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Abstract 

Arthur Temple College of Forestry and Agriculture (ATCOFA) faculty members were trained how to integrate 

service learning activities within senior level classes at Stephen F. Austin State University (SFASU) in Nacogdoches, 

Texas. The service learning training, taught under the acronym Mentored Undergraduate Scholarship (MUGS), 

involved meeting with fellow faculty members over the course of an academic year during the fall semester to first 

learn how to incorporate service learning activities in a senior level class followed by its incorporation into a class 

the following spring semester. The service learning model was applied to students in GIS 420, a senior level 

Landscape Modeling, Spatial Analysis, and Quantitative Assessment course within ATCOFA. The students were 

instructed within a hands-on interactive environment on how to use geospatial analysis to quantify natural resources. 

The overall goal was for a student to demonstrate proficiency in understanding how to apply aerial photo 

interpretation, satellite remote sensing, global positioning system and geographic information systems technology to 

quantify, qualify, map, monitor and manage natural and environmental resources at the local and landscape scales. 

Students applied this concept within a quantitative resource assessment, whereby students compared the 

conventional methodology of measuring height of vertical features within a landscape using a clinometer with the 

newer ways of measuring height using Pictometry hyperspatial imagery and drone acquired digital imagery. 

Conventional results were compared to newer technological methodologies to determine the most efficient and 

accurate way to quantify vertical resources from a spatial perspective.  

Keywords: Service learning, Faculty training, Spatial science, Capstone course 

1. Introduction 

Within the Arthur Temple College of Forestry and Agriculture (ATCOFA) at Stephen F. Austin State University 

(SFASU) we want our students asking interesting questions that are relevant to their daily lives and future work 

expectations. This conceptual training will provide them with new knowledge about our natural resources and the 

field in which they will participate. Natural resource undergraduates are tasked with solving complex problems, 

working in interdisciplinary teams to develop and implement spatial science research plans as they prepare for their 

profession (Thompson, Jungst, Colletti, Licklider, & Benna, 2003; Newman, Bruyere, & Beh 2007; Bullard et al., 

2014); their education must be relevant, rigorous and build relationships (Bullard, 2015). Collaborative learning 

problem-solving and written and oral communication skills are identified by natural resource employers as desirable 

traits for solving societal, employer and environmental needs (Sample, Ringgold, Block, & Giltmier, 1999).  

We applied this concept within an undergraduate quantitative resource assessment course whereby the students 

compared the conventional methodology of measuring height of vertical features within a landscape using a 

clinometer compared with newer ways of measuring height with Pictometry and drone acquired digital imagery. 

Driving questions of concern were: Is a clinometer the best way to measure height? Do we really need to spend time 

and money in the field to obtain accurate measurements? Can Pictometry online data achieve the same level of 

results as in situ clinometer measurements? Are quantitative measurements, obtained from drone imagery, better than 

conventional assessments and Pictometry measurements? 

In order to answer the aforementioned research questions, we instructed the students to conduct a height assessment 

on the same object by using different measurement approaches including a clinometer, Pictometry imagery, and a 

drone. At the same time, the actual height of the object was attained by using a measurement height pole. Then, the 
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accuracy of each height measurement approach was assessed and compared in order to achieve the objective of 

determining if any of the three height measurement approaches is better than others. 

1.1 Mentored Undergraduate Scholarship Program 

ATCOFA undergraduate students at SFASU focus on applying the use of spatial science for the purpose of natural 

resources management (Kulhavy, Unger, Hung, & Douglass, 2015) and forest land cover classification (Henley, 

Unger, Kulhavy, & Hung 2016). The mission statement of ATCOFA is to maintain excellence in teaching, research 

and outreach to enhance the health and vitality of the environment through sustainable management, conservation, 

and protection of natural resources. The college is devoted to comprehensive education at undergraduate and 

graduate levels, basic and applied research programs, and service (Bullard et al., 2014). In order to effectively attain 

the mission statement, undergraduate remote sensing coursework within ATCOFA focuses on traditional classroom 

and laboratory instruction combined with a heavy emphasis on integrating hands-on instruction in a rigorous setting 

via one-on-one faculty collaboration, to produce a more accomplished and competent graduate (McBroom, Bullard, 

Kulhavy, & Unger, 2015). Students studying and learning spatial science at ATCOFA focus on hands-on instruction 

and real-world applications using the most current geospatial science technology (Unger, Kulhavy, Hung, & Zhang, 

2014; Kulhavy, Unger, Hung, & Zhang, 2016). 

