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Abstract 
Objective: We describe a new false positive (FP) reduction method based on surface features in our computerized 
detection system for lung nodules and evaluate the method using clinical chest computed tomography (CT) scans. 

Methods: In our detection method, nodule candidates are extracted using volumetric curvature-based thresholding and 
region growing. For various sizes of nodules, we adopt multiscale integration based on Hessian eigenvalues. For each 
nodule candidate, two surface features are calculated to differentiate nodules and FPs at vessel bifurcations. These features 
are fed into a quadratic classifier based on the Mahalanobis distance ratio. 

Results: In an experimental study involving 16 chest CT scans, the average number of FPs was reduced from 107.5 to 14.1 
per case at 90% sensitivity. 

Conclusions: This proposed FP reduction method is effective in removing FPs at vessel bifurcations. 
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1 Introduction 
Lung cancer is one of the most difficult cancers to cure, and early detection is necessary to improve patient outcomes [1, 2]. 
Chest computed tomography (CT) can help detect lung cancer at an earlier stage than chest radiography [3]. The recent 
development of multidetector-row CT (MDCT) has allowed the acquisition of thin-section images of a whole lung during 
a single breath hold [4]. However, due to the large number of images generated by chest MDCT examination, reading by 
radiologists is time-consuming and may result in missed nodules. Therefore, computer-assisted detection (CAD) systems 
for lung nodules in chest CT images have been developed to assist radiologists. 

A number of research groups have reported a variety of CAD systems for detecting lung nodules in chest CT images, 
including multiple grayscale thresholding [5, 6], local density maximum algorithm [7], fuzzy clustering [8], genetic algorithm 
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template matching of Gaussian spheres and discs [9], filters enhancing spherical structures [10-13], curved surface 
morphology analysis [14], and volumetric curvature-based thresholding and region growing [15]. Commercial CAD systems 
for detecting lung nodules in chest CT images have also been developed, including the ImageChecker CT Lung system 
(R2 Technology Inc., Sunnyvale, CA, USA), Lung VCAR (GE Healthcare Technologies, Waukesha, WI, USA), and 
Syngo Lung CAD (Siemens Medical Solutions, Erlangen, Germany). 

Although these CAD systems detect lung nodules with high sensitivity, results may include false positives (FPs). These 
typically occur at vessel bifurcations, sharply curved vessels, artifacts due to respiratory or cardiac motion, abnormalities 
on the pleura (scars and fluid build-up), and so forth [16-19]. Among these, vessel bifurcations are of particular importance, 
and reducing FPs occurring at vessel bifurcations would considerably improve the detection performance. In our CAD 
system for lung nodules [20], for example, almost half the FPs occur at vessel bifurcations. 

In this paper, we propose a new FP reduction method based on surface features in our CAD system for lung nodules. We 
then evaluate the method using 16 clinical cases. 

2 Methods 

2.1 Overview of detection method 
Figure 1 shows a flowchart of our detection method, which consists of three steps: preprocessing, nodule candidate 
extraction, and FP reduction. The preprocessing step involves isotropic resampling, lung segmentation, binarization of the 
lung volume, and surface extraction from the binarized lung volume. The nodule candidate extraction step involves 
thresholding based on the shape index value and shape-index-based region growing [20]. For various sizes of nodules, we 
adopted multiscale integration based on Hessian eigenvalues. Finally, the FP reduction step defines two surface features 
and calculates them for each nodule candidate. These feature values are fed into a quadratic classifier based on the 
Mahalanobis distance ratio. 

Figure 1. Flowchart of the detection method  

2.2 Preprocessing 
Chest CT images are resampled using trilinear interpolation to obtain the isotropic volume. The resampled voxel size  
is equal to the pixel size of the CT slice. After that, lung segmentation is carried out. The processing procedures of lung 
segmentation are described as follows: 

1) The initial lung mask Linit is extracted as a set of connected voxels with CT values lower than -600 HU. 

2) A gray-scale histogram of the voxels in Linit is generated, and the peak CT value in the histogram Tpeak is obtained. 

