
http://jbei.sciedupress.com                                                            Journal of Biomedical Engineering and Informatics, 2016, Vol. 2, No. 1 

                                                                                            ISSN 2377-9381   E-ISSN 2377-939X 52

ORIGINAL ARTICLES 

Tailored surface design of biodegradable 
endovascular implants by functionalization of  
poly (L-lactide) with elastin-like proteins 

Svea Petersen1, Daniel G. Gliesche2, Güven Kurtbay3, Robert Begunk3, Maria Boeck1, Verena 
Hopf3, Heyo K. Kroemer3, Klaus-Peter Schmitz1, Henriette E. Meyer zu Schwabedissen2, Katrin 
Sternberg1 

1. Institute for Biomedical Engineering, University of Rostock, Germany. 2. Biopharmacy, Department of Pharmaceutical 
Sciences, University of Basel, Germany. 3. Institute of Pharmacology, Ernst-Moritz-Arndt University, Germany.  

Correspondence: Svea Petersen. Address: Institute for Biomedical Engineering, University of Rostock, Friedrich- 
Barnewitz-Straße 4, 18119 Rostock, Germany. Email: s.petersen@hs-osnabrueck.de 

Received: July 28, 2015  Accepted: September 13, 2015  Online Published: October 8, 2015 
DOI: 10.5430/jbei.v2n1p52 URL: http://dx.doi.org/10.5430/jbei.v2n1p52 

Abstract 
Endovascular implants currently used after cardiovascular events have proven their efficacy. However, strategies are in 
quest to optimize clinical outcomes. One possibility is the development of polymer surfaces imitating extracellular matrix 
in order to promote vascular integration of an implanted device. The aim of this study was to develop and investigate 
methods for covalent immobilization of a synthesized elastin-like protein (ELP) additionally modified with functional 
domains (RGD, CS5 and P15) promoting endothelial cell proliferation on biodegradable poly (L-lactide) (PLLA) as model 
endovascular implant surface. Evaluation of the impact of different ELP immobilization methods on PLLA regarding the 
achievable surface load evidences that the amino activation of PLLA does not have considerable influence, while the 
reaction sequence as well as the used crosslinker presents determining factors in ELP immobilization. Biocompatibility 
regarding selective promotion of endothelial cell (EC) adherence and proliferation especially in contrast to smooth muscle 
cells (SMC) was improved on covalently immobilized but not on physically adsorbed ELP. In summary, we could 
underline the applicability of a modified ELP-coating for endovascular implant surfaces in vitro and provide information 
on applicable immobilization procedures. Moreover, the latter builds the basis for a wide variety of implant applications, 
because the developed immobilization strategy should be easily transferable to any ELP with tailored biological 
functionality by exchange of the integrated active sequences. 
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1 Introduction 
With the purpose of saving lives and improving the quality of life, various medical applications are inserted in humans 

each year. However, reduction of the associated foreign body reaction, involving nonspecific protein adsorption, 

interaction with immune cells such as neutrophils and macrophages, and giant cell formation and cytokine release possibly 

leading to encapsulation of the device, still provides substantial room for improvement of the applied biomaterial [1, 2]. This 



http://jbei.sciedupress.com                                                            Journal of Biomedical Engineering and Informatics, 2016, Vol. 2, No. 1 

Published by Sciedu Press                                                                                                                                                                                     53

is especially true for endovascular implants, which are in close and steady contact with blood. Here, the implant material 

might trigger activation of different cascades of homeostasis possibly resulting in a stent thrombosis [3]. In order to reduce 

this surface-induced reactions of the organism the blood contacting artificial devices are more and more coated with 

inherently better hemocompatible substances such as polysaccharides, enzymes, and anti-inflammatory agents [4]. 

