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Abstract 
A problem that occurs in quantitative texture analysis of magnetic resonance imaging (MRI) is that there are intra-scan and 
inter-scan image intensity variations due to the MRI instrumentation. Therefore, image intensity normalization methods 
should be applied prior to further image analysis. The objective of this work was to investigate six previously described  
MRI intensity normalization methods and propose the most appropriate for the pre-processing of brain T2-weighted MR 
images acquired from 38 symptomatic untreated multiple sclerosis (MS) subjects. The following normalization methods 
were investigated: Contrast Stretch Normalization (CSN), Intensity Scaling (IS), Histogram Stretching (HS), Histogram 
Normalization (HN), Gaussian Kernel Normalization (GKN), and Histogram Equalization (HE). The main findings of this 
study can be summarized as follows: 1) Lesion texture features were affected differently by the normalization process for 
both the 0 and 6-12 months MRI scans. For example, for the features median and contrast there was significant difference 
between 0 and 6-12 months for the original MRI images but not for the HN normalized ones. On the other hand for the 
feature complexity there was no significant difference between 0 and 6-12 months for the original MRI images, but there 
was for the HN normalized images. 2) The statistical lesion feature analysis between the original and the normalized 
images showed that the HN method gave the highest number of significant features after normalization for both the 0 and 
6-12 months MRI scans. 3) The HN normalization method gave the best performance compared to the other normalization 
methods with respect to the distance measures, structural similarity index, coefficient of variation, and correlation 
coefficient between the original and the normalized 0 and 6-12 months MRI scans. Thus, based on the above findings it is 
recommended that the simple HN normalization method could be used prior to quantitative texture analysis in the case 
study presented. The findings of this study provide evidence that texture features of MRI-detectable brain white matter 
lesions may have an additional potential role in the clinical evaluation of MRI images in MS. This is a prerequisite step in 
the assessment of texture features as surrogate markers of disease progression. However, a larger scale study is needed to 
establish the application in clinical practice and for computing shape parameters and texture features that may provide 
information for better and earlier differentiation between normal tissue and MS lesions.  
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1 Introduction 
Texture analysis is used widely in MRI enabling disease characterization and quantification of disease distribution. 
Texture features quantify macroscopic lesions and characterize macroscopic changes that may be undetectable using 
conventional measures of lesion volume and number [11]. Furthermore, quantitative texture analysis may provide 
information that is not easily visible to the human eye. However, texture features are sensitive to the acquisition conditions 
including magnetic resonance (MR) protocols, MR scanners and MR adjustments [33]. This yields unwanted intensity 
variations which may affect the results of image analysis. An intensity normalization correction stage is therefore 
essential. It was shown [26, 33] that normalization methods improve image compatibility by reducing the variability 
introduced by different gain settings, different operators, different equipment, and facilitates MR image comparability.  

Different approaches to the above problem have been proposed in the literature. The influence of normalization was 
studied for different acquisition protocols [7]. Meier et al. [25] proposed an intra- and an inter-scan normalization method for 
processing serial MRI scans for direct quantitative evaluation. A histogram mapping was proposed [13], whereas a contrast 
stretch normalization method based on the maximum and minimum gray scale values in the image was introduced [18]. A 
normalization method for brain MRI using histogram even-order derivative analysis was proposed [5], whereas, a 
histogram matching method to correct the variations due to scanner sensitivity was presented [35]. Finally, a normalization 
method was proposed, where the original image histogram is stretched and shifted in order to cover all the available gray 
levels of the image [26].  

The objective of our study was to implement and investigate six different normalization methods for brain MR images and 
propose the most appropriate one for the texture analysis of multiple sclerosis (MS) brain lesions. Preliminary results of 
this study were also published as a conference paper [22], where only 22 subjects were used for the analysis and the 
evaluation of the method.   

Diagnostic evaluation of MS is generally based on MRI imaging and on clinical signs and symptoms [24, 31]. Texture 
features quantify lesion characterization, and several studies have been published for the assessment of MS lesions in: (i) 
differentiating between lesions for normal white matter (NWM), and the normal appearing white matter (NAWM) [15, 39], 
and (ii) monitoring the progression of the disease [7, 10, 16, 25]. It is anticipated that selecting the most appropriate image 
normalization method will help us in differentiating between normal and abnormal tissue, as well as facilitate disease 
monitoring.  

The layout of the paper is as follows: Section II presents the materials and methods, section III highlights the results of the 
study, section IV presents the discussion, and section V the concluding remarks.  

