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Abstract 
In recent years, population growth and aging society impose large pressure on the resource requirement in Singapore 
public hospital system. Beds are one of the most critical resources in healthcare system. How to manage beds efficiently  
is an important and challenging task for the health service providers in any healthcare systems. One frequently used 
performance indicator of bed management is bed occupancy rate, which measures the bed utilization. In this paper, an 
online prediction procedure based on discrete event simulation is proposed and developed to predict bed occupancy rate in 
a short term period. Simulation results show that the predicted values are closer to the actual values with narrower 
confidence interval compared to the offline approach. Hence such a prediction procedure is able to provide a more reliable 
reference for decision making of the health service providers. 
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1 Introduction 
One common challenge most hospitals are facing is how to cope with the increasing patient load with the limited resources 
due to population growth and aging society. Hospital beds, as one of the key resources, may significantly affect the 
performance of a hospital system. Shortage of beds may have negative impact on the access to healthcare facility and 
patient safety, e.g., excessive waiting time before admission, overcrowded emergency room, cancellation of surgeries and 
unused operating theatre slots. Hence it is crucial for the healthcare service providers to manage the beds efficiently. 

Bed management is a challenging task with many variations involved in different areas. In one aspect, the demand for beds 

could be highly fluctuating. The number of admissions per day varies by day of the week, e.g., there are usually more 

admissions during weekday than weekend [1]. Seasonal factors also contribute to the variation of daily admission, e.g., 

more admissions can be observed during flu seasons. A sudden surge of admission may lead to a temporary shortage of 

beds. Another major source of variation is the length of stay. The distribution of the length of stay is highly skewed by long 

stay patients, which affects the bed availability negatively. In addition to the variations existing in the practice of bed 

management, some policies may affect the availability of beds as well. For instance, it is a common practice to separate the 

beds into different classes in purpose of service differentiation, infection control, etc. Such a policy could cause the 

imbalance of resource utilization among different classes. Some classes are out of beds while some classes have surplus 



www.sciedu.ca/jha                                                                                                   Journal of Hospital Administration, 2014, Vol. 3, No. 4 

                                ISSN 1927-6990   E-ISSN 1927-7008 38

empty beds. All the above mentioned factors increase the complexity of bed management. Many research works have been 

done on different bed management strategies. Some of them focus on the admission part of bed management, e.g., 
smoothening the fluctuation of demand in beds by managing the elective and emergency admission more efficiently [2], 

reducing the demand of beds by reforming patient flow, increasing the throughput and reducing readmission rates [3]. Some 

research works focus on the discharge part of bed management such as the root cause of delay in patient discharge [3] and 

the benefits of early discharge [4]. 

One key performance indicator many healthcare service providers are tracking in bed management is bed occupancy rate, 

which is measured by the ratio of occupied beds against the total number of beds in service. Bed occupancy rate is a direct 

reflection of bed utilization in a hospital. It was observed that shortage of beds was expected when the bed occupancy rate 

was over 90% [5]. Higher bed occupancy rate is more likely cause higher emergency admission refusal rate [6]. A reliable 

prediction of bed occupancy rate within a certain time frame may help healthcare service providers better plan and utilize 

the limited bed resources. 

There are a few research works focused on predicting the bed occupancy rate from a statistical perspective, e.g., 
forecasting of bed occupancy rate using trend fitting and time series analysis [7]. Phase type survival trees was applied to 

estimate the bed requirements [8]. One problem of above mentioned approaches is that the predicted results are based on the 

statistics of historical data, which may not reflect the variation of the latest situation. 

Discrete event simulation is widely applied to many sections in healthcare systems such as outpatient clinic [9-12], 

emergency department [13-15], etc. A simulation model was constructed to predict the weekly bed occupancy rate [16]. Two 

inputs were needed for the simulation model: number of admission and length of stay. However, one problem of the above 

mentioned study is that the whole prediction procedure is offline. The number of admission and length of stay were 

generated from historical data using regression model and Poisson model respectively. All information of the prediction 

model is pre-defined and does not reflect the latest day-to-day variation. Thus it could be not accurate enough when the 

healthcare service providers want to know how the bed occupancy rate would looks like in the next few days. 

The main contribution of this paper is to provide an online prediction procedure based on discrete event simulation.  

It can be used to predict the bed occupation rate in a short prediction horizon, e.g., the next week. Compared to the above 

mentioned research works, the method proposed in the paper is an online procedure with multiple stages. Within each 

stage, new information is collected and incorporated into the prediction procedure. The predicted bed occupancy rate is 

updated at each stage and reflects the variation of the latest situation. Such a prediction procedure is supposed to provide a 

more accurate projection for the decision making of the healthcare service providers, who are then able to plan properly 

and response quickly to the incoming bed situation. 

2 Methods 

2.1 Framework of the prediction procedure 
Figure 1 illustrates the proposed prediction procedure. It includes n+1 stages. Stage 0 represents day 0, the current 

situation. Stage 0 is the baseline of the whole projection. O(0) denotes the number of patients occupying hospital beds in 

stage 0, which is already known. Stage 1 represents day 1, the day next to day 0. O(1) denotes the projected number of 

patients occupying hospital beds in stage 1, a(1) denotes the projected number of admissions in stage 1, d(1) denotes the 

projected number of discharges in stage 1. Similarly, stage n represents day n, O(n) denotes the projected number of 

patients occupying hospital beds in stage n, a(n) denotes the projected number of admissions in stage n, d(n) denotes the 

projected number of discharges in stage n. The detailed calculation is given as follows: 
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Figure 2 illustrates the simulation results of one prediction cycle and the comparison with the actual bed occupancy rate 
(R). Figure 3 illustrates the simulation results of a specific day (Thursday) in different prediction cycles. 

4 Discussion 
It is observed from Figure 2 that the simulation results match the actual values quite well in the earlier stages of the 

prediction horizon with smaller standard deviation and narrower confidence interval. The performance of simulation 

model deteriorates in the later stages with larger standard deviation and wider confidence interval. One possible explana- 

tion is that more sources of variations are injected into the prediction procedure when the stages increase. All the variations 

cause more fluctuating results. 

It is observed from Figure 3 that the predicted value of the same day varies in different prediction cycles. The predicted 

value is better with a closer estimate and narrower confidence interval when the prediction is made within a near prediction 

cycle. Such a result indicates the strength of the online prediction procedure. The accuracy of the predicted values is 

continuously improving and closer to the actual values when more information is collected and fed into the prediction 

procedure. Hence the results from the online prediction procedure are more reliable compared to the offline ones. 

5 Conclusion 
Bed management is a challenging task due to the existence of various uncertainties. A proper prediction of the bed 

utilization for the next few days may help health service providers manage bed resources more efficiently. This paper 

proposed an online short-term bed occupancy rate prediction procedure based on discrete event simulation. Such a 

prediction procedure takes three inputs: number of beds, daily admission and length of stay. The whole prediction 

procedure is a continuous process composed of multiple prediction cycles. Each prediction cycle starts from an initial 

stage, simulates the admission and discharge practice within the prediction horizon and then returns the predicted bed 

occupancy rate of each day within the prediction horizon. Simulation results show that the predicted values are closer to 

the actual values in the earlier stage of the prediction horizon, and the predicted value of the same day is more accurate in 

a more recent prediction cycle, which indicates that the proposed prediction procedure performs better online than offline. 

One limitation of this study is that all the beds are considered generic and eligible to be occupied by any admissions.  

The complexity of partitions and transfer of cases among partitions are not considered. A bed occupancy rate prediction 

procedure for a complex bed partitioning system can be studied in the future research. 
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