. Printice Hall Upper

Saddle River, New Jersey.

Smith, Richard. (2014). Working Draft, Standard for Programming Language C++. Document Number: N4296,

Date: 11-19-2014, Revises: N4140, Reply to: Richard Smith, Google Inc.