Moreover, development and establishment of implant surfaces mimicking the natural local surrounding of cells, the 

extracellular matrix (ECM), which significantly controls cell adhesion, proliferation and differentiation in vivo, is one 

research focus today [5]. From the plethora of insoluble and soluble macromolecules contained within ECM, the fibrillar 

protein collagen is probably the most commonly used coating of for example commercially available polyester vascular 

grafts [6]. Furthermore, besides the use of integer ECM components, various ECM peptide sequences including functional 

domains of proteins, glycoproteins, and proteoglycans have been isolated and grafted on biomaterials to control cell 

behavior, for example, RGD, and REDV within the CS5 (EEIQIGHIPREDVDYHLYPHG) sequence of fibronectin [7], 

laminin-derived recognition sequences IKLLI, IKVAV, LRE, PDSGR, and YIGSR [8], and the collagen type I derived 

sequences DGEA [9] and TPGPQGIAGQRGVV (P15) [10]. However, these peptides, nicely reviewed by de Mel et al. [5], 

are not cell-selective as they bind to integrins, present on many epithelial cells. Nevertheless, Blindt et al. demonstrated 

that endothelial progenitor cells (EPC), reported to induce endothelialization resembling the natural innermost layer of 

blood vessels [11], could be successfully recruited to polymer-based stent coatings modified with cyclic RGD [12]. Cell 

selectivity could be moreover augmented by the coupling of peptides, which have been previously isolated by a phage 

display technique [13]. The application of a coating combining both, an integer ECM component with functional peptide 

domains, might hence be very promising with regard to the creation of an optimal environment for endothelialization, 

thereby suppressing the surface induced foreign body reaction. Envisioning a coating for vascular grafts mimicking the 

natural surroundings of endothelial cells (EC), which provides itself a tight non-thrombogenic barrier between the lumen 

of the vessel and the rest of the vessel wall, one hence has to study the composition of the EC’s environment. Stegemann et 
al. [14] described this region being enriched in collagen IV and laminin encircled by a fenestrated but acellular layer of 

elastin called the internal elastic lamina. Elastin-like proteins (ELP), artificial repetitive polypeptides consisting of peptide 

sequences of ECM proteins with previously reported functional cell recognition motifs [15-17], have already found 

widespread medical applications in vascular graft tissue engineering [18]. Instead of directly processing those ELPs into 

gels [19], films [20], foams [21], or fibers [22], impregnation and coating of vascular graft surfaces with various ELP via 

adsorption has been recently demonstrated to yield materials with low incidence of platelet deposition [23, 24]. Especially, an 

ELP sequence consisting of hydrophobic and hydrophilic blocks was demonstrated to reduce thrombogenicity of the 

coated material. Although the latter allows the use of the well-established vascular graft materials as polyesters and 

poly(tetrafluoroethylene), it was shown in previous work that the physical adsorption of ELP to substrates represented an 

inherently limiting characteristic due to coating instability, resulting in a loss of the anti-thrombotic effect [25].  

In this context, we established a covalent surface binding of an ELP sequence, additionally modified with functional 

domains (RGD, CS5 and P15) assumed to promote endothelial cell proliferation, via an ε-amino group of lysine (K) 

incorporated as fourth residue within the pentapeptide sequence of ELP (VPGXG) to amino-activated poly (L-lactide) 

(PLLA). Therefore, we synthesized the ELP sequence X2-RGD-X2, with X2 = [ELP-CS5-(ELP)2-P15-(ELP)2-CS5-ELP]2 

containing repeats of the classical ELP [(VPGIG)2-VPGKG-(VPGIG)2], the CS5 sequence from alternative spliced 

fibronectin including the binding domain REDV, and the P15 sequence from collagen type I. PLLA has been chosen as 

model material since it is nowadays often applied as biocompatible and biodegradable platform [26, 27] or coating with 

possible drug incorporation [28, 29] for endovascular implants.  

