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Abstract 
Nanoemulsions containing hydrophobic drugs have a great potential in the pharmaceutical industries to improve the 
bioavailability of the drug. However, currently there is no cost-effective way of producing nanoemulsions in large scale. 
The need of subjecting emulsions to an extreme pressure of 50 MPa demands a large excess of energy for the 
manufacturing process, while low-energy method requires large amount of solvents. Here, nanoemulsions containing a 
well-characterized hydrophobic drug, carboxyamidotriazole (CAI), are produced in both batch and continuous modes to 
demonstrate the scalability of nanoemulsion production using Covaris’ Adaptive Focused Acoustics™ (AFA) technology. 
To move from batch scale to continuous flow, the acoustic and thermal energy inputs can be manipulated to adjust particle 
size, while the composition and temperature of starting materials can be altered to achieve complete dissolution of 
hydrophobic drugs, thus providing 100% encapsulation efficiency. Furthermore, using two AFA systems in series can 
drastically enhance the production flow rates, making AFA a competitive means for producing nanoemulsions in the 
pharmaceutical industry. 
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1 Introduction 
Nanoemulsions are kinetically stable, but thermodynamically unstable, colloidal dispersions consisting of oil, water, and 
surfactant in either oil-in-water (O/W) or water-in-oil (W/O) form [1-3]. For the emulsion to be classified as a nanoemulsion, 
the droplets in the dispersed phase must have diameters in the nanometric scale, most commonly in the 20-200 nm range [1]. 
Nanoemulsion shows improvement on the emulsion’s transport abilities from larger surface area to volume ratio, thereby 
increasing bioavailability [4], and resistance to creaming and sedimentation, a frequent dilemma with regular emulsions [5]. 
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At the same time, many of the advantages of typical emulsions are retained. Both nano and conventional emulsions 
improve drug solubility, can be manufactured in a fairly large scale, and protect encapsulated drugs from hydrolysis [6].   

Delivering drugs within the nanoemulsion droplets confers different favorable properties to the drug. A lipophilic drug 
encapsulated in an O/W nanoemulsion can stay in solution, as nanoemulsion is resistant from creaming [7, 8]. It will also be 
easy to produce at a variety of scales, as an abundance of technology exists to produce emulsions in a scalable manner [9, 10]. 
As greater than 40% of new chemical entities developed in the pharmaceutical industry are virtually insoluble in water, 
while solubility is key for bioavailability, O/W nanoemulsions are of particular interest to the pharmaceutical industry [11]. 
Today, O/W nanoemulsions containing hydrophobic drugs are used as anesthetics, NSAID pain relievers, HIV treatments, 
nutritional supplements, and eye drops, with patents for several more applications filed [7, 12-15]. There is great potential for 
an even greater variety of pharmaceuticals as O/W nanoemulsions can be delivered via topical, enteral, and parenteral 
routes [6]. However, the drawbacks from nanoemulsion production methods limit which drugs can be encapsulated and 
commercialized to treat medical conditions [16].  

As nanoemulsion is thermodynamically unstable system, it cannot be formed spontaneously without any energy input [1, 17]. 
There are two general emulsification methods to deliver the required energy for nanoemulsion production: low-energy and 
high-energy. The low-energy method explores and utilizes the thermodynamic properties of the materials for 
emulsification. On the other hand, the high-energy methods use instruments to generate a large amount of energy, whether 
by high pressure or cavitation, and deliver a small portion of that energy to the sample [1, 2, 7, 8]. 

The main low-energy methods for producing nanoemulsions are phase inversion temperature (PIT), phase inversion 
composition (PIC), and solvent displacement. Both PIT and PIC alter the hydrophilic-lipophilic balance (HLB) of a 
nonionic surfactant, which in turn affects the interfacial properties, by varying easily manipulated system conditions [7, 18]. 
This is achieved by changing the temperature in PIT and mixture composition in PIC. Nanoemulsion droplets ~50 nm in 
diameter can be produced using these methods [2, 7]. However, thermolabile compounds cannot be incorporated into the 
emulsions with PIT, and neither PIT nor PIC can produce nanoemulsions in a scalable manner. Solvent displacement 
requires large quantities of solvent to dissolve the oily phase in water to spontaneously produce nanoemulsions [7]. The 
amount of solvent dictates particles size, but also creates scale up complications [2, 7].  It is also important to note that 
specific combinations of emulsifiers and surfactants are key for successful nanoemulsion using low-energy  
methods [1, 19, 20]. 