2 Materials and methods 

2.1 Study group and MRI acquisition 
Thirty eight subjects (17 males, and 21 females), aged 34.1±10.5 (mean age ± standard deviation) with a clinical isolated 
syndrome (CIS) of MS and MRI detectable brain lesions were scanned twice at 1.5 T with an interval of 6-12 months. The 
transverse MR images used for analysis were obtained using a T2-weighted turbo spin echo pulse sequence (repetition 
time=4408 ms, echo time=100 ms, echo spacing=10.8 ms). The reconstructed image had a slice thickness of 5 mm and a 
field of view of 230 mm with a pixel resolution of 2.226 pixels per mm. Standardized planning procedures were followed 
during each MRI examination. The MRI images were acquired using a 1.5 T whole body Philips ACS NT MR imager 
(Philips Medical Systems, Best, the Netherlands). A built-in quadrature radiofrequency (RF) body coil and a quadrature 
RF head coil were used for proton excitation and signal detection respectively.  
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Initial clinical evaluation was made by an experienced MS neurologist (co-author, M. Pantziaris) who referred subjects for 
a baseline MRI upon diagnosis and clinically followed all subjects for over five years. All subjects were subjected to an 
expanded disability status scale (EDSS) test two years after initial diagnosis to quantify disability and then again in five 
years. They were clinically followed and examined by the MS neurologist following the initial MRI (time 0) and also at 
two years later. At the initial scan, the stage of the disease was evaluated using the EDSS score [22]. This gave starting 

EDSS scores with a mean of 2.2 and a standard deviation of 0.8. The number of subjects with EDSS≤2, and EDSS>2, two 

years after the first examination were 23 and 15 respectively. In five years’ time the EDSS score gave a mean value of 2.85 
and a standard deviation of 1.5. 

Additionally, brain images from 20 healthy, age-matched (mean±SD: 30.8±7.6) volunteers (8 males, and 12 females) were 
carried out to allow segmentation and analysis of normal brain white matter.  

2.2 Manual delineations and visual perception   

 

Figure 1. An example of MRI preprocessing steps of a 34 year old female patient at 0 and 6-12 months. (a) Selection of the BWM and 

GWM from the first slide of the whole MRI session at 0 months (EDSS=1, BWM=5, GWM=249), (b) MRI image before normalization 
with lesion delineation, (c) MRI normalized image from (b) with the HN method, (d) extracted lesion at 0 months (median (IQR): 92 
(11)) resized by a factor of 3, (e) histogram of the lesion at 0 months (median (IQR): 86(52)), (f) selection of the BWM and GWM from 
the first slide at 6-12 months (EDSS=2, BWM=6, GWM=245), (g) MRI image at 6-12 months before normalization with lesions 
delineation, (h) MRI normalized image from (g) with the HN method,  (i) extracted lesions at 6-12 months (median (IQR): 123 (13), 96 
(11), 98 (11)) resized by a factor of 3, (j-l) histograms of the 3 lesions at 6-12 months after image normalization (median (IQR): 98 (55), 
83 (31), 78 (22)) with the HN method. 
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All MRI-detectable brain lesions were identified and segmented by an experienced MS neurologist and confirmed by a 
radiologist. Only well-defined areas of hyperintensity on T2-weighted MR images were considered as MS plaques. The 
neurologist manually delineated (using the mouse) the brain lesions by selecting consecutive points at the visually defined 
borders between the lesions and the adjacent NAWM on the acquired transverse T2-weigted sections. Similar regions 
corresponding to NAWM were delineated contralaterally to the detected MS lesions. The manual delineations were 
performed using a graphical user interface implemented in Matlab® developed by our group. For each brain MRI scan of 
MS subjects, 10 discrete round regions of interest (ROIs) with an approximate radius of 25 pixels were also drawn in brain 
white matter, usually on the contralateral to the lesion side, to represent NAWM. Every effort was made to avoid white 
matter areas with subtle, patchy and diffuse abnormal signal intensities. Finally, the neurologist manually segmented 
cerebrovascular fluid (CSF) areas as well as areas with air (sinuses) from all MS brain scans. Similarly, ROIs representing 
NWM, CSF and air from the sinuses were arbitrarily segmented from the brain scans of the 20 healthy subjects. Manual 
segmentation by the MS expert was performed in a blinded manner, without the possibility of identifying the subject, the 
time-point of the exam or the clinical findings. The selected points and delineations were saved to be used for texture 
analysis. Figure 1 presents an example of manual selection of the black-white matter (BWM, which is the darkest image 
area) and gray-white matter (GWM, which is the brightest image area), where the neurologist selects BWM and GWM 
from the first slide of the whole MRI session at 0 months (see Fig. 1 (a), BWM=5, GWM=249) and at 6-12 months (see 
Fig. 1 (g), BWM=6, GWM=245), respectively.  

2.3 Interscan intensity normalization 
A normalization algorithm adjusts distributions of each follow up scan to match those of the chosen baseline scan in order 
to improve image compatibility and facilitate MR image comparability between serial MRI scans [25], such as those 
obtained from the MS group of this work.  In order to select the most appropriate normalization algorithm suitable for MRI 
brain lesions normalization of MS patients, the following MRI intra-scan intensity normalization methods were 
implemented and evaluated. An example of interscan intensity normalization method is given in Fig. 1, for 0 and 6-12 
months respectively, whereas Fig. 2 illustrates an example of the original and normalized image histograms for all 
different interscan intensity normalization methods that will be presented below. 