The herein reported study focuses on evaluating the impact of different ELP immobilization methods on PLLA regarding 

the achievable surface load and biocompatibility in terms of selective promotion of EC adherence and proliferation 

especially in contrast to smooth muscle cells (SMC), identified as one main principal cause for vascular graft occlusion.  
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2 Methods 

2.1 ELP preparation 

2.1.1 ELP cloning 
Afforded DNA sequences encoding for the different peptide sequences contained in X2-RGD-X2 (see Table 1) were 
purchased from Eurofins Genomics (Ebersberg, Germany). As previously reported by McDaniel et al., these DNA 
fragments were subcloned into pET24a (+), amplified and combined to ELP-CS5-ELP and ELP-P15-ELP by recursive 
directional ligation for generation of 2 repeats of the sequence [ELP-CS5-(ELP)2-P15-(ELP)2-CS5-ELP]2 called X2

 [30]. 
This method of recursive directional ligation was used again to encompass the RGD sequence between two X2 sequences. 
The resulting plasmid pET24a+-X2-RGD-X2 was subsequently transformed into commercially available E.coli BL21 
(DE3) (Life Technologies GmbH, Darmstadt, Germany) for protein expression with subsequent ELP purification. 

Table 1. Abbreviations of peptide sequences contained in the synthesized ELP sequence X2-RGD-X2 
Abbreviation Sequence 

ELP-RGD-ELP (VPGIG)2-VPGKG-(VPGIG)2-YAVTGRGDSPASS-(VPGIG)2-(VPGKG)-(VPGIG)2 

ELP-CS5-ELP (VPGIG)2-VPGKG-(VPGIG)2-EEIQIGHIPREDVDYHLYPHG-(VPGIG)2-(VPGKG)-(VPGIG)2 

ELP-P15-ELP (VPGIG)2-VPGKG-(VPGIG)2-GTPGPQGIAGQRGVVG-(VPGIG)2-(VPGKG)-(VPGIG)2 

2.1.2 ELP expression and purification 
Based on a modified protocol established by McPherson et al. the synthetic X2-RGD-X2 protein was extracted from 
cultured bacteria [31]. Briefly, an overnight pre-culture of E. coli BL21(DE3)-pET24a+-X2-RGD-X2 was used to inoculate 
a main culture with an optical density of OD600 = 0.04 containing 100 µg/ml kanamycin. After reaching an OD600 of 0.6 the 
ELP expression was induced with isopropyl β-D-1-thiogalactopyranoside (IPTG, 0.5 mM). Following 3 hours of 
continued growth, monitored via OD600, the bacteria were harvested by centrifugation at 4,400 × g for 15 min at room 
temperature. After resuspension in a small volume of distilled water the bacteria were lysed in an ultrasonic water bath for 
10 min in cold water. After centrifugation for 20 minutes at 4°C, and 10,000 × g the supernatant containing soluble ELPs 
was transferred in new reaction tubes. After adding the same volume of 2 × TN-buffer (100 mM Tris-HCl, pH 8.0,  
1 N NaCl) the reaction tubes were incubated in a water bath (45°C, 15 min) to induce polymerization of soluble ELPs. 
Resultant polymers were isolated by centrifugation (1,500 × g for 30 min at 40°C). The supernatant was removed and the 
ELPs were dissolved in cold distilled water by pipetting up and down. The procedure of cold centrifugation followed by 
addition of 2 × TN-buffer and warm centrifugation was repeated three-times to purify the recombinant ELPs. The protein 
was stored at -20°C in distilled water. 

2.1.3 ELP analysis 
To analyze the enriched ELP from E. coli culture, identical samples volumes were separated by 10% SDS-PAGE, then 
fixed in 40% ethanol with 10% acetic acid and staining was performed using a commercial available Roti-Blue Colloidal 
Coomassie solution (Roth AG, Arlesheim, Switzerland). After an incubation of 5 h the gels were washed four times with 
25% methanol and the staining was digitalized using the ChemiDocMP imaging system (Bio-Rad Laboratories, Cressier, 
Switzerland). The protein content was determined using a BCA-assay (Thermo Scientific) according to the manufacturer’s 
protocol. 