3) The initial mask for the trachea and large airways is extracted as the set of connected voxels with CT values lower 
than Tpeak +50 HU and smoothed by opening with a spherical kernel of 2.5-voxel radius. 
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4) The final mask for the trachea and large airways is obtained as a superiormost connected component and dilated 

by a spherical kernel of 2.5-voxel radius. 

5) After the removal of the mask for the trachea and large airways from the initial lung mask, closing with a 

spherical kernel of 5-voxel radius is applied to the masks for the left and right lungs to include lung nodules and 

pulmonary vessels. 

6) Removal of the mask for the bones from the masks for the left and right lungs is carried out. The mask for the 

bones is extracted as the largest connected component with CT values higher than 100 HU, and then closing with 

a spherical kernel of 2.5-voxel radius and dilation with a spherical kernel of 1.5-voxel radius are carried out. 

7) The lung volume L is obtained as the intersection voxels between the chest CT volume and the masks for the left 

and right lungs. 

After lung segmentation, binarization within L is carried out again to extract the region of nodules and vessels. The 

binarized lung volume Lbin is given by: 

  LxL  pTIp CTbin ,  (1) 

where I(x) is the CT value (HU) of voxel p and x is the 3D coordinate for the position of voxel p. TCT is the threshold for the 
extraction of vessels and nodules. Moreover, the surface areas of vessels and nodules Lsf are extracted using: 

 1.0KLLL binbinsf  (2) 

where   defines erosion and K1.0 is a spherical kernel of 1-voxel radius. 

2.3 Extraction of nodule candidates 
The shape index is calculated at the voxels of Lbin using original CT values. The shape index S(x, ) is defined as  

follows [21, 22]: 
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where k1 and k2 are principal curvatures (k1  k2), H is the mean curvature, K is the Gaussian curvature, and  (voxel) is the 

standard deviation of the Gaussian filter. S ranges from 0 to 1. Figure 2 shows the relation between the S value and shape 

type. The S values of the voxels of a typical nodule range from 0.8 to 1.0, showing a peak or dome, whereas those of a 

vessel range from 0.5 to 0.75, showing a ridge or saddle. Therefore, thresholding based on the S value differentiates 

nodules and vessels. 

 

Figure 2. Relation between shape index value and shape type 
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Figure 3 shows the relationship between /Reff and the mean S value in two isolated nodules, where Reff is the volume- 

equivalent spherical radius for the nodule. If  is smaller than Reff, the mean S value of nodules corresponding to the shape 

type of the nodule represents the “peak” value. In contrast, if  is larger than Reff, the mean S value is markedly degraded 

due to the smoothing effect of the Gaussian filter. We observed a similar tendency in 12 other isolated nodules. Multiscale 

integration [23] is desirable to obtain an appropriate shape index value because various sizes of nodules exist in chest CT 

images. 

Figure 3. (A) Relationship between /Reff and mean 

S value (Reff: volume-equivalent spherical radius for 
nodule). (B) Axial section of nodule 1 (Reff = 2.0 
voxels). (C) Axial section of nodule 2 (Reff = 2.7 
voxels). 

In this paper, we adopted multiscale integration based on Hessian eigenvalues [24, 25] to obtain Sopt(x). The Hessian at voxel 
p is given as follows: 
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where the partial second derivatives of I(x) are represented by expressions such as: 
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G() is a 3D Gaussian function with standard deviation . Let the eigenvalues of H be 1, 2, and 3 (|1|  |2| 3|). On 

the basis of these eigenvalues, a local pattern is classified as a plate-like, line-like, or blob-like structure. Table 1 

summarizes the relation between 1, 2, and 3 for different structures. Given that the CT values of nodules and vessels are 

higher than those of the pulmonary parenchyma, the sign of 1 at a voxel within a nodule or vessel is generally negative. In 

our multiscale integration, Hessian eigenvalues are calculated for several values of , and opt(x) is determined as follows: 

     


,minarg 1 xx opt (8) 

where  is a parameter for normalization [23-26]. Then, Sopt(x) is calculated as follows: 

    xxx optopt SS , (9) 