Common high-energy modes of nanoemulsion production include high-pressure homogenization, microfluidization, and 
ultrasonication [1, 2]. The high-energy methods require less solvent than the low-energy methods, but their excessive energy 
consumption is a main concern for large-scale production [8]. High-pressure homogenizers (HPH) utilize high pressures, 
typically between 50 and 100 MPa, and many forces, such as cavitation, shear, and collision forces. There, 
microemulsions are accelerated at a high velocity through a tiny opening in the device several times, in order to produce 
particles as small as 1 nm [1, 2, 7]. HPH is the most widely used nanoemulsion production instrument, as it offers easy scale 
up and a fast process time [1, 21]. At the same time, adding particular type of alcohol to the emulsion mix can enhance the 
activity of emulsifiers and produce even smaller nanoemulsions via HPH [22]. Nevertheless, HPH’s setting and optimized 
stabilizer conditions are key to reducing drying frequencies for increasing the stability of the nanoemulsions produced [23]. 

Microfluidization makes use of the high pressure within a microfluidizer. The emulsion mixture is forced through the 
microfluidizer’s microchannels at high pressures, up to 140 MPa [5, 7]. Exposure to the high pressure accelerates the large 
droplets to high velocity. The droplets then collide within the interaction chamber with a confined size, which results in a 
reduction of nanoemulsion sizes [24]. Smaller nanoemulsions with narrow distribution could be achieved from the multiple 
passages through the microfluidizers. However, the absolute size of these droplets is dependent upon emulsion 
composition, process temperature, and process pressure [2, 25]. Unlike the typical high-pressure homogenization methods, 
microfluidization does not require a pre-emulsion step, allowing the immiscible solution to be used in the instrument [26], 
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which simplifies the workflow. Despite its advantages, materials used for fabricating the microfluidizer need to be 
carefully examined. Some materials promote polymer aggregation and swelling on the microchannels, when exposed to 
organic solvents, that can introduce unfavorable characteristics to the nanoemulsions produced [27]. Generating the 
high-pressure within the microchannels also requires a lot of power. Different fabrication and design strategies, such as 
stainless steel fabrication and dual microchannels, have been explored to address these issues [26-28]. 

Ultrasonic emulsification is unique in that it exploits acoustic field generated by ultrasonicator, deviating from the use of 
high pressure. The ultrasound applied to initial immiscible solution produces cavitations, small bubbles formed in ambient 
temperature that then collapse with implosion [8, 21, 29]. Cavitations produce “shockwaves” that introduce turbulence and 
energy required for nanoemulsion [15].  Ultrasound is generated by ultrasonicators, which is then delivered through a large 
bath of water or tip of the instrument. It has been reported that hydrophobic drugs were successfully encapsulated through 
ultrasonic emulsification [14, 30-32]. Preparation conditions and instrument settings can be manipulated to yield 
nanoemulsions with different sizes. Ultrasonic emulsification earns its merit as an energy-saving method, compared to 
other high-energy methods. It requires 18 times less power for drug encapsulation than the microfluidization into the same 
size nanoemulsions [15, 30]. However, current instrumentation and methods require improvements. Bath sonicators are 
inefficient and inconsistent, as acoustic field is applied to a large bath of water, while the probe sonicators can contaminate 
samples from directly contacting them [33, 34]. Although fairly consistent, ultrasonic emulsification using 20 KHz ultrasonic 
waves yields wider distribution of nanoemulsions than microfluidization, which is unfavorable for the  
biodistribution [7, 15, 27, 35]. 

Covaris’ patented Adaptive Focused Acoustics™ (AFA) offers a scalable, precise, sterile, solvent-free, energy-efficient 
nanoemulsion production method. AFA technology uses focused 500 KHz - 1.1 MHz ultrasonic waves to deliver a 
specified amount of energy to a focal zone within the solvent-free formulation, creating controlled cavitation. As energy is 
only being delivered to the sample, not its surroundings, and the system does not need to be brought to high pressures, 
minimal energy is used. Microjets from imploding cavitation bubbles mill down emulsion droplets to nanoscale 
dimensions [29]. These same microjets mix the formulation, creating a homogenous formulation, and destroy bacteria, 
sterilizing the mix. The vessel containing the formulation is kept at a constant temperature by a constantly cooled water 
bath and can take the form of a sealed tube or a flow cell for batch and continuous applications respectively.  