1) Contrast Stretch and Normalization (CSN) [18]: The global maximum ( maxg ) and minimum ( ming ) of the original image 

are firstly estimated by excluding the image background which is normally 0. A 9×9 pixel window is used in the 

neighborhood of maxg and ming to compute the _hi thresg  and _low thresg respectively by averaging all pixels in the 

corresponding windows of the original image. That is grayscale values of the original image, above maxg are equated to 

_hi thresg  and values below ming  are equated to _low thresg , as follows (see also Fig. 2(d)):   

                            max min
_ min

_ _

( , ) ( ( , ) ).low thres
hi thresh low thresh

g g
f x y g x y g g

g g

−= − +
−

                                       (1) 

2) Intensity Scaling (IS): The neurologist selects homogeneous high intensity regions of interest (cerebrospinal fluid or 
High Intensity Region-GWM) and low intensity regions (air from the sinuses or Low Intensity Region-BWM) from the 
brain. The image intensities are mapped to the values between GWM and BWM. This was implemented using the 
Matlab® function gscale as follows (see also Fig. 2(e)):    

   ( , )
( , )

g x y BWM
f x y

GWM BWM

−=
−

                                                                     (2) 

3) Histogram Stretching (HS): The following normalization or contrast stretching transformation for increasing the 
dynamic range of the resulting image was carried out (see also Fig. 2(f)):   
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where ( , )g x y   is the original image gray scale value at coordinates x and y, maxg  and ming  represent the maximum and 

the minimum gray scale values in the original image respectively, and ( , )f x y   the resulted normalized pixel.  

4) Histogram Normalization (HN) [26]: The original image histogram is stretched, and shifted in order to cover all the gray 
scale levels in the image as follows [22, 26] (see also Fig. 1 and Fig. 2(g)): 

      
min

max min

( , ) .( ( , ) )
GWM BWM

f x y g x y g BWM
g g

−= − +
−

                                                       (4) 

If the original histogram of the initial image ( , )g x y , starts at ming and extends up to maxg brightness levels, then we can 

scale up the image so that the pixels in the new image, ( , )f x y , lie between a minimum level ( BWM ) and a maximum 

level ( GWM ). This is done by scaling up the intensity levels according to (4). 

5) Gaussian Kernel Normalization (GKN) [17]: A local normalization algorithm is used that normalizes the local mean and 
variance of the image estimated by a Gaussian Kernel using smoothing operators. The resulted image is as follows (see 
also Fig. 2(h)): 

   ( , )
( , ) g

g

g x y m
f x y

σ
−

=                                                                            (5) 

where 
gm  and 

gσ  represent the mean and standard deviation of the original image respectively.  

6) Histogram Equalization (HE) [13]: Image histogram equalization was carried out using the Matlab® function histeq (see 
also Fig. 2(i)). Redistribution of the pixels in the image is based on the normalized cumulative histogram, defined as:  

         
0

1
( ) ( )

j

i

H j h i
MN =

=       0,1,... 1j P= −                                                               (6) 

where the histogram of the image ( , )g x y , is defined as ( )h i with 0 to P-1 grey levels. The normalized cumulative 

histogram can be used as a mapping between the original gray levels in the image and the new gray levels required for 

enhancement. The enhanced image ( , )f x y  will have a maximally uniform histogram [29] if it is defined as:                                                

   ( , ) ( 1) ( ( , ))f x y P H g x y= −                                                                      (7) 

2.4 Feature extraction: Shape and texture  
In this study, shape parameters and texture features were extracted from all MS lesions detected and segmented, as well as 
from all the segmented ROIs from the healthy brain areas. The overall shape parameters and texture features for each 
subject were then estimated by averaging the corresponding values for all lesions for each subject. The following 
parameters and features were extracted:  

i. Shape Parameters: 1) X-coordinate maximum length, 2) Y-coordinate maximum length, 3) area, 4) perimeter, 5) 
perimeter2/area, 6) eccentricity, 7) equivalence diameter, 8) major axis length, 9) minor axis length, 10) centroid, 
11) convex area, and 12) orientation.  
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ii. Statistical Features [14, 21]: a) mean, b) variance, c) median value, d) skewness, e) kurtosis, f) energy and g) 
entropy.  

iii. Spatial Gray Level Dependence Matrices (SGLDM) as proposed by Haralick et al. [14]: a) angular second moment 
(ASM), b) contrast, c) correlation, d) sum of squares variance (SOSV), e) inverse difference moment (IDM),  
f) sum average (SA), g)  sum variance (SV), h) sum entropy (SE), i) entropy, j) difference variance (DV),  
k) difference entropy (DE), and l) information measures of correlation (IMC). For a chosen distance d (in this 

work was used) and for angles 0 00 , 45 ,90 ,oθ =  and 0135 , we computed four values for each of the above 

texture measures. Each feature was computed using a distance of one pixel. Then for each feature the mean values 
and the range of values were computed, and were used as two different feature sets. 