2.2 Polymer film fabrication 
PLLA films (Resomer® L210, Mw = 280,000 g/mol, Boehringer Ingelheim, Ingelheim, Germany) were prepared via a 
pouring procedure as described previously [32]. 
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2.5 Characterization of PLLA surface modifications 

2.5.1 Contact angle measurements 
Contact angles were measured by the sessile drop method (Contact Angle System, OCA 20, Dataphysics Instruments 
GmbH, Filderstadt, Germany). 

2.5.2 Scanning electron microscopy 
Examination of the modified PLLA samples was carried out in a Philips XL 30 ESEM (Philips Electron Optics, Eindhoven, 
Netherlands) operating in the ESEM mode. Representative micrographs are shown. 

2.5.3 BCA protein assay for quantification of immobilized ELP 
A BCA protein assay (Thermo Scientific) was employed to quantify the amount of ELP on the model implant surfaces. 
Four identically modified PLLA foils were placed into 1.5 ml vials and incubated for 2 h at 17°C with 300 µl of working 
reagent containing the following in a 50:1 ratio: a 0.1 M NaOH solution containing sodium carbonate, sodium bicarbonate, 
bicinchoninic acid, sodium tartrate and 4.0% cupric sulfate pentahydrate. Standards (25 ng to 5,000 ng BSA were prepared 
in 25 µl DPBS, pipetted into separate wells of a 96-well plate (in triplicate) and after lyophilization incubated for 2 h at 
17°C with 300 µl working reagent. Both standards and samples were assayed at 562 nm in a spectrophotometer 
(BIOMATE 3S, Thermo Scientific). 

2.5.4 CBQCA assay for quantification of ELP crosslinking 
As an estimation of the degree of internal ELP crosslinking, dissolved ELP prior crosslinking and after crosslinking, 
following experimental conditions of the second step of reaction strategy c described above omitting the addition of PLLA 
foils, was determined by labelling the primary amino groups with ATTO-TAG CBQCA (3-(4-carboxybenzoyl) quinoline- 
2-carboxaldehyde). For this assay, 15 µl of the sample were mixed with 120 µl DPBS, 5 µl potassium cyanide (20 mM in 
dH2O) and 10 µl ATTO-TAG CBQCA (5 mM in DPBS) and incubated for 1 h at 17°C. Fluorescence measurement was 
performed with a plate reader (FLUOstar Optima, BMG Labtech, Ortenberg, Germany) applying an excitation wavelength 
(λexc) of 485 nm and a detection wavelength (λem) of 520 nm. 

2.6 Cell assays 

2.6.1 Culture of human primary cells 
Primary human coronary artery smooth muscle cells (HCASMC) and endothelial cells (HCAEC) of different donors were 
obtained from PromoCell GmbH (Heidelberg, Germany) and cultured in a humidified atmosphere at 37°C with 5% CO2 
using optimized culture media as recommended by the manufacturer. Prior to seeding of the cells for determination of 
viability and proliferation and fluorescence microscopy the different PLLA surfaces were placed into the wells of 96-well 
plates, weighted with Teflon rings and disinfected with 70% ethanol (incubated for 10 minutes). After three washing steps 
with PBS, HCAEC or HCASMC were seeded at a density of 5 × 103 cell/well and incubated in respective growth medium 
for 48 h, respectively.  