After calculating Sopt, the sets of connected voxels with signals higher than a given threshold of shape index value Shigh are 
extracted. Shigh is set to higher than 0.8 to reduce the influence of artifacts. Small components under a volume threshold 
Tsize are then removed. If Tsize is set too high, FPs caused by the artifacts as well as true nodules with a small size or 
nonspherical shape are removed. Finally, shape-index-based region growing is carried out in Lbin. The termination 

criterion for region growing is set to Slow  Sopt  1.0. Slow is set to a value that differentiates nodules from vessels, and Slow 
< Shigh. 
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Table 1. Local pattern in relation to Hessian eigenvalues 

Structure 1 2 3 

No noticeable structure    

Plate-like 
bright    

dark    

Line-like 
bright    

dark    

Blob-like 
bright    

dark    

: small eigenvalue, : significant positive value, : significant negative value. 

2.4 FP reduction 
In this section, we describe our FP reduction scheme developed for FPs at vessel bifurcations and its theoretical basis with 
examples of synthetic data analysis. 

In the literature, curvature and Hessian eigenvalues, both based on second derivatives of a volumetric image function, are 
often employed for lung nodule detection [8, 11, 12, 14, 15, 20]. These two features have a certain relationship, derived from the 
fact that the principal curvatures in Equation 4 are calculated from the rotation transformation and eigenvalue analysis of 
the Hessian [27]. It is known that FPs in the detection of nodule-like structures based on curvature and Hessian eigenvalues 
also have a similar tendency. 

Figure 4A shows synthetic volume data used to simulate a vessel bifurcation with Gaussian noise. The intensity levels of 
the vessel (foreground) and background were set to -200 and -900 HU, respectively, and the standard deviation of the 
Gaussian noise was 50. Figure 4B shows the shape index image. As shown in Figure 4B, the Sopt value at the center of the 
vessel bifurcation is high. Figure 4C shows the region of the nodule candidate obtained by our method. 

 
Figure 4. Examples of synthetic data analysis. (A) Synthetic volume data of vessel bifurcation with Gaussian noise, in 
which the vessel and background intensities are set to -200 and -900 HU, respectively, and the standard deviation of the 
Gaussian noise is 50. (B) Shape index image of A, in which a higher shape index is shown by a lighter gray-scale value. 
(C) Region of nodule candidate obtained by our method. (D) Enhanced image obtained by the dot-enhancement filter.  
(E) Isosurface of the Gaussian-smoothed image of the synthetic data (threshold: -700 HU). (F) Isosurface of the 
Gaussian-smoothed image of the synthetic data (threshold: -600 HU). 

A similar result can be obtained using a Hessian-eigenvalue-based detection scheme. Figure 4D shows a dot-enhanced 
image applied to the image in Figure 4A based on Hessian eigenvalues [12]. The filter is defined as follows: 
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As shown in Figure 4D, the center of the vessel bifurcation is enhanced by the filter, thereby yielding an FP due to its 
misclassification as a blob-like structure (see Table 1). 

FPs at vessel bifurcations are inevitable in the detection of nodule-like structures using second-derivative-based features. 
This is a by-product of the Gaussian convolution employed for scale-matching. It is easily confirmed that Gaussian 
filtering forms or enhances a blob-like isosurface inside a vessel bifurcation (see Figures 4E and 4F). Without Gaussian 
filtering, however, it is impossible to obtain scale-matched features of target objects such as vessels and nodules. To 
remove these FPs, we utilize the spatial relationship between vessels and FPs based on the fact that the FP volume is 
limited to the center of a bifurcation, as shown in Figures 4B and 4D. 

We first define the surface exposure ratio RSE and surface area to volume ratio RSV and calculate these features for each 
nodule candidate. Let c(i) denote the voxel set in the ith nodule candidate. RSE(i) and RSV(i) are defined by: 

   
 iA

iN
iR c

SE   (11) 
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 iV

iA
iRSV   (12) 

where A(i) is the number of voxels of the surface area in c(i), that is, the number of voxels in c(i) – (c(i)K1.0). V(i) is the 
number of voxels included in c(i) and Nc(i) is the number of intersection voxels of Lsf and c(i). In the case of FPs at a vessel 
bifurcation, c exists only at the center of the bifurcation (see Figures 5A-5C), while region Lsf exists only at the surface of 
the vessel (see Figure 5D). Therefore, RSE is small since Nc is much smaller than A. RSE = 0.28 and RSV = 0.79 for the nodule 
candidate shown in Figure 5C. In contrast, in the case of a nodule, c includes almost the whole area of the nodule (see 
Figures 5E-5H). Therefore, RSE is close to 1.0 since Nc is almost equal to A. RSE = 1.0 and RSV = 0.61 for the nodule 
candidate shown by Figure 5G. Figure 6A shows the RSV - RSE feature space for true positives (TPs) and FPs at the vessel 
bifurcation; as shown in this figure, it is expected that FPs at vessel bifurcations will be removed by using a classifier 
consisting of RSE and RSV. 