iv. Gray Level Difference Statistics (GLDS) [37]: a) homogeneity, b) contrast, c) energy, d) entropy, and e) mean. The 

above features were calculated for displacements (0,1), (1,1), (1, 0)(1, 1)δ = − , where ),( yx ΔΔ≡δ , and their 

mean values were taken.  

v. Neighborhood Gray Tone Difference Matrix (NGTDM) [1]: a) coarseness, b) contrast, c) busyness, d) complexity, 
and e) strength.  

vi. Statistical Feature Matrix (SFM) [38]: a) coarseness, b) contrast, c) periodicity, and d) roughness.  

vii. Laws Texture Energy Measures (LTEM) [38]: LL-texture energy from LL kernel, EE-texture energy from 
EE-kernel, SS-texture energy from SS-kernel, LE-average texture energy from LE and EL kernels, ES-average 
texture energy from ES and SE kernels, and LS-average texture energy from LS and SL kernels.  

viii. Fractal Dimension Texture Analysis (FDTA) [38]: The Hurst coefficients for dimensions 4, 3 and 2 were 
computed.  

ix. Fourier Power Spectrum (FPS) [38]: a) radial sum, and b) angular sum. 

2.5 Evaluation metrics and statistical analysis  
Distance Measures: In order to identify the most discriminant features and cross-evaluate between the different 
normalization methods the following distance measures for each feature were computed: 

1) A simple figure of merit for the discriminatory value of each individual feature could be defined by computing 
the distance between two classes for each feature as follows [6]:  

                              
2 2

0

i i
N

g f

FEAT
i gi f i

m m
D

σ σ=

−
=

−
                                                                         (8) 

where N is the number of features, and 
igm and 

if
m represent the mean feature values, and 

igσ  and 
if

σ  

represent the standard deviation feature values of the original and normalized features respectively. 

2) Furthermore, a variation of the Hausdorff distance, HDD , between two sets (original, ( , )g x y , and normalized 

( , )f x y , images) was calculated [4]. It reflects the maximum mismatch between the original and the normalized 

images. 

    ( , ) ( , )HDD MAX g x y f x y= −                                                                 (9) 
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3) The Mahalanobis distance [23] was calculated between the original and the normalized images. It is based on 
correlations between variables by which different patterns can be identified and analyzed. The Mahalanobis 

distance, 
MD  , can be defined as a dissimilarity measure between two random vectors (original ( g ), and 

normalized ( f  ) ) of the same distribution with the covariance matrix S as:  

   .  1( ) ( )T
MD g f S g f−= − −

   
                                                        (10) 

4) Kullback-Leibler Divergence: Instead of measuring the similarity, we measure the dissimilarity of two 
histograms and by the Kullback-Leibler Divergence (DKLD) or relative entropy between two distributions [29], 
given by:  

   ( )
( ) log

( )
g

KLD g
i f

P i
D P i

P i
=                                                               (11) 

where, 
gP  and 

fP  are the probability distributions corresponding to ( , )g x y  and ( , )f x y , respectively, and    

represents the gray level index. The DKLD yields a positive value. A higher score indicates a higher dissimilarity, 
hence a higher possibility of a histogram or a feature shift [29].  

5) The structural similarity index (SSIN) between two images [36], which models any distortion as a combination of 
three different factors, which are: loss of correlation, luminance distortion, and contrast distortion and is derived 
in generalized form as:  

                                                1 2

2 2 2 2
1 2

(2 )(2 )

( )( )
g f gf

g f g f

m m c c
SSIN

m m c c

σ
σ σ

+ +
=

+ + + +
 1 1SSIN− < <                                (12) 

where gm , and fm  represent the mean of the original and normalized image values, with their standard 

deviations, ,gσ  and ,fσ  of the original and normalized values of the analysis window, and gfσ , represents the 

covariance between the original and transformed images. The constants 
1 0.01c dr= , and 

2 0.03c dr= , with 

255dr = , represents the dynamic rage of the images. The range of values for the SSIN  lies between –1, for a bad 

and 1 for a good similarity between the original and normalized images respectively. It is computed for a sliding 
window of size 8x8 without overlapping. 

The non-parametric Wilcoxon rank sum test [1] was used in order to detect if for each texture feature a significant 
difference (S) or not (NS) exists between the original and the normalized images at p<0.05. The test was implemented 
using the MATLAB® ranksum(x, y) which performs a two-sided  rank sum test of the null hypothesis that data in the 
vectors x and y are independent samples from identical continuous distributions with equal medians, against the 

alternative that they do not have equal medians.  We also calculated the coefficient of variation, %CV , which describes the 

difference as a percentage of the pooled mean value with % ( / ) 100CV σ μ= × , whereσ , and μ , represent the standard 

deviation and the mean values of the sample [26]. Furthermore, the correlation coefficient, ρ , between the original and the 

normalized features was calculated, which returns the normalized covariance matrix.   