In this article, we scale up of production of a simple O/W nanoemulsion containing a model hydrophobic compound of 
pharmaceutical interest: carboxyamidotriazole (CAI). CAI  has been pursued as a promising cancer drug for more than 15 
years due to the small molecule’s anti-angiogenic effects, and has failed numerous clinical studies in the past due to lack of 
bioavailability [36]. We encapsulated CAI in nanoemulsions as an effort to increase its bioavailability. In scaling up CAI 
nanoemulsion production, parameters such as jacket temperature, flow rate, and energy input, in the form of Peak Incident 
Power (PIP), were varied to determine the sizes of nanoemulsions that can produced, as well as to create particles of a 
desired size. Similarly, high levels of encapsulation were achieved in the continuous process by modifying the temperature 
and composition of the starting materials. In this article, we demonstrate the capacity of AFA technology to produce O/W 
nanoemulsions containing CAI in a continuous process that exhibits the properties of CAI nanoemulsions produced in 
batch. 

2 Materials and methods 

2.1 Nanoemulsions production 
In batch mode, 2 ml of 4% (w/v) soybean oil (Sigma-Aldrich, St. Louis, MO) or 4% (w/v) rice bran oil (Select Origins, 
Southampton, NY), 1 mg/ml CAI (RFE Pharma, Framingham, MA), and 4% (w/v) Tween-80 (Sigma-Aldrich, St. Louis, 
MO) in water was processed in a 2 ml stainless steel (SST) process vessel from Covaris (Woburn, MA) using an S220x 
focused ultrasonicator (Covaris) emitting 500 KHz sound waves in a water bath connected to a 3°C chiller. Batch samples 
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z-average remained below 200 nm, but did increase by ~30 nm. Elevated temperatures changed the color of the oil/CAI 
mix and melted the tubing. 

Table 1. Calculated CAI concentrations from HPLC analysis based on the DMSO standards containing known amounts of 
CAI 

CAI concentration in continuously processed samples 

Time (min) Calculated (CAI) (mg/ml) Experiment Filtered? 

120 
120 

0.350 
0.340 

Oil + CAI 
Oil + CAI 

No 
Yes 

45 
60 
75 
75 
90 

0.466 
0.449 
0.763 
0.765* 
0.650 

Oil + CAI + High Heat 
Oil + CAI + High Heat 
Oil + CAI + High Heat 
Oil + CAI + High Heat 
Oil + CAI + High Heat 

No 
No 
No 
Yes 
No 

50 
60 
60 
90 
120 
120 

1.854 
1.894 
1.179 
1.808 
1.896 
1.164 

Oil + CAI + Tween + Heat 
Oil + CAI + Tween + Heat 
Oil + CAI + Tween + Heat 
Oil + CAI + Tween + Heat 
Oil + CAI + Tween + Heat 
Oil + CAI + Tween + Heat 

No 
No 
Yes 
No 
No 
Yes 

Note. Starred (*) value indicates the sample that was ran in a different HPLC run with repeat sample and was scaled with respect to the repeat samples to provide a 

better comparison within the experiment. 

Next, Tween-80 was included in the oil/CAI mix, instead of DI water, to halve the necessary concentration of CAI in the 
mix and aid in dissolving the drug. CAI effectively dissolved and HPLC analysis of the samples showed 185% 
encapsulation from 30 to 120 minutes, suggesting that more CAI was entering the nanoemulsion system than anticipated 
(1 mg/ml). The z-average was reduced to ~135 nm, staying below the 200 nm cutoff. Two distinct phases were apparent in 
the mix if it was allowed to settle, but stirring maintained a homogenous mix. Both heated oil and Tween-80 experiments 
had ramp times of approximately 50 minutes, supporting the notion that the short ramp time reported earlier was not a 
complete representation of continuous CAI nanoemulsion production. The encapsulation efficiency progression suggests 
that getting the drug into the flow vessel is the limiting factor. Covaris AFA will encapsulate 100% of hydrophobic drugs 
in O/W nanoemulsions in both batch and continuous modes, up until a certain saturation concentration. 

