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Abstract 
This paper presents a recurrence network approach for the analysis of skin blood flow dynamics in response to loading 
pressure. Recurrence is a fundamental property of many dynamical systems, which can be explored in phase spaces 
constructed from observational time series. A visualization tool of recurrence analysis called recurrence plot (RP) has been 
proved to be highly effective to detect transitions in the dynamics of the system. However, it was found that delay 
embedding can produce spurious structures in RPs. Network-based concepts have been applied for the analysis of 
nonlinear time series recently. We demonstrate that time series with different types of dynamics exhibit distinct global 
clustering coefficients and distributions of local clustering coefficients and that the global clustering coefficient is robust 
to the embedding parameters. We applied the approach to study skin blood flow oscillations (BFO) response to loading 
pressure. The results showed that global clustering coefficients of BFO significantly decreased in response to loading 
pressure (p<0.01). Moreover, surrogate tests indicated that such a decrease was associated with a loss of nonlinearity of 
BFO. Our results suggest that the recurrence network approach can practically quantify the nonlinear dynamics of BFO.  
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1 Introduction 
Pressure ulcers are a common but potentially preventable condition in people with physical disabilities [1]. Although the 
etiology of pressure ulcers has remained unclear, prolonged tissue ischemia has been cited as the most important 
mechanism [2]. Tissue ischemia occurs when externally applied pressure causes the occlusion of blood vessels, thus 
reducing blood flow to local tissues [3]. It has been demonstrated that sustained pressure causes not only a decrease in skin 
blood flow, but also alterations in blood flow oscillations (BFO) [4, 5]. However, the relationship between the alterations in 
BFO and tissue ischemia is poorly understood.  

Skin BFO have been extensively studied by means of laser Doppler flowmetry (LDF) for the assessment of 
microcirculatory function. Spectral analysis of LDF signals has revealed five characteristic frequencies associated with 
metabolic, neurogenic, myogenic, respiratory, and cardiac frequencies, respectively [6]. Usually the power of BFO within 
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each frequency interval is used as a quantitative measure for characterizing the states of the underlying physiological 
mechanisms [6, 7]. Based on wavelet analysis, Li et al. [4] showed that pronged compression attenuated the endothelial 
related metabolic activities. Jan et al. [8] showed that blood flow control mechanisms exhibited different responses to 
alternating pressure and constant pressure. These studies, however, did not provide insights regarding the dynamics of 
BFO in response to pressure. 

The dynamics of BFO can be characterized using nonlinear measures [9, 10]. Most popular nonlinear measures (e.g. 
Lyapunov exponents, correlation dimension, and entropies) have a common feature of quantifying certain invariant 
properties of phase space. These measures generally require long and stationary data series. Another important method for 
describing complex dynamics is recurrence plots (RPs) [11]. A RP is a graphical representation of recurrences in phase 
space. Since recurrence is a fundamental property of dynamic systems, RPs derived from experimental time series often 
exhibit certain structures, e.g. diagonal or vertical lines formed by recurrence points. A variety of statistical measures 
based on the length distributions of these lines have been suggested to characterize different aspects of dynamic 
complexity of the studied system. This conceptual framework is known as recurrence quantification analysis (RQA) and 
has found numerous applications [12-14]. An advantage of RQA is that it is even useful in analyzing short and non-stationary 
data. However, it was found that delay embedding produces spurious structures in RPs [15].  

Recently, the success of network theory in various scientific disciplines has motivated attempts to apply this concept to the 
analysis of time series [16, 17]. Zhang and Small [16] first suggested to study time series from the complex network 
perspective. In their scheme, each cycle in the time series is represented by a node of the network and those nodes are 
connected if their corresponding cycles are morphologically similar. In this way, the dynamics of time series are encoded 
into the topology of the network, which is then quantified by the statistical properties of the network. Lacasa et al. [18] 

proposed an alternative method, called visibility graphs, that converts a time series into a graph. In the graph, every node 
corresponds, in the same order, to series data. Any two data values are considered as two connected nodes of the graph if a 
constraint on their relative magnitudes is fulfilled. Yang and Yang [19] proposed to construct complex networks from the 
correlation matrix of a time series. By embedding a time series, state vectors in the phase space are considered as vertices 
of a complex network. Two vertices are connected if the Pearson correlation coefficient of the corresponding state vectors 
is larger than a given threshold. From the point view of time series analysis, these methods suffer from specific  
limitations [17].  

