Computed tomography findings of acute abdomen: a pictorial essay

Elif Hocaoglu1, Inci Kizildag Yirgin1, Sema Aksoy1, Irem Erdil1, Ercan Inci1, Gokhan Adas2

1Departments of Radiology, Bakirkoy Dr. Sadi Konuk Training and Research Hospital, Istanbul, Turkey
2Departments of Surgery, Bakirkoy Dr. Sadi Konuk Training and Research Hospital, Istanbul, Turkey

Received: June 30, 2014 Accepted: November 4, 2014 Online Published: November 30, 2014
DOI: 10.5430/jbgc.v5n1p11 URL: http://dx.doi.org/10.5430/jbgc.v5n1p11

Abstract

Acute abdomen can be defined as a clinical condition often requires emergency surgical therapy and characterized by severe abdominal pain with tenderness that develops over a short period of time, generally less than 24 hours. There are a variety of conditions that can present clinically with acute abdomen such as: inflammatory, vascular, mechanic, traumatic. In many cases, the clinical presentation is similar, independent of etiology. The radiological imaging plays very important role to determine the need for operative intervention and initiate appropriate therapy. Our aim is to describe the computed tomography findings of the most common conditions of acute abdomen excluding trauma and pediatric or obstetric patients.

Key Words: Acute abdomen, Radiologic diagnosis, Computed tomography

1 Introduction

The term “acute abdomen” can be defined as a clinical condition often requires emergency surgical therapy and characterized by severe abdominal pain with tenderness that develops over a short period of time, generally less than 24 hours. There are a variety of conditions that can present clinically with acute abdomen such as: inflammatory, vascular, mechanic, traumatic.1

Four or five percent of the patients who admitted to the emergency department have acute abdominal pain. In many cases, the clinical presentation is similar and independent of etiology. With careful physical examination, thorough history and laboratory findings of the patients, correct diagnosis can be achieved only in a minority of them. Radiological imaging have increased the accurate diagnosis rates and plays very important role to determine the need for operative intervention and initiate appropriate therapy.1,2

Conventional radiography, ultrasonography (US), and computed tomography (CT) are used in diagnosis of patients with acute abdomen.1–3 Ahn et al.4 concluded “abdominal radiographs are not sensitive in the evaluation of adult patients presenting to the emergency department with non-traumatic abdominal pain”. In some cases, such as those of patients suspected of having bowel obstruction, perforated viscus, urinary tract calculi, or foreign bodies, conventional radiography has been reported to have good accuracy.4–6

While US is uses in evaluation of the biliary disease and gynecologic conditions as the initial imaging study, CT has emerged as the primary imaging modality for evaluation of the acute abdomen.7 US is the most frequently performed modality for right upper quadrant pain in the diagnosis of acute cholecystitis.8 In two studies,9,10 US findings led to an alteration in treatment management for 22% of patients.

The American College of Radiology suggests primarily an
abdominal CT with contrast in patients with acute abdominal pain.[11] Others prefer an ultrasound as the dominant imaging technique mainly because it is easily accessible and has no ionising radiation.[12,13] A major disadvantage of US is that it is operator-dependent modality. Randen et al.[3] found that the sensitivity of CT was significantly higher than that of ultrasound in detecting appendicitis and diverticulitis. For acute cholecystitis and bowel obstruction there were no significant differences in accuracy between US and CT. The etiology of the obstruction is better evaluated with CT than with US.[3] An another study did not show any significant difference in accuracy between US and CT in detecting diverticulitis, but CT is more likely to detect complications of acute diverticulitis.[14] Diverticulitis-associated abscesses are found at CT in approximately 15% of patients.[15] Unenhanced helical CT has been shown to be very accurate in the diagnosis of common disorders such as acute appendicitis, renal colic, and diverticulitis in some studies.[16–19] Specific clinical diagnoses, such as pyelonephritis, pancreatitis, aortic dissection, and ischemic bowel, may be best evaluated with the use of intravenous contrast material.[20]

According to American College of Radiology[21] contrast material–enhanced CT of the abdomen is considered the most appropriate examination for patients with fever, non-localized abdominal pain, and no recent surgery. Rectal and oral contrast material may be helpful in differentiating fluid-filled bowel loops from abscesses in some cases and facilitates detecting intestinal pathologies.[22]

Chaan et al.[23] showed that early CT (within 24 hours) enabled appropriate identification of potentially serious surgical conditions, might reduce length of hospital stay and mortality. Inaccurate or delayed diagnosis may lengthen hospital stay and increase health care costs. Many studies have shown that CT findings have a significant contribution to the accuracy of the clinical diagnosis.[12,24]

Our aim is to describe the CT findings of the most common conditions of acute abdomen excluding trauma and pediatric or obstetric patients.