 
Figure 5. Examples of synthetic data analysis. (A) 3D volume rendering of a synthetic image of a vessel bifurcation using 
the same image parameters as in Figure 4A. (B) Image of an axial section of A. (C) Region of a nodule candidate obtained 
by our method. (D) Result of surface extraction. (E) 3D volume rendering of a synthetic image of a nodule with Gaussian 
noise, in which the nodule and background intensities are set to -200 and -900 HU, respectively, and the standard deviation 
of the Gaussian noise is 50. (F) Image of an axial section of E. (G) Region of nodule candidate obtained by our method.  
(H) Result of surface extraction. 
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The obtained values of RSE and RSV are fed into a quadratic classifier based on the Mahalanobis distance. From the 
Mahalanobis distance Dj (j = TP, FP), c is classified as belonging to either the TP or FP class. The Mahalanobis distance 
ratio RM is defined as follows: 

TP

FP
M D

D
R   (13) 

If RM is below a certain threshold, c is classified as an FP and removed from the final results. 

Figure 6. RSV - RSE feature space for 
 TCT = -700, Tsize = 16, Shigh = 0.9, and 
Slow = 0.8. (A) TPs and FPs at a vessel 
bifurcation. (B) TPs and FPs in other 
regions.  

3 Results 
This study was approved by the ethical review board of our institute. We evaluated the proposed FP reduction method 
using 16 chest CT scans acquired by MDCT scanners (Aquilion 16 or Aquilion 64, Toshiba, Tokyo, Japan). Each slice has 
a matrix size of 512 × 512 with a pixel size of 0.683 or 0.781 mm. The reconstruction interval is 1.0 mm. Two experienced 
radiologists identified 82 true nodules ranging from 3.0 mm to 12.5 mm in diameter. The nodules include four types of 
patterns: noncalcified solid, calcified solid, mixed ground-glass opacity (GGO), and pure GGO. Each CT scan included  
at least one true nodule. The performance of the detection method was evaluated using a leave-one-out cross-validation 
method. 

In the extraction of nodule candidates, TCT was experimentally set to -700 in order to detect all the identified true nodules. 

The range of in multiscale integration was experimentally set to {1, 2, 3, 4, 5} in consideration of the extraction 

performance, as discussed later. Slow, Shigh, and  were experimentally set to 0.8, 0.9, and 1.5, respectively. 

Table 2 shows the FP reduction performance of our detection method at 80% and 90% sensitivities. As shown in Table 2, 
the number of FPs with Tsize = 16 was 14.1 per case at 90% sensitivity and 4.8 per case at 80% sensitivity. The number of 
FPs in the step for nodule candidate extraction with Tsize = 16 was 107.5 per case without false negatives (FNs). Figure 7 
shows the free-response receiver operating characteristic (FROC) curves for different Tsize values. 

Figure 7. FROC curves for different Tsize values  
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Table 2. FP reduction performance of our detection method 

Tsize 
Sensitivity (%) 

80 90 

12 5.3 16.8 
16 4.8 14.1 

20 5.4 25.1 

Figure 8 shows an example of a detection result using our detection method, revealing a marked reduction in FPs. Figure 9 
shows an example of residual FPs in our detection method. Figure 9A shows the case of an aneurysm-like structure. Figure 
9B shows the case of a mucus plug in a bronchus. Figure 10 shows an example of an FN in our detection method, which is 
the case of a juxtapleural nodule. A juxtapleural nodule is defined as a nodule having part of its circumference abutting a 
pleural surface, i.e., a chest wall, diaphragm, mediastinum, or fissure [28]. 