In this paper, we present a new conceptual approach, the recurrence network approach, for analyzing the structural 
properties of skin blood flow signals. This approach interprets the recurrence matrix of a time series as the adjacency 
matrix of a network. Donner et al. [17] suggested that the measures of recurrence networks can capture the higher-order 
statistical properties of the invariant density of the dynamical system captured in an observational time series. Such 
properties are not yet provided by the existing methods of time series analysis. However, this approach has only been 
applied to low-dimensional model systems as well as a few real data [17, 20, 21].  

The remainder of this paper is organized as follows. In section 2, we briefly describe RQA. Then we show that a 
fundamental measure of RQA is sensitive to the embedding parameters. In section 3, we discuss a measure of recurrence 
networks, clustering coefficient, and demonstrate that different types of dynamics lead to distinct distributions of local 
clustering coefficients. We also demonstrate that global clustering coefficient is robust to the embedding parameters. 
Section 4 presents the results of the approach for skin blood flow data. Finally, section 5 gives our conclusion.  

2 Recurrence quantification analysis (RQA) 
RP was introduced by Eckmann et al. [11] in the late 1980’s to visualize the recurrences of dynamical systems. Given a time 

series {ݔሺ݅ሻ, ݅ ൌ 1,… ߬ ሽ, choosing a time delayܯ,  and an embedding dimension݉ , one constructs a phase space 
trajectory  
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																							x௜ ൌ ሺݔሺ݅ሻ, ሺ݅ݔ ൅ ߬ሻ,… , ሺ݅ݔ ൅ ሺ݉ െ 1ሻ߬ሻ,   ݅ ൌ 1,… ,ܰ ൌ ܯ െ ሺ݉ െ 1ሻ߬.                              (1) 

A RP is a representation of the recurrence matrix  

                                                  ܴ௜௝ ൌ Θ ቀߝ െ ݀൫x௜ െ x௝൯ቁ ,                                                                       (2) 

where Θ(·) is the Heaviside function, ݀ is the distance between x௜ and x௝, and ߝ is a predefined threshold. Using a spatial 

distance as the recurrence criterion, the matrix ܴ is symmetric with ܴ௜௝=1 if the state x௝ is a neighbor of x௜ in phase space, 

and ܴ௜௝=0 otherwise.  

To see how a RP represents the dynamics of a dynamical system, let us consider the RPs of three typical time series, e.g. a 
sine wave, one realization of the Lorenz system uniformly distributed white noise, and a skin blood flow signal (see Figure 
1). The Lorenz system is defined as   ݀ݐ݀/ݔ ൌ ݕሺߪ െ ݐ݀/ݕ݀ ሻݔ ൌ ݎሺݔ െ  ሻݕ

                                                                     
ௗ௭ௗ௧ ൌ ݕݔ െ  (3)                                                                                ݖߚ

 

Figure 1. (a) A sine wave x=sin(0.1πt) with sampling frequency 32 Hz. (b) The x-component of the Lorenz system 
(equation 3) with the parameters σ=10, r=28, β=8/3, sampling time ∆t=0.03, and initial condition [0.1, 0, 0]. (c) Uniformly 
distributed white noise, supposing that the sampling frequency is 32 Hz. (d) A skin blood flow signal recorded at a 
sampling frequency of 32 Hz. 

The embedding parameters are separately selected for each time series. The time delay	߬ is selected as the first minimum 

of the auto mutual information function, and the embedding dimension ݉ is determined using the Cao’s method [22]. The 

recurrence threshold ߝ is selected such that the global recurrence rate  

                                                                 ܴܴ ൌ ଵேమ ∑ ܴ௜,௝ே௜,௝ୀଵ                                                                                          (4)                 
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for ݉=1~10 while ߬=5 and ߬=1~10 while ݉=3. ܶܧܦ of the blood flow signal was calculated for ݉=1~15 while ߬=7 and ߬=10~50 while ݉=3. For both signals, the parameter ݈௠௜௡=4 was used, and the threshold ߝ was selected preserving 

RR=0.03. The results showed that ܶܧܦ is sensitive to the embedding parameters (see Figure 3).  

 

Figure 3. Influence of time delay τ and embedding dimension m on the RQA measure DET (equation 5) for (a)(b) the 
x-component of the Lorenz system (see Figure 1b) and (c)(d) the blood flow signal (Figure 1d). For the Lorenz system, the 
optimal values of τ and m are 5 and 3, respectively; for the blood flow signal, the optimal values of τ and m are 30 and 7, 
respectively. For each series, threshold ε was selected preserving RR=0.03 and l_min=4 was used. 