3 Results 
In Fig. 1 we present an example of MRI pre-processing steps of a 34 year old female patient at 0 (EDSS=1) and 6-12 
(EDSS=2) months in the left (see Fig.1(a)-(e)) and right (see Fig. 1(f)-(l)) columns respectively. We present the first slide 
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from the MRI image sequences where the manually selected areas for the BWM and GWM are shown in Fig. 1(a) and Fig. 
1(f) for the 0 and 6-12 months sequences respectively. These values are used to perform the normalization process in all 
the consecutive brain slices as described in section 2.3 for the HN method. Figure 1(b) and 1(c) present the MRI image of 
the same patient at 0 months, with one manually segmented lesion before normalization, and after normalization with the 
HN method respectively (and similarly in Fig. 1(g) and 1(h) for the same patient at 6-12 months). In Fig. 1(d) and 1(i) we 
illustrate the extracted lesion at 0 months (median (IQR): 92 (11)), and the three extracted lesions at 6-12 months (median 
(IQR): 123 (13), 96 (11), 98 (11)) resized by a factor of 3, respectively. The corresponding normalized lesion histogram at 
0 months (median (IQR): 86(52)), is given in Fig. 1(e), and the corresponding normalized histograms for the three lesions 
at 6-12 months (median (IQR): 98 (55), 83 (31), 78 (22)), are given in Fig. 1 (j)-(l) respectively.  

Figure 2(a) presents an MRI brain image of the same patient as in Fig. 1 at 0 months with a different lesion before 
normalization resized by a factor of 4 as shown in Fig. 2(b). The original lesion histogram is presented in Fig. 2(c) whereas 
Fig. 2(d) through Fig. 2(i) present the different lesion histograms generated after the application of each normalization 
method for the cases of CSN, IS, HS, HN, GKN and HE, respectively.  

 

Figure 2. An example of interscan intensity MRI imaging normalization methods. (a) MR brain image of the same patient as in Fig. 1 at 
0 months with a different lesion (BWM=6, GWM=245), (b) the extracted lesion before normalization resized by a factor of 4, (c) lesion 
histogram before normalization (median (IQR): 102 (43)), (d) normalized lesion histogram with the CSN method (median (IQR): 37 
(65)), (e) normalized lesion histogram with the IS method (median (IQR): 39 (65)), (f) normalized lesion histogram with the HS method 
(median (IQR): 100 (43)), (g) normalized lesion histogram with the HN method (IQR): 49 (66)), (h) normalized lesion histogram with 
the GKN method (IQR): 34 (49)), and (i) normalized lesion histogram with the HE method (IQR): 63 (112)).  
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Table 1 presents the median values of texture features at 0 versus 6-12 months extracted from the original (Orig.) and the 
normalized MRI images (CSN, IS, HS, HN, GKN, HE). The Wilcoxon rank sum test was performed on the texture 
features of the original and the normalized images for 0 versus 6-12 months. It is shown in Table 1, that the different 
features were affected differently by the normalization process. For example, for the features median and contrast there 
was significant difference between 0 and 6-12 months for the original images but not for the HN normalized. On the other 
hand for the feature complexity there was no significant difference between 0 and 6-12 months for the original image, but 
there was for the HN normalized images.   

Table 1. Median Values of Texture Features and Statistical Analysis at 0 versus 6-12 Months (-/-) for All Lesions for the 
Different Normalization Methods Investigated (Number of Subjects N=38) 

Method Median S/NS STD S/NS Contr S/NS Entr S/NS DE S/NS 

Orig. 127/117 S(0.006) 16/15 NS(0.10) 91/74 S(0.04) 5.1/5.1 NS(0.9) 2.7/2.6 NS(0.7) 

CSN 119/107 S(0.03) 22/21 NS(0.22) 124/94 NS(0.15) 5.7/5.7 NS(0.8) 2.6/2.5 NS(0.3) 

IS 114/108 S(0.03) 19/18 NS(0.21) 87/77 NS(0.22) 5.7/5.6 NS(0.8) 2.8/2.6 S(0.04) 

HS 115/109 S(0.04) 19/17 NS(0.24) 112/87 NS(0.31) 5.7/5.7 NS(0.8) 2.4/2.7 S(0.03) 

HN 115/106 NS(0.06) 20/19 NS(0.47) 116/112 NS(0.3) 5.7/5.7 NS(0.8) 2.7/2.9 S(0.02) 

GKN 117/114 NS(0.2) 19/18 NS(0.36) 119/114 NS(0.62) 5.7/5.7 NS(0.7) 2.5/2.7 S(0.05) 