2 Imaging findings

2.1 Acute appendicitis

Acute appendicitis is the most common causes of acute abdominal pain and overall incidence of appendicitis is approximately 11/10,000 population.[26] Typically acute appendicitis presents with prodromal symptoms of anorexia, nausea and periumbilical pain. The main pathology is luminal obstruction, after 6-8 hours, pain migrates to the right iliac fossa because appendiceal inflammation progresses, the appendix becomes enlarged and eventually touches the parietal peritoneum. Tenderness, rebound occurs after the parietal peritoneum irritation. Classically, the patient has raised serum inflammatory markers.[1,27] The criteria for the diagnosis of appendicitis on CT are enlarged (> 6 mm) fluid filled appendix[28,29] with peri-appendiceal fat stranding.[29,30] Appendicoliths and contrast enhanced thick wall are secondary signs (see Figure 1).

Figure 1: Forty-seven years old, female patient. Axial image CT scan shows enlargement of the appendix with thickened walls (arrow) and adjacent inflammatory stranding.
2.2 Epiploic appendagitis

Epiploic appendagitis is a rare and self limited cause of acute abdomen that manages conservatively. It mostly manifests in the 4th and 5th decades of life with a male predominance. The original pathology is torsion of the appendage resulting in vascular occlusion and inflammatory changes. Although depending on the localization site it can mimic any cause of acute abdominal disease, it is mostly manifested as acute diverticulitis or appendicitis because of same symptom such as localized, severe pain, usually in the right or left lower quadrant. It is very important to know radiologic characteristics of this condition before unnecessary more aggressively surgery. The typical imaging findings are an oval lesion of fat density with a hyperdense rim and peripheral contrast enhancement. Mesenteric fat planes also are commonly increased in density[30, 31] (see Figure 2).

Figure 2: Thirty years old, male patient. CT imaging shows fat density with a hyperdense rim and peripheral contrast enhancement closed to ascending colon (arrow).

2.3 Acute diverticulitis

Acute diverticulitis is a common condition and usually effected patients are older than 50 years. Although it can occur anywhere in the large bowel, the most common localization is sigmoid colon and generally patients have fever with abdominal pain in left iliac fossa. On physical examination tenderness and rebound can be determined. CT imaging can show segmental colonic wall thickening and inflammatory changes in the fat surrounding a diverticulum and also complications of diverticulitis such as abscess formation or perforation, can best be excluded with CT. It has a high sensivity of 97% to confirm true diagnosis of acute diverticulitis[32] (see Figure 3).

Figure 3: Thirty-five years old, male patient. Axial CT imaging shows high density in the mesenteric fatty tissue and segmental colonic wall thickening closed to descending colon.

2.4 Acute biliary disease

Acute biliary disease refers a wide spectrum between biliary pain and acute cholecystitis. Biliary pain usually lasting less than six hours. The most common cause is acute cholecystitis when it presents as a persistent colic pain. Additional symptoms are nausea, vomiting, and low-grade fever with right upper quadrant tenderness and Murphy’s sign. The main diagnostic concern is thick-walled gallbladder at imaging. This sign is not pathognomonic alone, additional imag-
ing signs like obstructing gallstone, distention of gallbladder, pericholecystic fat inflammation or fluid are needed for diagnosis\cite{33} (see Figure 4).

2.5 Mesenteric panniculitis

Mesenteric panniculitis is a rare condition characterised by a chronic, non-specific inflammation affecting the adipose tissue of intestinal loops. Although there is no certain accepted cause yet, a variety of conditions like vasculitis, autoimmunity, infection, trauma, ischaemia, prior abdominal surgery and neoplasm are possible reasons. It occurs most commonly at the age of 50-60 years and presents with abdominal pain, diarrhoea or a palpable mass. Abdominal CT is the most sensitive imaging modality for detecting mesenteric panniculitis but diagnosis is usually confirmed by surgical biopsies. CT feature of the disease is described: a "fat ring sign" that involves around the mesenteric vessels composed high density in fatty tissue with or without enlarged mesenteric or retroperitoneal nodes\cite{34–36} (see Figure 5).