ATCOFA faculty members were trained how to integrate service learning activities within senior level classes at 

SFASU. The service learning training, taught under the acronym Mentored Undergraduate Scholarship (MUGS), 

involved meeting with fellow faculty members over the course of a year during the fall semester 2015 to first learn 

how to incorporate service learning activities in a senior level class followed by its incorporation into a class the 

following spring 2016 semester. MUGS promotes higher order thinking skills through collaborative learning, field 

based education and mentored scholarship to understand, connect and synthesize facts and develop student 

competencies (Lobry de Bruyn, & Pryor, 2001). The MUGS program places an emphasis on critical inquiry, frequent 

writing and collaborative learning that develop intellectual and practical competencies (Kuh, Cruce, Shoup, Kinzie, 

& Gonyea, 2008). The interactive hands-on instruction methodology employed by ATCOFA was well suited to the 

MUGS program as its objective is to involve the students directly in mentored instruction, often in a one-on-one 

environment (Figure 1). Student progress can then be measured in their ability to integrate the data and make 

informed decisions comparing the three height measurements of using a clinometer, Pictometry imagery and the DJI 

Phantom 3 drone. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Spatial science faculty interacting one-on-one with an undergraduate student in the ATCOFA GIS Lab 

1.2 Height Measurement with Clinometer 

Estimating the vertical height of earth surface features has been a component of field-based measurements and 

spatial science applications for decades. Numerous methods to estimate height have been developed and proven 

successful. Estimating height for a vertical feature, such as an open grown individual tree, has been traditionally 
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done with a clinometer (Kovats, 1997). Coefficient of determinations between actual tree height and estimated tree 

height using a clinometer has ranged from 0.9462 to 0.9501 (Williams, Bechtold, & Labau, 1994). Clinometer 

estimated tree height was within 0.93 meters of actual tree height when estimating loblolly pine tree height (Rennie, 

1979). 

1.3 Height Measurement with Pictometry 

Pictometry data, a relatively new form of digital imagery, are classified as hyperspatial resolution remotely sensed 

data. Hyperspatial resolution data are defined as remotely sensed data having a spatial resolution smaller than the 

object of interest. Pictometry data are similar to the data available with commercial grade satellites IKONOS, 

QuickBird and GeoEye in application, but Pictometry data are acquired at a finer spatial resolution than commercial 

grade satellite sensors allowing for an improved visual assessment of surface features with a Pictometry image 

(Sawaya, Olmanson, Heinert, Brezonik, & Bauer, 2003). 

Pictometry data are acquired along a predetermined flight path, within an interlocking looping motion, to obtain 

imagery from multiple perspectives by low flying aircraft including nadir and oblique angles up to 40 degrees. 

Pictometry image data depict the fronts and sides of vertical ground features in a web based interface. Images 

acquired contain up to 12 oblique perspectives and are stitched together to create a composite image that a user can 

use to accurately measure surface object size and position using the Pictometry patented web based interface (Wang, 

Schultz, & Giuffrida, 2008)  

When applied to measuring height of vertical features such as trees, height for citrus trees were estimated with only 

89 percent height accuracy due to ambiguity in choosing the tree top and bottom in Pictometry data while an average 

error of 0.2 meters was found when using Pictometry data to estimate the height of houses and towers (Hohle, 2008). 

The root mean square error (RMSE) for Pictometry derived heights was 81.98 centimeters when measuring the 

height of buildings with a conclusion that obtaining accurate height measurements using Pictometry data was very 

simple (Daily, 2008). Pictometry was not statistically different for measuring heights of baldcypress compared to a 

telescoping height pole with a liner correlation coefficient of 0.99 between Pictometry and in situ tree height (Unger, 

Kulhavy, Williams, Creech, & Hung, 2014).  