HE 119/116 S(0.003) 10/9 NS(0.08) 55/54 NS(0.14) 5.3/5.4 NS(0.3) 2.3/2.4 NS(0.3) 

Method PERD S/NS SV S/NS BUS S/NS COMP S/NS IDM S/NS 

Orig. 0.63/0.63 NS(0.3) 172/147 S(0.03) 11/13 NS(0.2) 12/23 NS(0.33) 0.145/154 S(0.03) 

CSN 0.66/0.67 NS(0.1) 159/153 NS(0.07) 10/19 NS(0.31) 11/17 NS(0.12) 0.161/1.72 NS (0.22) 

IS 0.64/0.65 S(0.04) 186/177 S(0.03) 12/16 S(0.02) 13/19 S(0.02) 0.15/0.16 S(0.04) 

HS 0.65/0.67 NS(0.19) 217/204 NS(0.24) 15/17 NS(0.7) 21/24 NS(0.3) 0.14/0.15 NS(0.07) 

HN 0.64/0.65 NS(0.02) 154/157 S(0.03) 14/17 NS(0.02) 13/22 S(0.04) 0.24/0.25 S(0.03) 

GKN 0.65/0.66 NS(0.1) 123/118 NS(0.2) 15/16 NS(0.3) 15/17 NS(0.3) 0.16/0.17 NS(0.09) 

HE 0.66/0.67 NS(0.1) 166/172 S(0.003) 13/14 NS(0.56) 18/21 NS(0.09) 0.14/0.15 NS(0.31) 

Note. CSN: Contrast Stretch Normalization, IS: Intensity Scaling, HS: Histogram Stretching, HN: Histogram Normalization, GKN: Gaussian Kernel Normalization, HE: Histogram Equalization. STD: 

Standard Deviation, Contr.: Contrast, Entr.: Entropy, DE: Difference entropy, PERD: Periodicity, SV: Sum variance, BUS: Busyness, COMP: Complexity, IDM: Inverse Difference Moment, S/NS: 

Significantly (S) different at 0.05p <= , and non-significantly different (NS) at 0.05p > , with the p value given in parentheses. 

Table 2 shows the results of the Wilcoxon rank sum test performed on the texture features extracted from all lesions 
between the original versus the normalized images for both 0 and 6-12 months. The test was performed to check if 
significant differences exist between the features computed on the original versus the normalized lesions. Normalization 
methods that resulted with the most significant number of features after normalization were the HN for 0 months and the 
HS, HN and GKN for 6-12 months. The rest of the normalization methods gave a lower number of significantly different 
features. Features that showed a significant difference after normalization were the median, entropy (Entr.), and 
complexity (COMP). 

Table 3 shows the median (IQR) values for different distance measures for the six different normalization methods 
investigated for the lesion ROIS at 0/6-12 months for all subjects investigated (N=38). It is shown that the HN image 

normalization method exhibits small distances ( 0.13(0.19) / 0.11(0.16),FEATD = 0.17(0.21) / 0.15(0.17),HDD =
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0.19(0.16) / 0.21(0.17)MD = , 0.053(0.08) / 0.062(0.14)KLDD = ), a large SSIN (SSIN=0.98(0.08))/0.97(0.11), the smallest 

coefficient of variation ( % 14.4 /17.7CV = , for 0 and 6-12 months respectively) and the largest correlation coefficient  

( 0.91 / 0.89ρ = ), for 0/6-12 months, when compared with the rest of the normalization methods.  

Table 2. Wilcoxon Rank Sum Test Performed on the Texture Features Extracted from All Lesions between The Original 
and The Normalized Images At 0 And 6-12 Months 

Method Median STD Contr Entr DE IDM PERD SV BUS COMP 

 Original vs Normalized at 0 months 

CSN S S S S S S NS NS S S 

IS S S S S S NS S NS S S 

HS S S S S S S NS NS S S 

HN S S S S S S S S S S 

GKN S S NS S S S S S NS S 

HE S NS S S NS S NS NS S S 

 Original vs Normalized at 6-12 months 

CSN S S S S S S NS NS S S 

IS S S NS S S S S NS NS S 

HS S S S S S S S NS S S 

HN S S NS S S S S S S S 

GKN NS S S S S S S S NS S 

HE S NS S S NS S NS NS S S 

Table 3. Distance Measures For The Six Different Normalization Methods Investigated For The Lesion ROIS AT 0/6-12 
Months (median (IQR)) (Number of Subjects N=38) 

Method vs 
Normalized 

DFEAT  DHD DM DKLD SSIN CV% ρ  

CSN 
0.19(0.61)/ 
0.21(0.17) 

0.28(0.26)/ 
0.31(0.26) 

0.21(0.19)/ 
0.23(0.22) 

0.21(0.06)/ 
0.23(0.17) 

