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Abstract 
Objective: To the best of our knowledge, no comparison between 1-compartmental (1cm) and 2-compartmental (2cm) 
models in calculation of myocardium blood flow (MBF) and coronary flow reserve (CFR) in 82Rb PET imaging has been 
performed. We present our results of comparing 1cm and 2CM in 82Rb myocardial PET imaging. 

Methods: Twenty nine patients, mean age 58±9.5 years (mean±standard deviation), were imaged at rest and pharmaco- 
logical stress, following an i.v. injection of 1850 MBq of 82Rb each. A GE DLS PET-CT+16 scanner was used in this 
study. All images were acquired in 2D mode. For each study, 50 frames were acquired. The time per frame was 5sec 
between 0-3 min, 15sec between 3-5 min and 30 sec between 5-8 min. MBF was calculated by using 1cm and 2cm. The 
results for global and regional left circumflex artery (LCX), left anterior artery (LAD) and right coronary artery (RCA), 
rest and stress MBF, and CFR values obtained by 1cm and 2cm were compared by using Bland and Altman method. The 
reproducibility coefficient was calculated as 1.96 times the standard deviation (SD) of the differences between 1cm and 
2cm values. 

Results: The global rest MBF values, expressed as mean± SD, for both 1cm and 2cm were very similar (0.74 ± 0.17 vs. 
0.73 ± 0.17 mL/min/g), and reproducibility was good, 0.12 mL/min/g (16.3% of the mean). The same held true for the 
1CM and 2CM stress global MBF values (1.71 ± 0.54 and 1.73 ± 0.50 mL/min/g) with good reproducibility of 0.25 
mL/min/g (14.4% of the mean). The regional, LCX, LAD and RCA rest and stress MBF values, obtained by 1cm and 2cm, 
were marginally reproducible, i.e., 50% or more of the mean. The global CFR values for both 1cm and 2cm were very 
similar (2.44 ± 0.84 vs. 0.2.44 ± 0.89), and reproducibility was good 0.34 (14.1% of the mean). 

Conclusions: The MBF and CFR global rest and stress values obtained by 1cm and 2cm were close and reproducible. 
However, the regional LAD, RCA and LCX rest and stress MBF values showed marginal reproducibility. Limited 
regional MBF reproducibility may be caused by sampling error and/or cardiac and breathing motion. We believe that the 
reproducibility of regional values can be improved by data smoothing and motion gating. 
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1 Introduction 
Over the past decade, a shortage of 99mTc cardiac perfusion SPECT tracers and increased number of PET/CT scanners, 
revived interest for 82Rb cardiac perfusion PET imaging. Especially the push for it was in Europe, where the number of 
myocardial perfusion imaging (MPI) studies is low compared with the number of MPI performed in the USA [1, 2]. The 
main advantage of 82Rb over other approved PET perfusion tracers, namely 13NH3 and15O-labeled water (H2

15O), is that 
among these tracers only 82Rb is generator-produced and does not require an onsite cyclotron. The quantification of 
myocardial blood flow (MBF) and coronary flow reserve (CFR) can improve diagnostic and prognostic value of MPI. 
MBF and CFR provide information on both the macro- and the micro-circulation and likely more accurate detection of 
both early and advanced disease [2, 3]. However, there are several issues related to quantification of regional MBF using 
82Rb. First, due to the short half-life of 82Rb (75s), cardiac images obtained with 82Rb tend to be count-poor. Second, the 
high positron energy (3.15 MeV) results in decreased resolution compared to other PET tracers. Third, there is heavy 
dependence of myocardial extraction of this tracer on the prevailing flow rate and myocardial metabolic state [4]. However, 
careful design of the 82Rb cardiac perfusion PET imaging protocol, with proper timing and dosing, can achieve good 
quality images using either, 2D and 3D PET imaging [5]. 

To the best of our knowledge, no comparison between 1-compartmental (1cm) and 2-compartmental (2cm) models in 
calculation of MBF and CFR in 82Rb PET imaging has been performed, as was the case for 13NH3 cardiac perfusion PET 
imaging [6]. In 82Rb and 13NH–ammonia PET myocardial perfusion studies, various centers are using different approaches, 
i.e., 1cm or 2cm, for estimation of MBF. In this paper, we wish to compare MBF calculations at rest and pharmacological 
stress, and calculation of CFR, utilizing 1cm and 2cm models in 82Rb cardiac perfusion PET imaging. 

2 Materials and methods 

2.1 Protocol 
Twenty nine patients, mean age 58±9.5 years (mean ± standard deviation), were imaged at rest and pharmacological stress, 
following an i.v. injection of 1850 MBq of 

82Rb each. Subjects were instructed to fast for at least 6h and to abstain from 
products containing caffeine for at least 12h prior to imaging. The study protocol met the criteria of the Declaration of 
Helsinki, was approved by the internal review board and all subjects gave informed consent. Pharmacologic stress was 
achieved with the standard dose of adenosine (140 mg/kg/min infused over 6 min) or dipyridamole (0.56mg/kg infused 
over 4 min). 

2.2 Data acquisition 
For each dynamic study, 50 frames were acquired. The time per frame was 5sec between 0-3 min, 15sec between 3-5 min 
and 30 sec between 5-8 min. A GE DLS PET-CT+16 scanner (General Electric Medical Systems, Milwaukee, WI) was 
used for all acquisitions. All studies were done in 2D acquisition mode and images were reconstructed using a filtered back 
projection reconstruction method and a Hanning smoothing filter with a 0.5cy/cm cutoff. The matrix size was 128×128 
and the pixel size was 4.29 mm. Attenuation correction was applied in all studies using 16-slice CT images. In addition, 
standard corrections for randoms and scatter provided by the vendor were applied. 