Figure 8. Example of detection result using 
our detection method. (A) Result of nodule 
candidate extraction with Tsize = 16. (B) 
Result of FP reduction at 90% sensitivity. 
White regions with a yellow arrow indicate 
true nodules, and white regions without a 
yellow arrow show FPs.  

 

Figure 9. Example of residual FPs in our 
detection method. (A) Case of aneurysm-
like structure. (B) Case of mucus plug in a 
bronchus. The top row shows the axial 
section and the bottom row shows the 3D 
volume rendering. 

 
A                                                 B 

 

Figure 10. Example of FN in our detection 
method in the case of a juxtapleural nodule. 
The left image shows the axial section and the 
right image shows the 3D volume rendering. 
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4 Discussion 
In this paper, we propose a surface-feature-based FP reduction method for eliminating FPs at vessel bifurcations. In our 
clinical study, the proposed method greatly contributed to reducing the number of FPs, from 107.5 to 14.1 per case at 90% 
sensitivity. 

Many FPs with a low RSE value occur in other regions, such as vessel crossings or bifurcations of the bronchial wall  
(see Figure 6B). Consequently, our proposed method is also effective in removing FPs in other regions with low RSE values 
(see Figures 7 and 8). In addition, the proposed method is useful as an FP reduction method in Hessian-eigenvalue-based 
lung nodule detection (see Figure 4). 

We experimentally set TCT = -700 to detect all the identified nodules. The appropriate TCT value depends on the data set. In 
particular, the existence of pure GGO nodules in data sets greatly affects the appropriate value of TCT since GGO is defined 
as a hazily increased attenuation of the lung observed on CT images with preservation of the bronchiole and vascular 
margins [29, 30]. 

We experimentally set the range of  in multiscale integration to {1, 2, 3, 4, 5}, although the maximum value of  is 

smaller than the maximum radius of a nodule. If opt is smaller than the radius of a nodule, the shape index of the nodule is 

an appropriate value corresponding to the shape type (see Figure 3). Similar methods for multiscale integration based on 

Hessian eigenvalues have been reported by Li et al. [12] and Sato et al. [25], in which the set of  was selected such that 

k+1/k was approximately constant (k < k+1). We also investigated the set of  of {1, 1.5, 2.25, 3.375, 5} and found that 

the shape index decreased markedly on the surface of nodules because of the overscaling of opt. Moreover, the selected  

had a tendency to overscale with increasing  [26]. To avoid the overscaling of opt, we therefore set  = 1.5. 

If Tsize is set too low, FPs with a small size are extracted as nodule candidates and fed into the classifier for FP reduction, 
and the number of FPs increases at 90% sensitivity (see Table 2 and Figure 7). On the other hand, if Tsize is set too high, 
small or nonspherical true nodules are removed in nodule candidate extraction. Consequently, the value of Tsize affects  
the overall performance of our detection method. Further improvement of our proposed method will require additional 
features for the effective removal of small FPs. 

The removal of the residual FPs, as shown in Figure 9, is difficult owing to their nodule-like structure. The shapes of these 
FPs are similar to those of TPs and their RSE values are close to 1.0. However, radiologists can differentiate between such 
FPs and true nodules by considering adjacent anatomical structures such as vessels and bronchi. Further improvement of 
our proposed FP reduction method will require additional features based on adjacent anatomical structures. 

TPs with a low RSE value result in FNs, as shown in Figure 6. The RSE value is affected by the attachment of adjacent 
structures. The Nc values of nodules attached to adjacent structures are smaller than those of isolated nodules since the 
attachment is not extracted as part of the region Lsf. Hence, the RSE values of nodules attached to adjacent structures are 
smaller than those of isolated nodules. In particular, the degradation of the RSE value typically occurs in the case of 
juxtapleural nodules, as shown in Figure 10. To further reduce FPs without eliminating TPs, we are currently developing 
an FP reduction method based on dual classifiers for juxtapleural and nonpleural nodules. The results of preliminary 
experiments indicate that dual classifiers have the potential to improve the performance of FP reduction. 

We conclude that the surface-feature-based FP reduction method is effective in removing FPs at vessel bifurcations. 
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