2.6 Perforated peptic ulcer

Perforation of a peptic ulcer is the most common cause of pneumoperitoneum that is a well-defined mucosal defect of the stomach or duodenum. Patients typically present with the sudden onset of severe, diffuse abdominal pain. On physical examination, rebound, tenderness and abdominal muscular rigidity occur in whole abdomen reveals by peritoneal irritation.

CT is the most sensitive imaging technique for diagnosis of free intra-peritoneal air by thin slice collimation, and reformatting of images. Free air may travel from the perforation side along the hepatoduodenal ligament into the fissure for ligamentum venosum and be seen adjacent to the portal vein and perihepatic area. There are three CT findings have a high predictivity to detect the site of perforation; concentrated bubbles of extraluminal air close to the perforated area of the bowel wall, focal defect in the bowel wall, and segmental bowel wall thickening\cite{37} (see Figure 6).

2.7 Small bowel obstruction

Small bowel obstruction may occur in any age with different causes. The most common causes in adults are postoperative adhesions and incarcerated hernias while in children intussusception, intestinal atresia, and meconium ileus are the most common causes. Generally symptoms are sudden periumbilical pain, nausea and vomiting. There are dilated loops of small intestine with air-fluid levels and decompressed distal small bowel and colon on plain radiography. CT is more effective to detect the transitional point (whirl sign) and cause of obstruction\cite{38} (see Figure 7, 8).

2.8 Bezoar

Bezoars are composed of foreign materials that are created in the intestinal tract. The most common bezoars are vegetable material (phytobezoars, hair and hair-like material (trichobezoars), persimmon fragments (disopyrobezoars), various medications (pharmacobezoars) and milk curd (lactobezoars). Bezoar-induced small bowel obstruction is a rare condition. It should be suspected in high risk patients such as previous gastric surgery, poor dentition, and a suggestive history of increased fibre intake. The symptoms associated with bezoars are often non-specific. Some patients...
are asymptomatic while others describe epigastric discomfort, bloating, early satiety, nausea, vomiting and weight loss. CT imaging is advocated to be performed early in high risk patients and in patients presenting with small bowel obstruction with or without a history of abdominal surgery in order to reduce unnecessary delays before appropriate surgical intervention[39] (see Figure 9).

Figure 7: Seventy-six years old, male patient. Axial image CT scan shows whirl "sign" the small bowel is wrapped around SMA.

2.9 Large bowel obstruction

The most common causes of large bowel obstruction are carcinomas, inflammatory diseases (diverticulitis, appendicitis), volvulus (cecum, sigmoid), inflammatory intestinal diseases (crohn’s disease, ulcerative colitis), metastases, lymphoma and pelvic masses. Another cause of large bowel obstruction is transmesocolic hernia which extremely rare type of internal hernias and accounts for approximately 5%-10% of all internal hernias.[40] Also obturator hernia must be considered in the differential diagnosis of thin, elderly patients, especially females, admitted with symptoms of intestinal obstruction. Generally symptoms are the same with small bowel obstruction; patients have abdominal pain, distension, nausea and vomiting. Although many dilated bowel loops are seen it is difficult to recognize the transitional point on plain radiography. Multidetector CT has a high sensitivity and specificity of 96% and 94% in the diagnosis of large bowel obstruction[41] (see Figure 10, Figure 11).

2.10 Internal hernia

Internal hernia is a rare condition; it accounts for 0.5% to 5.8% of cases of intestinal obstruction. There are different types of internal hernias. Paraduodenal hernia is the most common cause which account 53% of intestinal obstruction. It has two types: left paraduodenal hernias and right paraduodenal hernias. Another type represents 8% of patients and the main pathology is omental foraminal herniation.[42] CT imaging has an important role for diagnosis of intestinal obstruction with these signs, hernia sac containing small intestine in an unusual position with a patient who had no history of abdominal operation (see Figure 12).

2.11 Ruptured hydatid cyst

Echinococcus granulosus is an important parasitic disorder which is common in sheep-rearing regions that leads to a significant health problem in undeveloped and developing countries of Mediterranean region. Clinical presentation changes according to the numbers, size, localizations, and complications of the cysts. Rupture into the abdominal cavity is a rare but serious complication of hydatid disease. Rupture can occur spontaneously or following a trauma. Abdominal ultrasonography and computed tomography is effective for diagnosis of ruptured hydatid cyst[43, 44] (see Figure 13).