Pictometry was statistically more accurate than LiDAR and not different from a laser rangefinder for building height 

from a measuring pole (3.75 m actual height). Pictometry had a 0.11 m RMSE (average 3.68 m measured height); the 

laser rangefinder a 0.14 RMSE (average 3.82 m measured height); and LiDAR a 0.16 RMSE (average 3.66 m 

measured height). Pictometry and LiDAR underestimated building height, whereas the laser rangefinder 

overestimated building height (Kulhavy, Unger, Hung, & Douglass, 2015). Pictometry was more accurate than the 

clinometer and the laser rangefinder for heights of light poles measured with a telescopic height pole (Unger, Hung, 

& Kulhavy, 2014). 

1.4 Height Measurement with Drone 

With the continuous advancement of Unmanned Aerial Vehicles (UAVs), commonly known as drones, it is possible 

to record the height of vertical features in a landscape by flying a drone along the vertical profile of a given feature 

via a drone’s ability to acquire and transmit visual and height data along a vertical profile. The term UAS refers to an 

unmanned aircraft and the associated support equipment, control station, data links, telemetry, communications and 

navigation equipment to operate the system. A drone is the flying portion of the system flown by a pilot from a 

ground control system or on-board computer and communication links (Themistocleous, 2014). Okamoto and 

Shimazaki (2015) found that altitude elevation measured from a DJI Phantom 2 drone was not as accurate as 

expected when compared to traditional ground based methodologies. Based on 52 university and park trees observed, 

no statistical difference was found between the Parrot AR.Drone 2.0 method and the conventional ground urban tree 

hazard rating of the Council of Tree and Landscape Appraisers (CTLA) method for overall hazard rating based on six 

variables of trunk condition, growth, crown structure, insects and diseases, crown development, and life expectancy. 

A strong correlation was observed based on the Spearman’s rank-order analysis. However, the AR.Drone 2.0 could 

reach areas not accessible or viewable from the ground (Kulhavy, Unger, Hung, & Zhang, 2016).  

1.5 Study Objectives 

ATCOFA senior undergraduate students initiated a multi-course project with the assistance of ATCOFA faculty 

members. The students conducted undergraduate research designed to expand their understanding of spatial science 

within a natural resource context and to generate a reliable process for conducting a research project. The overall 

goal was for the students to demonstrate proficiency in understanding how to apply aerial photo interpretation, 

satellite remote sensing, global positioning system and geographic information systems technology to quantify, 



www.sciedupress.com/ijhe International Journal of Higher Education Vol. 5, No. 3; 2016 

Published by Sciedu Press                         107                        ISSN 1927-6044   E-ISSN 1927-6052 

qualify, map, monitor and manage natural and environmental resources at the local and landscape scales. Students 

applied this concept within a quantitative resource assessment, whereby the students compared the conventional 

methodology of measuring height of vertical features within a landscape using a clinometer with the newer ways of 

measuring height using Pictometry and drone acquired digital imagery. Overall objective of the study was to 

compare conventional height assessment methods with newer technological methodologies to determine the most 

efficient and accurate way to quantify vertical height of a natural resource within a landscape. 

2. Methods 

2.1 Study Location 

The study area for this project involved a central parking on the campus of SFASU in Nacogdoches, Texas (Figure 2). 

A central parking was chosen for this study since it contained light poles that had not changed in height over time, 

was easily accessible, and could be assessed under the time constraints of an undergraduate class schedule. 

 

Figure 2. Study site location in a parking lot at Stephen F. Austin State University 

2.2 Actual Height Measurement 

Students were introduced how to accurately measure the height of vertical features within a landscape. As a class, 

students were taken outside in groups and instructed how to accurately measure the height of a vertical feature in situ 

with a telescopic height pole. After demonstration, each student demonstrated their skill by accurately measuring the 

height of a light pole on the campus of SFASU. A light pole was chosen for analysis since its height does not change 

over time for comparison with digital aerial imagery taken at a different date than the in situ measurements (Figure 

3). 
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Figure 3. Measuring in situ height with a telescopic height pole 

2.3 Conventional Height Measurement 

Students within spatial science programs are taught how to quantify the height of vertical features within the 

landscape using a clinometer. Standing a set distance from a vertical feature, students were instructed how to 

measure the slope to the top and bottom of a vertical structure using a clinometer which can easily be converted into 

an estimate of vertical height. Students, after being instructed on how to properly read a clinometer, demonstrated 

their proficiency by estimating the height of a light pole on the campus of SFASU (Figure 4).  
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Figure 4. Estimating in situ height with a clinometer 