0.87(0.26)/ 
0.88(0.27) 

18.2/ 
19.1 

0.37/ 
0.46 

IS 
0.43(0.42)/ 
0.41(0.39) 

0.32(0.29)/ 
0.29(0.25) 

0.40(0.31)/ 
0.39(0.27) 

0.06(0.16)/ 
0.08(0.15) 

0.96(0.17)/ 
0.96(0.26) 

18.1/ 
16.9 

0.38/ 
0.45 

HS 
0.32(0.37)/ 
0.28(0.33) 

0.35(0.33)/ 
0.38(0.31) 

0.33(0.29)/ 
0.34(0.26) 

0.22(0.07)/ 
0.21(0.12) 

0.92(0.12)/ 
0.92(0.19) 

17.67/ 
18.7 

0.41/ 
0.49 

HN 
0.13(0.19)/ 
0.11(0.16) 

0.17(0.21)/ 
0.15(0.17) 

0.19(0.16)/ 
0.21(0.17) 

0.053(0.08)/ 
0.062(0.14) 

0.98(0.08)/ 
0.97(0.11) 

14.4/ 
17.7 

0.91/ 
0.89 

GKN 
0.35(0.46)/ 
0.34(0.39) 

0.37(0.27)/ 
0.32(0.23) 

0.32(0.44)/ 
0.28(0.39) 

0.22(0.07)/ 
0.24(0.13) 

0.92(0.17)/ 
0.90(0.21) 

17.2/ 
19.1 

0.69/ 
0.66 

HE 
0.17(0.39) 
0.21(0.37) 

0.19(0.22)/ 
0.21(0.24) 

0.20(0.29)/ 
0.22(0.28) 

0.32(0.47)/ 
0.39(0.47) 

0.88(0.31)/ 
0.87(0.33) 

6.61/ 
7.12 

0.88/ 
0.81 

Note. CSN: Contrast stretch normalization, IS: Intensity scaling, HS: Histogram stretching, HN: Histogram normalization, GKN: Gaussian kernel normalization, HE: Histogram equalization. 
FEATD : 

Feature distance, 
HDD : Hausdorff distance, 

MD : Mahalanobis distance, 
KLDD : Kullback-Leibler Divergence distance, SSIN: Structural similarity index, %CV : Coefficient of Variation, ρ : 

Correlation coefficient 

Figure 3 presents box plots for the
KLDD for 0 and 6-12 months for all the normalization methods investigated. It is clearly 

illustrated that the HN method exhibits the smallest 
KLDD  at both 0 and 6-12 months (median (IQR) values of 0.053(0.08) 
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and 0.062(0.14) respectively) which means that this method brings about the smallest divergence to the original image 
histogram.  

 

Figure 3. Box plots for the Kullback-Leibler Divergence (DKLD) for the 6 different MRI image normalization methods for 0 and 6-12 
months for the 38 MS subjects studied. IQR values are shown above the box plots. In each plot we display the median, lower, and upper 
quartiles and confidence interval around the median. Straight lines connect the nearest observations with 1.5 of the Inter-Quartile Range 
(IQR) of the lower and upper quartiles. Unfilled rectangles indicate possible outliers with values beyond the ends of the 1.5 x IQR. 

4 Discusion 
The objective of this study was to implement and investigate six different, previously proposed image normalization 
methods and propose the most suitable for the analysis of brain MRI images in the case of MS. The image normalization 
methods investigated were the following: Contrast Stretch Normalization (CSN), Intensity Scaling (IS), Histogram 
Stretching (HS), Histogram Normalization (HN), Gaussian Kernel Normalization (GKN) and Histogram Equalization 
(HE). Data presented in Tables 1 and 2I suggest that the normalization procedure applied on brain MR images 
significantly affects quantitative texture analysis and that different normalization techniques have variant effects on 
discrete texture features. Various different features were considered in the current study, irrespective of their relative 
ability with regard to MS lesion load assessment, to allow discrimination of the technique that better alleviates the 
problems imposed by intra- and inter-scan signal intensity variations. The main findings of this study can be summarized 
as follows:  

1) Lesion texture features were affected differently by the normalization process for both the 0 and 6-12 months 
MRI scans (see also Table 1). For example, for the features median and contrast there was significant difference 
between 0 and 6-12 months for the original images but not for the HN normalized. On the other hand for the 
feature complexity there was no significant difference between 0 and 6-12 months for the original image, but 
there was for the HN normalized images.   

2) The statistical lesion feature analysis between the original and the normalized images showed that the HN method 
gave the highest number of significant features after normalization for both the 0 and 6-12 months MRI scans (see 
also Table 2).  

