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Abstract 
Three-dimensional (3D) structure reconstruction of single particles has played an important role in understanding the 
mechanisms of macromolecular assembly. We demonstrate a Dihedral Symmetry-adapted function method (DSAF) to 
implement 3D reconstruction of macromolecular complexes with dihedral symmetry. A set of formulations for 3D 
reconstruction of biological objects with dihedral symmetry is presented in detail. To verify the feasibility and efficiency 
of the DSAF method for dihedral symmetrical objects, two special illustrations of simulation data with D6, D7 symmetry, 
were taken as examples to implement reconstruction by the DSAF method. The results show that the DSAF method is 
robust and suppresses noise in the three-dimensional reconstruction of dihedral symmetrical objects at high resolution. 
Thus the DSAF method is suitable for reconstruction of biological complexes with various kinds of dihedral symmetry. 
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1 Introduction  

Three-dimensional (3D) structure reconstruction is rapidly becoming an indispensable tool for understanding the 

properties and functions of macromolecular complexes and biological nanomachines. Especially with the recent 

development of single particle reconstruction, cryo-electron microscopy (Cryo-EM) has played an increasingly important 

role in determining 3D structures down to sub-nanometer resolution, even near-atomic resolution [1-6]. The determination 

of the structures of macromolecular complexes by Cryo-EM techniques consists of two essential steps: the determination 

of orientation and center parameters, and 3D reconstruction. Structure refinement should be carried out gradually, aiming 

at pushing toward higher resolution by repeating these two steps. Various approaches for 3D reconstruction have been 

developed including the Fourier-Bessel synthesis method [7], the direct Fourier inversion method [8, 9], and the 

symmetry-adapted functions method (SAF) [10-12]. Among of these approaches, the SAF method can most efficiently 

utilize the intrinsic symmetry of the objects. Crowther et al. pointed out in their seminal paper that using SAF to interpolate 
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the Fourier space of a virus would make efficient use of the available data [7]. Provencher and Vogel presented a method 

of 3D reconstruction by symmetry-adapted functions and applied this method to reconstruct simulated model structures 

and biological objects [13, 14]. Zheng et al. used a spherical harmonics method to determine the structure of viruses from 

solution X-ray scattering data [15]. Navaza [10] systematically developed formulations for 3D reconstruction of 

icosahedral viruses including ab initio determination of the origins and orientations of particles and interpolation of data in 

the reciprocal space by the icosahedral symmetry-adapted function (ISAF) method. Our recent work [11] showed that the 

ISAF method could enhance resolution compared with the Fourier-Bessel method when it was applied to the same 

particles. We believe that the ISAF method has good future prospects because it efficiently utilizes the symmetry of 

objects. Macromolecular assemblies have various symmetries, such as icosahedral, octahedral, tetrahedral, and dihedral 

symmetry. Following the great successes in solving the icosahedral shells of many viruses at sub-nanometer resolution, 

attempts have been made to study non-icosahedral components with low order symmetry. Many software packages which 

adopt the direct Fourier inversion method such as EMAN [8], FREALIGN [9] have been successfully used for 

reconstructing 3D structures of biological objects with dihedral symmetry at sub-nanometer resolutions; notable examples 

are the auxilin-bound clathrin coat structure with D6 symmetry solved at 12 Å, and then extended to 8 Å resolution [16], 

the GroEL structure with D7 symmetry revealed at 6 Å [6] and recently at near-atomic resolution of 4.2 Å [17], the 20S 

proteasome structure with D7 symmetry solved at 6.8 Å resolution [18], and keyhole limpet hemocyanin isoform 1 