2.4 Height Measurement with Pictometry 

In lieu of in situ data collection, students were introduced how to collect field data measurements using Pictometry 

remotely collected digital imagery. The digital imagery is captured by low-flying aircraft that includes nadir within 

each image and side views up to a 40 degree angle. The images depict up to 12 oblique perspectives and are stitched 

together to create composite imagery. Pictometry, the name of a patented aerial image capture process that records 

digital aerial imagery and shows the fronts and sides of vertical ground features, allows for the measurement of 

object size and position by taking advantage of viewing an object digitally from more than one direction with 

multiple angles of view. Within an online web interface, students were instructed how to obtain accurate size 

measurements of surface object remotely via the Pictometry online web interface (Figure 5). 

 

Figure 5. Estimating height onscreen within the Pictometry online web interface 
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2.5 Height Measurement with Drone 

In lieu of in situ data collection, students were also introduced how to collect field data measurements remotely using 

a DJI Phantom 3 drone. Prior to flying the DJI Phantom 3, both the remote control and the battery for the drone are 

activated. Before flying the drone, the GPS signal needed to be locked onto the drone for height measurements. The 

DJI Phantom 3 is steady in flight controlled by a 3-axis gimbal allowing time to record the height measurements of a 

vertical feature. The DJI Phantom 3 drone has a built-in GPS unit that allows for capturing geographic coordinates as 

well as height measurements. Height measurements were recorded with Live View using the streaming technology 

LightBridge directly from the screen on the remote controller. Students were instructed how to fly the drone next to 

the light pole on the SFASU campus while recording the vertical height of the light pole using the DJI Phantom 3 in 

conjunction with an iPhone and the free app AR.FreeFlight 2.4 for a visual assessment (Figure 6). 

 

Figure 6. Estimating height in situ with a DJI Phantom 3 drone 

2.6 Data Analysis 

After data collection, students were instructed how to statistically analyze their in situ field data. The actual height of 

the light pole was compared to the clinometer, Pictometry and drone estimated height for 30 observations. Statistical 

analysis included calculating the standard deviation and mean of the estimated height by clinometer, Pictometry and 

drone (Table 1). For accuracy assessment, errors were calculated by comparing each estimate to the light pole’s 

actual height (5.35 meters) measured with a height pole and the mean error, the mean absolute error, and the RMSE 

per estimate method were reported (Table 2 and Figure 7). 

For the learning assessment, students were given an initial assessment of their progress at midterm and a final 

assessment at the end of the class based on the rubric in Table 2. Assessment included both their progress on 

assimilation and using information from Benchmark 1, to Milestone 2, to Milestone 3, to Capstone 4. The categories 

for assessment were: Evaluation of Information; Creative Thinking; Problem Solving; and Communication of 

Content. There are two assessment criteria for each of the four assessment topics for a total of eight for each of the 

four categories as identified in Table 2. 
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Table 1. Actual light pole height versus estimated light pole height 

Pole  Estimated Height per Method 

Height Clinometer Pictometry Drone 

(meters) (meters) (meters) (meters) 

5.35 5.00 4.96 5.10 

5.35 5.67 4.97 5.00 

5.35 5.33 4.97 5.20 

5.35 5.33 4.95 4.80 

5.35 5.67 5.01 5.00 

5.35 5.67 4.96 5.10 

5.35 5.33 5.10 5.40 

5.35 5.67 4.81 5.60 

5.35 5.33 4.97 5.70 

5.35 5.33 5.10 6.10 

5.35 5.33 4.96 6.30 

5.35 5.67 4.97 6.50 

5.35 5.67 4.96 6.60 

5.35 5.67 4.96 6.80 

5.35 5.67 4.96 7.00 

5.35 5.67 4.96 5.00 

5.35 5.67 4.96 5.00 

5.35 5.67 4.96 5.40 

5.35 5.67 5.10 5.30 

5.35 5.67 4.96 5.00 

5.35 6.00 4.96 5.10 

5.35 5.67 4.96 4.30 

5.35 5.33 4.96 4.40 

5.35 5.67 4.81 4.90 

5.35 5.33 4.96 4.90 

5.35 5.67 5.11 5.40 

5.35 5.33 4.96 5.40 

5.35 5.33 4.97 5.50 

5.35 5.67 4.96 5.40 

5.35 5.33 4.81 5.60 

Mean 5.53 4.97 5.43 

Standard Deviation 0.21 0.07 0.66 
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Table 2. Rubric to assess student higher order thinking skills 

Capstone Milestones Benchmark 

4 3 2 1 

Evaluation of Information 

A. Synthesizes in-depth 

information from relevant 

sources representing various 

points of view/approaches. 