Figure 8: Seventy-eight years old, female patient with gallstone ileus. (a) Axial image CT scan shows air in intrahepatic and common bile ducts with dilatation of small bowel loops. (b) There is a focal, round, low density localizated in the ileum is a gallstone (arrow).

2.12 Mesenteric ischemia

Mesenteric ischemia is a rare and potentially life threatening disorder which accounts for 1% of acute abdomen hospitalizations. If the blood supply to the bowel decreases any further, mesenteric ischemia will develop. Arterial embolus or superior mesenteric artery thrombosis are the most common causes while rare causes are mesenteric venous thrombosis and non-thrombotic mechanical conditions.[42,45,46] Although developed imaging technologies, mortality rates are high because of non-specific and insensitive clinical and laboratory findings.
Forty-seven years old, male patient. Small bowel obstruction secondary to the bezoar. Axial CT scans show dilatation of small bowel loops and intraluminal bezoar densities (arrow).

Gold standard imaging technique is catheter angiography, but computed tomography is more available for fast diagnosis in the emergency room.[47] Diagnostic CT findings are submucosal haemorrhage, enhanced-thickened walls of bowel loops and thrombi or emboli in superior mesenteric artery[1, 42] (see Figure 14).

2.13 Tuberculosis

Radiological findings of abdominal tuberculosis can mimic those of many different diseases. A high level of suspicion is required, especially in high-risk population.[48] Abdominal tuberculosis, which may involve the gastrointestinal tract, peritoneum, lymph nodes or solid viscera. Abdominal tuberculosis should be considered in patients with fever, abdominal pain, ascites and/or elevated CA-125. This condition has good prognosis if shortly diagnosed and treated. CT scans showed ascites, lymphadenopathy (especially calcified), mesenteric or omental stranding, bowel wall thickening[49] (see Figure 15).

3 Discussion

As mentioned earlier four or five percent of patients who admitted to the emergency department have acute abdominal pain. The clinical course is similar on these patients. CT is very useful to differentiate the cause. IV contrast material is mandatory exception of contraindication. Because it is useful for vascular disorders such as aort aneurysm, superior mesenteric artery trombosis, aortic dissection also ischemic bowel disease and acute pancreatitis.[20]

But in some conditions we don’t use IV contrast material such as renal colic. Because of this, taking the history of the patient is very important. In some circumstances CT is suitable after abdominal US examination; such as gallstones. CT is very useful on interpreting choledochal calculi especially for the obese patients. Because for the obese patients to interpret choledok and pancreas is difficult with US. Patients with the gallstones and pain in the abdomen have a risk of choledochal calculi and acute pancreatitis.[5, 8]

Use of oral and rectal contrast agent is also useful to detect small bowel perforation and abscesses. In the small bowel perforation you can detect free air close to perforated small bowel.[22]
Figure 11: Seventy years old, female patient presented with acute abdominal pain. Axial CT scan shows irregular shape, solid, heterogeneous mass in sigmoid colon (arrow) and dilated small bowel loops.

Figure 12: Fifty-two years old, female patient. Fluid-filled loops of small bowel, lateral to ascending colon and lie directly beneath anterior abdominal wall because loops of bowel displacing omental fat.

Figure 13: Eighty-two years old, female patient. (a, b) Axial CT images show ruptured liver hydatid cyst to the right pleural space.

Figure 14: 80 years old, female patient. (a) Coronal CT image show thrombus material within the lumen of the superior mesenteric artery (arrow). (b) Axial CT image show the start of thrombus within the lumen and dilated SMA (arrow).

Figure 15: Thirty-two years old, male patient. Axial image CT scan shows increased density of the fat at the mesenteric root with associated calcified mesenteric lymph nodes, ascites and peritoneal contrast enhancement.

There are also some causes of nonsurgical acute abdomen such as epiploic appendagitis. CT is also helpful for avoiding unnecessary surgery. CT is also very useful for evaluating postoperative early complications such as abcesses and late complications such as adhesions.[23]

4 Conclusions

In patients with acute abdomen, a misdiagnosis may have serious consequences. Imaging plays an increasingly important role in diagnosis of etiology of acute abdomen. CT has become the most important noninvasive imaging procedure to diagnose acute abdomen. During this procedure, first focus on the most common and the most suspicious diseases, second always screen the whole abdomen for pathology. Moreover, CT may help as a guide for planning surgery or management of pathology and help to abdominal drainage procedure.
References