(KLH1) with an overall D5 point-group symmetry reconstructed at 11.3 Å resolution [19]. However, there are no existing 

reports of 3D reconstruction of biological objects with dihedral symmetry using the SAF method. At this stage, Our 

previous work have established icosahedral symmetry-adapted functions method (ISAF) [11] and octahedral 

symmetry-adapted functions method (OSAF) [12] for 3D reconstruction of macromolecular complexes with icosahedral 

and octahedral symmetry respectively. In this article we attempt to extend symmetry-adapted functions method for 3D 

reconstruction of macromolecular assemblies with all dihedral symmetry. To verify the feasibility and advantages of this 

approach, we performed 3D reconstruction of two known structures-auxilin-bound clathrin coat with D6 symmetry 

(1Xi4.pdb) [16] and GroEL (3Cau.pdb) [17] with D7 symmetry-downloaded from the protein data bank (PDB), by the 

DSAF method using simulated data. The results demonstrate that the DSAF method is suitable for all dihedral symmetrical 

objects and can retrieve the 3D structures of objects with dihedral symmetry at high resolution. 

2 Method  

2.1 Dihedral symmetry-adapted functions  

In this section we give the formulae and definitions which are required to determine the DSAF. Because the 

symmetry-adapted functions (SAFs) are linear combinations of the spherical harmonics functions ),(, mlY  [20], the 

DSAF can be written as: 

, , ,( , ) ( , )
L

l l m l m
m L

D C Y
    



   (1) 

where ,l mC
 is an expansion coefficient, and m is a multiple of n because the Z-axis is parallel to the n-fold axis for Dn 

symmetry. , ( , )l mY   is the normalized spherical harmonic functions and can be described as 
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, ,( , ) (cos )m im
l m l m lY N P e     (2) 

where (cos )m
lP  is the associated Legendre function and ,l mN  denotes a normalization coefficient which is identical to 

( )!(2 1)

4 ( )!

l ml

l m

 .

 

)(l is the multiplicity for a given order l, and can be obtained by the following formulae for any dihedral symmetry (Dn): 

( ) int( / ) 1l l n          for l=even                                                                    (3.1) 

( ) int( / )l l n               for l=odd                                                                    (3.2) 

where int( / )l n  indicates the integer part of l/n. 

Now the major problem is finding the coefficients ,l mC
 of the DSAF (see expression (1)). The dihedral groups are the 

simplest non-Abelian point groups and many numerical solutions for the dihedral groups have been implemented [21, 22]. 

In this paper, we adopted the algebraic method for calculating the coefficients ,l mC
 of the DSAF, which is suitable for all 

dihedral groups [23]. According to the method mentioned above, the DSAF can be directly written as the following 
expressions. 

, ,0       ( , ) [ ( , ) ( 1) ( , )]l
l l m lm l mm D C Y Y
           (4.1) 

,0 , ,0

,0

1, ( , ) ( , )
0

0

l l l

l

l even C D Y
m

l odd C






        
  

 (4.2) 

where ,l mC
 is identical to a constant 2 / 2  in Eq. (4.1) 

To aid understanding of the DSAF, we take D6 and D7 symmetry as examples. For D6 symmetry, according to Eq. (1), Eq. 
(2), Eq. (3.1), Eq. (3.2), Eq. (4.1), and Eq. (4.2), the DSAF for l=25 and l=26 can be obtained as follows. 

When l=25, (25) int(25 / 6) 4    

6
25,1 25,6 25, 6 25,6 25

2
( , ) [ ( , ) ( , )] 2 (cos )sin(6 )

2
D Y Y i N P           

12
25,2 25,12 25, 12 25,12 25

2
( , ) [ ( , ) ( , )] 2 (cos )sin(12 )

2
D Y Y i N P           
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18
25,3 25,18 25, 18 25,18 25

2
( , ) [ ( , ) ( , )] 2 (cos )sin(18 )

2
D Y Y i N P           

24
25,4 25,24 25, 24 25,24 25

2
( , ) [ ( , ) ( , )] 2 (cos )sin(24 )

2
D Y Y i N P           

When l=26, (26) int(26 / 6) 1 5     

0
26,1 26,0 26,0 26( , ) ( , ) (cos )D Y N P       

6
26,2 26,6 26, 6 26,6 26

2
( , ) [ ( , ) ( , )] 2 (cos )cos(6 )