3 Recurrence network approach 
A new conceptual approach for analyzing structural features of time series is to consider the phase space vectors as nodes 
of an undirected and unweighted network and quantify the topological features of the network [17].  For this purpose, we 
define an adjacency matrix 

௜௝ܣ                                                                    ൌ ܴ௜௝ െ       ௜௝                                                                                     (6)ߜ

where ߜ௜௝ is the Kronecker delta for excluding the line of identity from the RP. The adjacency matrix and the recurrence 

matrix exhibit strong analogy: an adjacency matrix represents connections in a network and a recurrence matrix represents 
neighbored state vectors in phase space. This approach on creating complex network is more natural and simple than the 
other methods. To illustrate the potential of the recurrence network approach for characterizing the dynamic properties of 

BFO, we focus on the local clustering coefficient of vertex ݔ௜ [25] 

௜ܥ                                                  ൌ ∑ ௜௞௞வ௝ܣ௜௝ܣ ௝௞ܣ ∑ ⁄௜௞௞வ௝ܣ௜௝ܣ                                                                (7)            

where ∑ ௜௞௞வ௝ܣ௜௝ܣ ∑ ௝௞ is the number of triangles involving vertex ݅, andܣ ௜௞௞வ௝ܣ௜௝ܣ  is the number of connected triples 

with vertex ݅ being the central vertex. A triangle is a set of three vertices where each vertex is adjacent to other two 
vertices. A connected triple is also a set of three vertices where two vertices are adjacent to the central vertex. Note that if 

vertex ݅ has no or only one neighbor, i.e.  ∑ ௜௞௞வ௝ܣ௜௝ܣ  ௜ gives the probability that twoܥ ,௜=0 [17]. Thusܥ ௜ is defined asܥ ,0=

neighbors (recurrences) of the state ݔ௜ are also neighbors. Donner et al. [17] suggested that ܥ௜ characterizes higher order 

properties related to the heterogeneity of the phase space density in the vicinity of the vertex	ݔ௜. For chaotic systems high 
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values of ܥ௜ often coincide with dynamically invariant objects such as unstable periodic orbits [20]. When a trajectory visits 
the neighborhood of an unstable periodic orbit, it falls into this neighborhood for a certain duration, during which the 
probability of recurrences is increased and local divergence rate becomes smaller. The global clustering coefficient is 
defined as  

ܥ                                                         ൌ ∑ ௜/ܰ௜ܥ  .                                                                                         (8)  

 

Figure 4. Distributions of C_i values of (a) the sine wave (Figure 1a), (b) the x-component of the Lorenz system (Figure 
1b), (c) uniformly distributed white noise (Figure 1c), and (d) the blood flow signal (Figure 1d). The global clustering 
coefficients C of the four signals are 0.77, 0.65, 0.39, and 0.52, respectively. The selected value of ε corresponds to a 
global recurrence rate of RR=0.03. 

 

Figure 5. Influence of time delay τ and embedding dimension m on the global clustering coefficient C of (a)(b) the Lorenz 
system (equation 3) and (c)(d) the blood flow signal (Figure 1d). For the Lorenz system, the optimal values of τ and m are 
5 and 3 respectively; for the blood flow signal, the optimal values of τ and m are 30 and 7, respectively. The selected value 
of ε corresponds to a global recurrence rate of RR=0.03. 

Figure 4 shows the probability distributions of ܥ௜ values of the four signals shown in Figure 1. For the sine wave, most 

values of ܥ௜ are concentrated around 0.77. Such high and concentrated values are due to the deterministic behavior of the 
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phase space trajectory, on which a large number of neighbors of a specific state are also neighbored. The values of ܥ௜ of 
the Lorenz system are lower and more scattered than those of the sine wave, but higher and more concentrated than those 

of white noise. ܥ௜ values of the blood flow signal are higher than those of white noise and their distribution shape is similar 
to that of white noise. Based on these considerations, we argue that a higher value of global clustering coefficient indicates 
a higher degree of determinism of the dynamics and the distribution of local clustering coefficients may be an indicator of 
the complexity of the dynamics. 

 

Figure 6. Skin blood flow response to pressure loading in a typical subject 

The measure ܥ  involves three parameters: time delay 	߬ , embedding dimension 	݉ , and the distance threshold ߝ 

(determined by the global recurrence rate ܴܴሻ. ܥ is expected to monotonically increases with ܴܴ. To investigate the 

influences of time delay ߬ and embedding dimension ݉ on ܥ, we calculated ܥ for the ݔ-component of the Lorenz system 

and the skin blood flow signal (see Figure 1b, d) for wide ranges of ߬ and ݉ around their optimal values (same as those 

shown in Figure 3). The results showed that the measure ܥ is robust to the embedding parameters (see Figure 5). 