2.6.2 Cell viability assay 
Cell viability was determined using the commercially available Fluometric Cell Viability Kit I (PromoKine GmbH, 
Heidelberg, Germany). Three hours prior to the final measurement the culture medium was changed and 10% resazurin 
solution was added. After 3 hours incubation the supernatant was transferred in a new 96-well plate and fluorescence of 
resorufin was measured at an excitation wavelength of 530 nm and an emission wavelength of 590 nm using the 
Infinite_M200 microplate reader (Tecan Group Ltd., Männedorf, Switzerland). Presented data were normalized to those 
obtained from cells cultured on untreated PLLA surfaces. The cells were subsequently used for determination of cell 
proliferation. 
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4 Discussions 
With the purpose of developing a coating material for biodegradable endovascular implants, which not only mimics the 
natural surroundings of endothelial cells but also provides additional cellular recognition motifs in order to further enhance 
endothelialization without inducing SMC proliferation, we synthesized an ELP including the fibronectin- and collagen 
type I-derived peptides RGD, CS5 and P15. Elastin, which forms the internal elastic lamina in the region of endothelial 
cells [14], was thus combined with recognition motifs known to provide cellular adhesion. The CS5 peptides was first 
introduced by the group of Liu et al. demonstrating a significant enhancement of adhesion and spreading of endothelial 
cells [7]. Furthermore, it was demonstrated that the combination of CS5 with elastin domains promotes cell proliferation, 
angiogenesis, tissue repairing and healing [33]. Additionally incorporating the collagen type I-derived peptide P15 is based 
on the study of Li et al. stating an effective promotion of the adhesion and proliferation of human umbilical endothelial 
cells with fewer efficiency on smooth muscle cells [34]. We hence estimated that the combination of RGD, CS5 and P15 
sequences with the elastin-derived pentapeptides VPGIG and VPGKG in one protein might be a promising coating 
material for biodegradable endovascular grafts.  

The synthesis of the ELP sequence could be successfully established and verified by electrophoresis (SDS-PAGE) with 
Coomassie staining (see Figure 2c). The characteristics of elastin being soluble at lower temperatures (< 35°C) and not 
soluble at higher temperatures including the physiological body temperature of 37°C was used during the isolation 
procedure of the elastin like protein after in vitro production [31]. After the synthesis of the novel coating material we 
focused on its immobilization to PLLA as model biodegradable implant surface. Within this context, we investigated 
several surface activation procedures, reaction strategies and crosslinker with regard to achievable surface loads of ELP. 
Surface activation of PLLA is necessary in order to allow covalent attachment of ELP. Within this study, we investigated 
three different surface activation treatments: a non-thermal treatment with ammonia plasma (NH3-plasma) [35], aminolysis 
with HMDA [36] and a combination of an oxygen plasma (O2-plasma) treatment and silanization with APTES [37]. It is well 
known that plasma treatment is restricted to the surface with a very low penetration depth of only 10 nm [35], while 
aminolysis has been reported to occur as deep as 50 µm [36], and silanization often yields multilayer formation due to 
condensation of hydrolyzed silanol groups between each other [38]. Hence, one might assume a considerable higher density 
of amino groups on aminolyzed and silanized PLLA, which we could indeed evidence in a previous study [32]. 
Nevertheless, we here detect no significant impact of the applied surface activation on ELP loading (see Figure 3a, 3b). It 
hence seems reasonable to suppose that already the amount of generated amino groups on the surfaces largely exceeds the 
amount of immobilizable ELP. In contrast to the surface activation procedure, the applied reaction strategy revealed a 
significant impact on obtained ELP surface loads. Efficient surface attachment seems to afford a first coupling of the 
crosslinker to the surface and a subsequent ELP attachment (see Figure 1, reaction strategy c). ELP crosslinking prior to 
surface attachment (see Figure 1, reaction strategy a) and simultaneous ELP crosslinking and surface attachment (see 
Figure 1, reaction strategy b) resulted in significantly lower ELP surface loads (see Figure 3a, 3c), comparable to the 
amount of ELP immobilized via physical adsorption without the application of crosslinker. It hence seems that the 
crosslinker preferentially reacts with the free amino groups of the protein in solution instead of the amino groups at the 
PLLA surface. We dedicate this observation to the higher probability of collision in solution by reduced sterical hindrance. 
This assumption can be moreover underlined by the fact, that the nature of the applied crosslinker has no impact using 
reaction strategy a and b, while the application of DSS resulted in higher ELP surface loads compared to TSAT using 
reaction strategy c (see Figure 4c). This most obviously results from a higher ELP crosslinking, evidenced by a lower 
abundance of unreacted primary amine groups (see Figure 4a), and the associated deposition of ELP multilayers. The 
difference in the crosslinking degree might be explained by the structure of the two crosslinker. While TSAT bears three 
amine-reactive NHS-esters at short spacer arms, possibly poorly accessibly by the terminal amino groups of ELP, DSS is 
bifunctional with a flexible C6 spacer, favoring ELP crosslinking. Representative electron micrographs, shown in  
Figure 4b, nicely underline the above stated deposition of ELP multilayer. While a thin deposited layer of protein is visible 
using DSS, hardly any deposit is visible on surfaces, applying TSAT or omitting the addition of crosslinker (see Figure 4b). 
For the in vitro investigation of ELP-modified PLLA surfaces with regard to attachment, viability and proliferation of 
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HCAEC and HCASMC, we applied the functionalization strategy with highest achievable ELP surface loads. Thus, DSS 
was reacted with amino-modified PLLA surfaces prior to ELP binding and crosslinking (X2-RGD-X2 + DSS). Amino 
activation of PLLA, which did not evidence any impact on ELP surface deposition, was carried out via NH3-plasma 
treatment, which was less time consuming than further investigated wet-chemical treatments. In order to observe the 
influence of the covalent binding, we included NH3-plasma activated PLLA samples with physically adsorbed ELP 
(X2-RGD-X2) and as reference untreated PLLA and NH3-plasma-activated PLLA (NH3-Plasma). Stability of the covalent 
immobilization during the time interval of cell experiments was evidenced via lacking ELP in the supernatant as 
determined via BCA assay. 