3) The HN normalization method gave the best performance compared to the other normalization  methods with 
respect to the distance measures, structural similarity index, coefficient of variation, and correlation coefficient 
between the original and normalized 0 and 6-12 months MRI scans (see also Table 3).  
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Thus, based on the above findings it is recommended that the simple HN normalization method could be used for assessing 
the MS lesion load in the studied patient group. This normalization method allows for scanner instrumentation variations 
to be partly compensated and thereby facilitates meaningful comparisons between MRI data sets obtained at different 
times and from different subjects. The method does not depend on knowledge of the applied scanner calibration procedure 
and thus can be used on retrospectively collected data.  

The proposed HN normalization method was used in a recent study carried out by our group. The use of multi-scale 
Amplitude Modulation-Frequency Modulation (AM-FM) texture analysis of MS using MRI images was investigated on 
the same image set of MRI scans presented in this paper [20]. The instantaneous amplitude (IA), the magnitude of the 
instantaneous frequency (IF) and the IF angle were extracted from each segmented region at different scales. The findings 
suggest that AM-FM characteristics succeed in differentiating (i) between NWM and lesions, (ii) between NAWM and 
lesions, and (iii) between NWM and NAWM. A support vector machines (SVM) classifier succeeded in differentiating 
between patients that, two years after the initial MRI scan, acquired an EDSS<=2 from those with EDSS>2 (correct 
classification rate=86%). The best classification results were obtained from including the combination of the low-scale IA 
& IF magnitude with the medium-scale IA. The AM-FM features provide complementary information to classical texture 
analysis features like the gray scale median (GSM), contrast, and coarseness. 

Several other studies with more complicated algorithms and very promising results have been proposed in the literature for 
MRI normalization that are briefly discussed below.  

The influence of MRI acquisition protocols, and gray level normalization methods on texture classification [7] were 

evaluated. Image grey levels were normalized to limit image intensities to between [ 3 , 3 ]m mσ σ− + for each ROI, 

where m is the mean grey level, and σ is the standard deviation. This normalization scheme reported the best 

classification results in the case of MR imaging of soft cheeses and having no relationship between classification errors 
and MR acquisition protocols. The results also showed that the normalization method and the acquisition protocol 
influence the effectiveness of the classification. More specifically, if no normalization was applied, the classification 
errors depend on the MR acquisition protocols. However, when using normalization, no relationship was observed and the 
classification results were significantly improved.  

A histogram matching method was proposed [35] for correcting the variations in scanner sensitivity due to differences in 
scanner performance. It was shown that the method reduced the variation in white matter intensities from 7.5% to 2.5% 
and provided a method to remove the threshold dependency in lesion volume measurement with global thresholding in 
patients with MS.  

Furthermore, the utility of even order derivative analysis in MRI histogram normalization has been demonstrated [5]. It was 
shown that good white matter peak discrimination was achieved even when significant overlap existed between gray 
matter and white matter peaks, as this is the case with the T2-weighted brain images. Furthermore, the ability of the 
normalization procedure to correct the global intensity variations over time was demonstrated by the high degree of 
reproducibility of an automatic brain segmentation algorithm following intensity normalization. 

In another study [25], an image post processing method for integrating multiple serial MRI scans into a volume for direct 
quantitative evaluation of the temporal intensity profiles was proposed. A significant error reduction was observed when 
applying tissue specific inter-scan intensity normalization, suggesting that intensity variations above 3% can be reliably 
detected.  

Nyul et al. [28] proposed a method consisting of a training stage to find the parameters of the standard scale and a 
transformation stage that maps the histograms of candidate volumes to the standard histogram scale in a piece-wise linear 
manner. The scale has been shown to be relatively stable across different variations of the piece-wise intervals. Later, the 
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same authors proposed solutions for the limitations in their earlier study [27]. The effectiveness of the above method 
proposed [28], was later evaluated [32] for rendering. It was demonstrated that lesion segmentation is more accurate after the 
application of the normalization method.  

5 Concluding remarks 
MRI analysis has become a powerful tool in the diagnosis of brain disease [11, 39]. Pixel intensity variations between the 
same and consecutive MRI scans i.e. intra-scan and inter-scan variations, complicate the method of quantitative MRI 
analysis [25]. Improvements in the measurement and pre-processing of the image may therefore have a significant impact in 
the clinical diagnosis, image analysis, and computer aided diagnosis. In the current case study of 38 MS patients, it was 
shown that the simple HN method of histogram intensity normalization proposed [22] can help in this direction. This will 
enable a more accurate computation of texture features that may provide information for the earlier differentiation between 
normal tissue and MS lesions and in assessing disease progression. MRI texture analyses of lesions in MS can also help in 
specifying the types of MS (CIS, primary progressive, progressive-relapsing, relapsing-remitting and secondary 
progressive based on the differences in analyses between the groups. Therefore, the proposed normalization method may 
be useful in the inter-comparison of both serial and cross-sectional MRI data sets from MS patients.. Further research work 
on a larger number of subjects is required for validating the results of this study and for assessing additional algorithms 
which may be found suitable for normalizing brain MRI scans of MS patients.  
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