 

Figure 7. Probability distributions of C_i of two segments of skin blood flow signal shown in Figure 6. (a) A segment of 
baseline. (b) A segment of loading period. 

4 Application to blood flow signals 

4.1 Data acquisition                 
We recruited 10 healthy, young subjects (4 male and 6 female) for this study. Their demographic data were: age 23.7±2.4 
(mean ± standard deviation) years; height 1.69±0.09 m; and weight 59.8±6.3 kg. The exclusion criteria included the 
presence of pressure ulcers on the sacrum, diabetes, vascular diseases, hypertension, or use of vasoactive medicines. This 
study was approved by the University Institutional Review Board. Informed consent was obtained from each subject 
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before any testing. After at least a 30 min quiet rest period to become acclimated to the room temperature (24±2˚C), the 
subject was positioned in a prone posture. Sacral skin blood flow was recorded using a laser Doppler flowmetry (PF 5001, 
Perimed AB, Sweden) at a sampling frequency of 32 Hz. An indenter was used to apply 60 mmHg loading to the sacral 
skin through the probe. The protocol included a 10 min baseline, a 20 min loading and a 10 min recovery period. Figure 6 
shows skin blood flow response to applied pressure in a typical subject. 

 

Figure 8. Comparisons of global clustering coefficient C of BFO between baseline and loading period. Values are means 
± standard deviations. **p<0.01 

4.2 Data analysis 
We calculated local clustering coefficient ܥ௜ and then global clustering coefficient ܥ for the blood flow data at baseline 

and during loading. First, the embedding parameters, time delay	߬ and embedding dimension	݉, were separately selected 
for each data series. Then, to avoid the possible influence of non-stationary, the data series was subdivided into 

non-overlapping epochs consisting of 4000+ሺ݉ െ 1ሻ߬ samples, i.e. 4000 phase space vectors. Given the sampling rate of 
32 Hz and assuming that the lower frequency bound of the characteristic frequency associated with endothelial-related 
metabolic activity is 0.0095 Hz [6], such an epoch contains at least one cycle of the metabolic frequency. This means that 

such an epoch preserves all power of the five characteristic components embedded in skin BFO. Since ܥ increases with 

RR, we calculate ܥ of each epoch for RR=0.01~0.08. The obtained ܥ values were averaged over all the epochs.   

To investigate whether a decrease in ܥ due to loading is associated with a loss of nonlinearity of BFO, we performed the 
following tests using surrogate time series. For each original data series, 30 surrogate series were generated using the 
iterative amplitude adjusted Fourier transform approach [26]. This approach eliminates nonlinearity, preserving the linear 

features of the original time series, e.g. power spectrum and amplitude distribution [26]. Then we calculated ܥ for the 
surrogate series for a range of RR=0.01~0.08. 

4.3 Statistical analysis 
We compared ܥ between baseline and during loading using a paired t-test (the differences of ܥ between the two conditions 

were normally distributed). One sample t-tests were used to compare ܥ of an original data series and those of surrogate 
series.  

5 Results 
Figure 7 shows the probability distributions of local clustering coefficients ܥ௜ of blood flow signal at baseline and during 

loading period (see Figure 6). Compared with the baseline, distribution of ܥ௜ during loading period was more concentrated 

and the global clustering coefficient ܥ was lower. Figure 8 shows the statistical results of ܥ in the ten subjects. ܥ of BFO 

significantly decreased in response to loading (0.01>݌). Surrogate tests indicated that ܥ  of BFO at baseline was 

significantly larger than that of surrogate data (104>݌), whereas ܥ of BFO during loading was almost equal to that of 

surrogate data (0.05<݌) (see Figure 9).  
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Figure 9. An example of results of surrogate tests. For each original data set, 30 surrogate series were generated. The 
centers of the error bars represent the mean values of C for 30 surrogate series, and the lengths of the error bars represent 
the standard deviations. 