Our study revealed enhanced viability, proliferation and cell counts of HCAEC on the NH3-plasma activated 
PLLA-surfaces (Figure 5, a-c). This plasma activation is necessary to bind the X2-RGD-X2 peptide via the lysine residue to 
the PLLA. However, it has to be noted that the surface modification induced by plasma activation is a temporary state and 
is not applicable for stable induction of endothelialization [39]. Physical adsorption of ELP to PLLA resulted in no 
significantly increased proliferation and attachment of HCAEC (see Figure 5b, 5c). This might be explained by the 
detachment of the peptides from the coating, or a disadvantageous arrangement of immobilized peptides. In this context, it 
has been reported in literature before, that the physical adsorption of ELP to substrates represented an inherently limiting 
characteristic due to coating instability, resulting in a loss of the anti-thrombotic effect [25]. In contrast, covalently 
immobilized ELP allowed the generation of PLLA surfaces with improved endothelialization without enhancing smooth 
muscle cell attachment and proliferation (see Figure 5b, 5c). This underlines on one hand the necessity of the covalent 
binding and on the other hand the successful EC-selective effect of the adhesion motifs RGD, CS5 and P15. The 
synthesized ELP seems hence a promising coating material for biodegradable endovascular implants. 

5 Conclusions 
Taken together, we developed and investigated different strategies for modification of PLLA with modified ELP, 
combining both an integer ECM component with functional peptide domains, with the purpose of creating an optimal 
environment for endothelialization and thereby suppressing the surface-induced foreign body reaction. Concerning the 
functionalization strategy, our findings show that the kind of amino activation of PLLA does not have considerable 
influence on the amount of deposited ELP, while the reaction sequence and the used crosslinker present a determining 
factor in ELP immobilization. With regard to biological functionality, we could show that in contrast to both, untreated 
PLLA and PLLA modified with physically adsorbed ELP, PLLA with covalently crosslinked ELP promoted endothelial 
cell adherence and proliferation without favoring smooth muscle cell proliferation. Hence, the ELP-modified surfaces are 
promising for the generation of endovascular implants with rapid endothelialization, associated with a lower risk of 
occlusion and thrombosis. However, the evaluation of thrombogenicity of the novel surfaces needs further research. In a 
wider context, we assume that the use of modified ELP-coatings on biodegradable polymers might allow for the 
establishment of implant surfaces with tailored surface functionality by an adapted design of the ELP construct. Provided 
information within the present study can be used as basis for the immobilization procedure of such ELP constructs. 
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