2
D Y Y N P           

12
26,3 26,12 26, 12 26,12 26

2
( , ) [ ( , ) ( , )] 2 (cos ) cos(12 )

2
D Y Y N P           

18
26,4 26,18 26, 18 26,18 26

2
( , ) [ ( , ) ( , )] 2 (cos ) cos(18 )

2
D Y Y N P           

24
26,5 26,24 26, 24 26,24 26

2
( , ) [ ( , ) ( , )] 2 (cos ) cos(24 )

2
D Y Y N P           

For D7 symmetry,, the DSAF for l=25 and l=26 can be obtained by the same method. 

When l=25, (25) int(25 / 7) 3    

7
25,1 25,7 25, 7 25,7 25

2
( , ) [ ( , ) ( , )] 2 (cos )sin(7 )

2
D Y Y i N P           

14
25,2 25,14 25, 14 25,14 25

2
( , ) [ ( , ) ( , )] 2 (cos )sin(14 )

2
D Y Y i N P           

21
25,3 25,21 25, 21 25,21 25

2
( , ) [ ( , ) ( , )] 2 (cos )sin(21 )

2
D Y Y i N P           

When l=26, (26) int(26 / 7) 1 4     

0
26,1 26,0 26,0 26( , ) ( , ) (cos )D Y N P       

7
26,2 26,7 26, 7 26,7 26

2
( , ) [ ( , ) ( , )] 2 (cos ) cos(7 )

2
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14
26,3 26,14 26, 14 26,14 26

2
( , ) [ ( , ) ( , )] 2 (cos ) cos(14 )

2
D Y Y N P           

21
26,4 26,21 26, 21 26,21 26

2
( , ) [ ( , ) ( , )] 2 (cos ) cos(21 )

2
D Y Y N P           

In fact, one can obtain real functions from DSAF by combining two complex conjugate functions with m values of 
opposite sign. Then the DSAF can be divided into two parts 

),(),(),( ,,,  
s
l

c
ll iDDD   (5) 

where ),(, 
c
lD and ),(, 

s
lD  denote real and imaginary parts respectively 

when l is even, 
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When l is odd, 
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(6.2) 

 

Therefore，one may use the 
,

( , )
l

cD

 

 
to fit the real part of the structure factor and 

,
( , )

l

sD

  the imaginary part of 

the structure factor of biological complexes with dihedral symmetry in reciprocal space.  

2.2 Procedures for 3D reconstruction by the DSAF method 

It is well known that the 3D structure of objects can be described as the potential function which is determined by inverse 
Fourier transform of the structure factors; its expression in spherical coordinates is presented as follows: 

                                
2( ) ( ) exp( 2 ) sinF i R dRd d      r R R r  

                                           (7) 

where  r  and R  denote the vectors in real and Fourier spaces respectively. 
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The commonly used method for 3D reconstruction is the Fourier-Bessel method [7], where the exponential function 

exp( ( ))
2

in
   is taken as a basic function to fit data in the reciprocal space. Compared to Crowther’s Fourier-Bessel 

method, the DSAF is used as a basic function to interpolate the structure factor ( )F R in the reciprocal space of spherical 

coordinates in this paper, which is described as following formula. 

                                                                                 

, ,
0 1

( ) ( , , ) ( ) ( , )
ln

l l
l

F F R f R D 




 

     R  
(8) 

                 

where )(, Rfl   is the expansion coefficient, whose value depends on the Fourier radius R of a spherical shell, and 

ln is the multiplicity. 

According to Eq. (8), to find the coefficients )(, Rfl  , one should use all the data on the surface of a sphere with radius=R.  

Therefore, the complex function of structure factors is described as the sum of even and odd real DSAF according to the 
Eqs. (6a) and (6b).              
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1(mod 2) 1
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l

l

n
s

i lodd
l
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                                     (10) 

where ),,( RFr  and ),,( RFi  denote the real and imaginary parts of ),,( RF  respectively. 