6 Conclusion 
Recurrence is a fundamental property of dynamical processes. The recurrence network approach combines two successful 
concepts in the study of dynamical and complex systems. In this approach, the recurrence matrix of a time series is 
interpreted as an adjacent matrix of a network, and measures of topological properties of complex networks are employed 
to characterize the dynamics of the studied system. Since some measures of complex networks, e.g. local clustering 
coefficient, characterize higher-order properties of the phase space, this approach provides a complementary view for the 
study of time series. Our simulation study showed that time series with different types of dynamics exhibit distinct global 
clustering coefficients and distributions of local clustering coefficients. Additionally, the global clustering coefficient is 
robust to the embedding parameters. By applying this approach, we observed an altered dynamic property of skin BFO in 
response to pressure loading, which was associated with a loss of nonlinearity of BFO.  

One limitation of this approach is the loss of information about temporal structures. In particular, temporal correlations 
between individual data points are not taken into consideration. This makes the recurrence network approach distinctively 
different from many other methods of time series analysis and is an important problem for the analysis of many real-world 
time series.  Nevertheless, as we have mentioned, this approach provides new quantitative characteristics related to the 
dynamical complexity of a time series, which are not yet provided by the existing methods of time series analysis. 
Therefore, we argue that this approach can serve as a complementary method of time series analysis. Moreover, because 
the recurrence network approach does not require long data series, we are able to observe changes in the dynamics with 
time by applying a sliding window to the data series. In summary, our study suggests that recurrence network approach is 
a promising tool for analyzing the nonlinear dynamics of BFO. 

Acknowledgment 
This study was supported by the National Institutes of Health (P20GM103447) and the Christopher and Dana Reeve 
Foundation (JA2-0701-2). 

References 
[1] Lyder, C.H. Pressure ulcer prevention and management. JAMA. 2003; 289(2): 223-6. http://dx.doi.org/10.1001/jama.289.2.223 
[2] Jan, Y.K. and D.M. Brienza. Technology for pressure ulcer prevention. Topics in spinal cord injury rehabilitation. 2006; 11(4): 30-41. 

http://dx.doi.org/10.1310/26R8-UNHJ-DXJ5-XG7W 



www.sciedu.ca/jbgc                                                                Journal of Biomedical Graphics and Computing, June 2012, Vol. 2, No. 1 

                                ISSN 1925-4008   E-ISSN 1925-4016 56

[3] Keller, B.P., J. Wille, B. van Ramshorst, and C. van der Werken. Pressure ulcers in intensive care patients: a review of risks and 
prevention. Intensive Care Med. 2002; 28(10): 1379-88. PMid:12373461 http://dx.doi.org/10.1007/s00134-002-1487-z 

[4] Li, Z., E.W. Tam, M.P. Kwan, A.F. Mak, S.C. Lo, and M.C. Leung. Effects of prolonged surface pressure on the skin blood flowmotions 
in anaesthetized rats--an assessment by spectral analysis of laser Doppler flowmetry signals. Phys Med Biol. 2006; 51(10): 2681-94. 
PMid:16675876 http://dx.doi.org/10.1088/0031-9155/51/10/020 

[5] Li, Z., J.Y. Leung, E.W. Tam, and A.F. Mak. Wavelet analysis of skin blood oscillations in persons with spinal cord injury and able-bodied 
subjects. Arch Phys Med Rehabil. 2006; 87(9): 1207-12; quiz 1287. PMid:16935056 http://dx.doi.org/10.1016/j.apmr.2006.05.025 

[6] Stefanovska, A., M. Bracic, and H.D. Kvernmo. Wavelet analysis of oscillations in the peripheral blood circulation measured by laser 
Doppler technique. IEEE Trans Biomed Eng. 1999; 46(10): 1230-9. PMid:10513128 http://dx.doi.org/10.1109/10.790500 

[7] Stefanovska, A. and M. Bracic. Physics of the human cardiovascular system. Contemporary Physics. 1999; 40(1): 31-55. 
http://dx.doi.org/10.1080/001075199181693 

[8] Jan, Y.K., D.M. Brienza, M.J. Geyer, and P. Karg. Wavelet-based spectrum analysis of sacral skin blood flow response to alternating 
pressure. Arch Phys Med Rehabil. 2008; 89(1): 137-45. PMid:18164343 http://dx.doi.org/10.1016/j.apmr.2007.07.046 

[9] Goldberger, A.L., C.K. Peng, and L.A. Lipsitz. What is physiologic complexity and how does it change with aging and disease? 
Neurobiology of Aging. 2002; 23(1): 23-26. http://dx.doi.org/10.1016/S0197-4580(01)00266-4 

[10] Liao, F., D.W. Garrison, and Y.K. Jan. Relationship between nonlinear properties of sacral skin blood flow oscillations and vasodilatory 
function in people at risk for pressure ulcers. Microvasc Res. 2010; 80(1): 44-53. PMid:20347852 
http://dx.doi.org/10.1016/j.mvr.2010.03.009 