2.3 Data analysis 
A 1-compartmental and a 2-compartmental model were used to estimate MBF (mL/min/g) and coronary flow reserve 
(CFR). The 1CM is described with the differential equation [7] 

dCmyo(t) / dt = K1Ca(t) – K2Cmyo(t)      (1) 
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where Ca(t) and Cmyo(t) are the concentrations of 82Rb in the arterial blood and the myocardium respectively. No metabolite 
correction was applied in this case [Ca(t) = Clv(t)]. 

82Rb is known to have a flow-dependent extraction fraction, so that K1, which is the product of flow MBF times extraction 
fraction E, is described by a Renkin-Crone function 

K1 = (1 – a * e-b/MBF)*MBF     (2) 

The values of the correction factors used were a=0.77 and b= 0.63 (mL/min/g) [7]. The model implements a geometric 
double spillover correction for activity from the left and right ventricle in the form: 

CPET (t) = (1–VlvVrv) Cmyo (t) + VlvClv (t) +VrvCrv (t)      (3) 

where Vlv is spill-over fraction of the blood activity in the left ventricle Clv(t), and Vrv is spill-over fraction of the blood 
activity in the right ventricle Crv(t). In practice, the equation (2) is inserted into the differential equation (1), so that MBF 
becomes a fit parameter, and K1 is a derived parameter. As shown in equations (1) and (3), Crv(t) and Clv(t) are used in 
spillover correction and Clv(t) is used as input curve. 

The 2-compartmental model is described by two differential equations [8, 9] 

dC1 (t) / dt = MBF [Ca(t) – C1(t)/Vd)] –k1C1(t) + k2C2(t)        (4) 

dC2 (t) / dt = k1C1(t) – k2C2(t)     (5) 

where C1(t) represents the fast exchangeable compartment (vascular and interstitial spaces), C2(t) the slow exchangeable 
compartment (intracellular space), k1 and k2 are rate constants (1/min) and Vd is a fractional volume of distribution in the 
first compartment. 

The operational equation which is fitted to the measured data is 

CPET (t) = FMM [C1(t) + C2 (t)]+ FBM Ca (t)              (6) 

where FMM denotes the tissue recovery coefficient and FBM denotes the blood to myocardium spillover fraction. 

The recovery coefficient (FMM) was set to 0.65, and the fractional volume of the first compartment (Vd) was fixed at 0.75 
mL/mL [8]. The differential equations (5) and (6), describing a 2-compartmental model, were solved by numerical 
integration and using Levenberg-Marquardt's method for fitting data. The program calculates flow values (mL/min/mL), 
k1 and k2 constants and cross-talk from blood to tissue (FMB). 

Creation of volume-of interests (VOIs) and time-activity-curves (TACs) 

The first step in creation of the left ventricle (LV), right ventricle (RV), and myocardial VOIs was to sum dynamic study. 
The summed study was then re-oriented to short-axis orientation. The initial VOIs were obtained from re-oriented 
summed myocardial images using the PMOD program [10, 11], which had been used before for the assessment of MBF with 
rest and stress in 15O-labeled water PET studies [11]. However, for more than a half subjects, a skilled operator corrected 
initial VOIs by drawing slightly different region-of interests (ROIs) over several slices of the 3-dimensional (3D) volume 
(see Figure 1). The corrected VOIs were then used to obtain the left ventricle (LV), right ventricle (RV), and 17 segments 
myocardial TACs. The current PMOD version 3.2 uses American Heart Association 17 standard segments and calculates 
myocardial flow for each segment, as well as average left circumflex artery (LCX), left anterior artery (LAD) and right 
coronary artery (RCA) territories, and global flow (see Figure 2). 
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had documented CAD and none with evidence of stress perfusion defects. The segmental MBF values were also presented 
and discussed. 

The results of these relatively recent studies [15-17] showed that in 82Rb PET imaging, global MBF and CFR values are 
reproducible, regardless of whether a 1cm or 2cm approach was used. Temporal smoothing or using factorial analysis to 
address relatively noisy dynamic 82Rb data, especially the late frames, due to the short half-life of 75s, improves the 
repeatability of MBF and CFR calculations for global and regional values. 

In our approach, further improvement of assessing 82Rb rest and stress MBF values and CFR can be obtained by allowing 
creation of the input TAC using the left atrial (LA) area in addition or instead of the LV cavity area. In some subjects with 
a small heart, a small LV cavity may not be the best choice for creating the input TAC, due to high cross talk from the LV 
wall activity. However, for real improvement in accuracy of regional and segmental MBF and CFR calculations, one 
would also need to apply cardiac and breathing gating. To the best of our knowledge, none of the current studies have  
done so. 

5 Conclusions 
The results of the study suggest that in 82Rb perfusion myocardial PET assessment of MBF and CFR, the global rest and 
stress MBF and CFR values obtained by 1cm or 2cm, were close and reproducible. However, the regional LAD, RCA and 
LCX rest and stress MBF values showed marginal reproducibility. Limited regional MBF reproducibility may be caused 
by sampling error and/or cardiac and breathing motion. The results also suggest that both, 1cm and 2cm are equally 
accurate for calculation of MBF and CFR global values in 82Rb perfusion myocardial PET studies. 
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