The potential function can be obtained by substituting Eq. (9) and Eq. (10) into Eq. (7). 
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where )2( Rrjl   labels the spherical Bessel functions, and its recurrence relationship can be seen in reference [24]. 

The 3D reconstruction by DSAF can be implemented in the following five steps. 

 Determine the orientation and center parameters of each particle by means of common lines or matching 
computed projections avenues. 

 Calculate the DSAFs by Eq. (4.1) and Eq. (4.2) up to the required order. 

 Set up two linear equation groups according to Eq. (9) and Eq. (10) in terms of structure factors determined by the 
Fourier transform of the data of the experimentally measured images. 

 Obtain the fitting coefficients )(, Rfeven  and )(, Rfodd   by solving the two linear equation groups through the 

least squares method. 

 Reconstruct the 3D structures of objects with dihedral symmetry using Eq. (11). 

3 Results and discussion 

In this section, to test the robustness of the DSAF method, we took the auxilin-bound clathrin coat with D6 symmetry 
(1Xi4.pdb) [16] and GroEL with D7 symmetry (3Cau.pdb) [17] as examples, and downloaded their structures from the 
Protein Data Bank (PDB). Simple projection/reconstruction tests of the two simulated datasets with various levels of 
added noise were performed by the DSAF method in the following way. First, the simulated 3D density maps of 
auxilin-bound clathrin coat and GroEL without noise were generated at a resolution of 4.5 Å and 4.0 Å using pdb2mrc 
from EMAN’ s procedure library [8]. Then based on these 3D density maps, two thousand projections with random 
orientations were generated using the real-space projection method with trilinear interpolation by using EMAN’s 
project3d procedure for both models. Thereafter random noise was added to each projection at different levels of 
signal-to-noise ratio (S/N) such as S/N = 0.1, 0.5 and 0.8. Fig.1 and Fig. 2 show three representative projections with S/N 
= 0.1, 0.5 and 0.8 and without noise, for the clathrin coat model and the GroEL model respectively. The structures become 
obscure as the S/N decreases and we cannot even find any structures when S/N is equal to 0.1. Finally, 3D reconstructions 
of the two models using a total of 2000 projections (with three different S/N ratios) with predefined Euler angles and center 
parameters were performed at high resolution with the DSAF method. Fig. 3 and Fig. 4 show the reconstructed results of 
the clathrin coat model and the GroEL model respectively. It can be seen from Fig. 3 and Fig. 4 that the reconstructed 
structures with different S/N are in good agreement with the standard models, although those with S/N = 0.1 lose 
considerable detail. Fig. 5 presents 2D sections of the standard and reconstructed results for the GroEL model with 
different S/Ns viewing along the 7-fold axis. Fig. 6 shows 2D sections of the standard model and reconstructed results of 
the clathrin coat with different S/Ns viewing along the 6-fold axis. From the 2D slice maps of both Fig. 5 and Fig. 6, we 
can see that the reconstructed results of both models with different S/Ns are all similar to the original structures, despite 
some noise in the reconstructed results. As it is well known, a perfect reconstruction is impossible with such high levels of 
added noise. That is to say, 3D reconstruction by the DSAF method for objects with dihedral symmetry is feasible and 
robust. For quantitative comparison, the Fourier Shell Correlations (FSC) between the standard models and the 
reconstructed structures [25, 26] were calculated and are presented in Fig. 3e and Fig. 4e as functions of spatial frequency. 
According to the FSC = 0.5 criterion, the nominal resolutions as shown in Fig.3e of the reconstructed results for GroEL 
with S/N = 0.1, 0.5 and 0.8 are approximately 5.7 Å, 4.4 Å and 4.0 Å, respectively. In the clathrin coat model, the nominal 
resolutions are 8.3 Å, 4.7 Å and 4.5 Å for S/N = 0.1, 0.5 and 0.8, respectively. Thus the FSC curves show that the 
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