[11] Eckmann, J.P., S.O. Kamphorst, and D. Ruelle. Recurrence Plots of Dynamic-Systems. Europhysics Letters. 1987; 4(9): 973-977. 
http://dx.doi.org/10.1209/0295-5075/4/9/004 

[12] Facchini, A., C. Mocenni, N. Marwan, A. Vicino, and E. Tiezzi. Nonlinear time series analysis of dissolved oxygen in the Orbetello 
Lagoon (Italy). Ecological Modelling. 2007; 203(3-4): 339-348. http://dx.doi.org/10.1016/j.ecolmodel.2006.12.001 

[13] Marwan, N., J. Kurths, and P. Saparin. Generalised recurrence plot analysis for spatial data. Physics Letters A. 2007; 360(4-5): 545-551. 
http://dx.doi.org/10.1016/j.physleta.2006.08.058 

[14] Marwan, N., M.H. Trauth, M. Vuille, and J. Kurths. Comparing modern and Pleistocene ENSO-like influences in NW Argentina using 
nonlinear time series analysis methods. Climate Dynamics. 2003; 21(3-4): 317-326. http://dx.doi.org/10.1007/s00382-003-0335-3 

[15] Thiel, M., M.C. Romano, and J. Kurths. Spurious structures in recurrence plots induced by embedding. Nonlinear Dynamics. 2006; 
44(1-4): 299-305. http://dx.doi.org/10.1007/s11071-006-2010-9 

[16] Zhang, J. and M. Small. Complex network from pseudoperiodic time series: Topology versus dynamics. Physical Review Letters. 2006; 
96(23). http://dx.doi.org/10.1103/PhysRevLett.96.238701 

[17] Donner, R.V., Y. Zou, J.F. Donges, N. Marwan, and J. Kurths. Recurrence networks-a novel paradigm for nonlinear time series analysis. 
New Journal of Physics. 2010; 12. 

[18] Lacasa, L., B. Luque, F. Ballesteros, J. Luque, and J.C. Nuno. From time series to complex networks: The visibility graph. Proceedings of 
the National Academy of Sciences of the United States of America. 2008; 105(13): 4972-4975. PMid:18362361 
http://dx.doi.org/10.1073/pnas.0709247105 

[19] Yang, Y. and H.J. Yang. Complex network-based time series analysis. Physica a-Statistical Mechanics and Its Applications. 2008; 
387(5-6): 1381-1386. 

[20] Donner, R.V., M. Small, J.F. Donges, N. Marwan, Y. Zou, R.X. Xiang, and J. Kurths. Recurrence-Based Time Series Analysis by Means 
of Complex Network Methods. International Journal of Bifurcation and Chaos. 2011; 21(4): 1019-1046. 
http://dx.doi.org/10.1142/S0218127411029021 

[21] Marwan, N., J.F. Donges, Y. Zou, R.V. Donner, and J. Kurths. Complex network approach for recurrence analysis of time series. Physics 
Letters A. 2009; 373(46): 4246-4254. http://dx.doi.org/10.1016/j.physleta.2009.09.042 

[22] Cao, L.Y. Practical method for determining the minimum embedding dimension of a scalar time series. Physica D-Nonlinear Phenomena. 
1997; 110(1-2): 43-50. http://dx.doi.org/10.1016/S0167-2789(97)00118-8 

[23] Marwan, N., M.C. Romano, M. Thiel, and J. Kurths. Recurrence plots for the analysis of complex systems. Physics Reports-Review 
Section of Physics Letters. 2007; 438(5-6): 237-329. http://dx.doi.org/10.1016/j.physrep.2006.11.001 

[24] Theiler, J. Spurious Dimension from Correlation Algorithms Applied to Limited Time-Series Data. Physical Review A. 1986; 34(3): 
2427-2432. PMid:9897530 http://dx.doi.org/10.1103/PhysRevA.34.2427 

[25] Costa, L.D., F.A. Rodrigues, G. Travieso, and P.R.V. Boas. Characterization of complex networks: A survey of measurements. Advances 
in Physics. 2007; 56(1): 167-242. http://dx.doi.org/10.1080/00018730601170527 

[26] Schreiber, T. and A. Schmitz. Improved surrogate data for nonlinearity tests. Physical Review Letters. 1996; 77(4): 635-638. 
PMid:10062864 http://dx.doi.org/10.1103/PhysRevLett.77.635 