Although AFA processing can bring sterilization effects, sterile filtration was performed on the nanoemulsions. This is the 
standard procedure in a drug formulation for the pharmaceutical industries that the effect of filtration on the CAI 
nanoemulsion yields was observed. HPLC was used to analyze the loss of CAI to filtration. In 1 mg/ml CAI 
nanoemulsions produced in batch with an original z-average of 75 nm, 98% of CAI was retained. 62% of CAI was retained 
in 1.85 mg/ml CAI nanoemulsions produced continuously with an original z-average of 135 nm, such that the final 
concentration was 1.17 mg/ml, or approximately the maximum encapsulation concentration. Particle size distributions of 
the filtered samples were also determined. The z-averages for filtered batch and continuous emulsions were approximately 
37 nm and 46 nm respectively (see Figure 6). Volume breakdowns of Zetasizer data revealed a reduction in 5 µm droplets 
in both samples. In the batch processed sample, these particles were eliminated, while over two thirds of the 5 µm particles 
were eliminated for the continuously processed sample. Differences could be due to the discrepancy in initial z-average. 
However, it is clear that both versions respond well to filtration.  

In addition to successful filtration on both formulations, they show stability over time at room temperature (see Table 2). 
The batch samples were monitored for 2 months. A slight decrease in particle size occurred within the first 24 hours, but 
the size was remarkably consistent afterwards. Continuous samples were also monitored for 2 months and the original 
measurement was followed by constant z-average values.  
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focused energy is sufficient to sterilize the solution during the preparation. This, followed by the filtration, would make the 
products highly sterile for the consumers.  

Another key component for large-scale manufacturing is the system optimization, where various parameters of the 
instruments need to be set at the most plausible level for the highest quality products. The drugs used in this optimization 
process could be very costly. We have shown that the AFA produced nanoemulsions, with or without CAI, have similar 
sizes. This presents the capability of optimizing the nanoemulsification process ahead of time without consuming the 
therapeutic reagents to be encapsulated within the nanoemulsion. However, it is important to examine whether this 
observation holds for the larger molecules for wider application of the technology. We have also shown that PIP, flow 
rates, and jacket temperature of the process can influence the size of the nanoemulsions produced. With AFA technology’s 
ability to acutely control each parameter through the instrument’s unique software, it gives a reproducible and predictable 
production in a desired application. This understanding and control will be essential in improving the quality and 
efficiency of the pharmaceutical industry’s manufacturing processes. 

We have shown that the AFA technology enables the scale-up of the nanoemulsification process by allowing the transition 
from batch to continuous processing. CAI was effectively encapsulated in the nanoemulsions for both methods and it 
showed stability over time. The z-average of the nanoemulsions from continuous processing was higher than that of batch 
processing (see Table 2), and less CAI nanoemulsions were lost from the filtration of batch processing (see Figure 6). 
These observations may be resolved by further optimizing the parameters for continuous processing so that smaller 
nanoemulsions can be formed. We have also demonstrated that AFA system can be set up in series to increase the 
production flow rates, while maintaining similar nanoemulsion size as the singular setup. This result must be confirmed 
with the presence of drug, as our experiment was performed without CAI. However, the notion that multiple instruments 
setup in series can increase the flow rate offers a high-throughput strategy for the drug production using AFA technology. 

AFA technology’s ability to generate drug-encapsulating nanoemulsions in a continuous mode provides a potential for 
large-scale and cost-effective manufacturing processes for pharmaceutical industry. Moreover, it offers an opportunity to 
encapsulate and deliver thermolabile substances. These advantages will contribute in accelerating the manufacturing 
efforts of therapeutic nanoemulsions against various diseases. 

5 Conclusion 
This study demonstrates the ability of AFA technology to scale up production of a nanoemulsion containing a drug of 
pharmaceutical interest, CAI, from batch mode to continuous mode. Easily controlled factors, such as flow rate, 
temperature, composition, and AFA energy input, influence the nanoemulsion size distribution independently from the 
presence of drug, making the optimization simple and economical. Depending on a compound’s maximum encapsulation 
concentration and the desired final concentration of the drug, producing the nanoemulsion using two Covaris’ focused 
ultrasonicators in series could increase production rates substantially. AFA technology could be a realistic means of 
commercially producing a nanoemulsion encapsulating a hydrophobic drug. 
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