 

A. Presents information 

from relevant sources 

representing various points 

of view /approaches. 

A. Presents information 

from relevant sources 

representing few points of 

view/ approaches. 

A. Presents information 

from a single point of 

view/approaches. 

B. Organizes and synthesizes 

evidence to reveal insightful 

patterns, differences, or 

similarities related to task. 

B. Organizes evidence to 

reveal important patterns, 

differences, or similarities 

related to task. 

B. Provides evidence, but 

the organization is not 

effective in revealing 

important patterns, 

differences, or similarities. 

B. Lists evidence, but it 

is not organized and/or is 

unrelated to task. 

Creative Thinking 

A. Develops a logical, 

consistent plan to address 

problem, recognizes 

consequences of and can 

articulate reason for choosing 

plan. 

A. Having selected from 

among alternatives, 

develops a logical, 

consistent plan to address 

the problem. 

A. Considers multiple 

approaches to addressing 

problem. 

A. Relies on intuition 

alone to solve a problem. 

B. Transforms ideas or 

solutions into entirely new 

forms. 

B. Synthesizes ideas or 

solutions into a coherent 

whole. 

B. Connects ideas or 

solutions in novel ways. 

B. Does not recognize 

existing connections 

among ideas or solutions. 

Problem Solving 

A. Information is taken from 

source(s) with enough 

interpretation/evaluation to 

develop a comprehensive 

analysis or synthesis. 

Viewpoints of experts are 

questioned thoroughly. 

 

A. Information is taken 

from source(s) with 

enough 

interpretation/evaluation to 

develop a coherent analysis 

or synthesis. Viewpoints of 

experts are subject to 

questioning. 

A. Information is 

presented with some 

interpretation/ evaluation, 

but not enough to develop 

a coherent analysis or 

synthesis. Viewpoints of 

experts are taken as mostly 

fact, with little 

questioning. 

A. Information is 

presented as fact, without 

question. 

B. Thoroughly analyzes own 

and others' assumptions and 

carefully evaluates the 

relevance of contexts when 

presenting a position. 

B. Identifies own and 

others' assumptions and 

several relevant contexts 

when presenting a position. 

B. Questions some 

assumptions. Identifies 

several relevant contexts 

when presenting a 

position. 

B. Shows an emerging 

awareness of present 

assumptions. Begins to 

identify some contexts 

when presenting a 

position. 

Communication of Content 

A. Issue/problem is stated 

clearly and described 

comprehensively, delivering 

all relevant information 

necessary for full 

understanding. 

 

A. Issue/problem is stated, 

described, and clarified so 

that understanding is not 

seriously impeded by 

omissions. 

A. Issue/problem is stated 

but clarity is somewhat 

impeded by omissions. 

A. Issue/problem is 

stated without 

clarification or 

description. 

B. A variety of types of 

supporting materials make 

appropriate reference to 

information that significantly 

supports the work. 

B. Supporting materials 

make appropriate reference 

to information that 

generally supports the 

work. 

B. Some supporting 

materials make appropriate 

reference to information 

that partially supports the 

work. 

B. No supporting 

materials make reference 

to information or 

analysis that minimally 

supports the work. 
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3. Results 

By solely looking at the mean of estimate heights, students discovered that there was minimal difference between 

actual light pole height and estimated mean light pole height. It appeared that the drone had a mean height estimate 

(5.43 meters) that is closest to the actual height with 1.4% error, while the Pictometry mean estimate (4.97 meters) 

was farther away from the actual height with 7.1% error, followed by the clinometer (5.53 meters) at 3.3% error. In 

the meantime, students also discovered that the drone estimated light pole height was more variable and less precise 

with the largest standard deviation of 0.66 meters compared to the clinometer (0.21 meters) and Pictometry (0.07 

meters) estimated light pole height (Table 1). Figure 7 and Table 3 accounted individual errors, the difference 

between each estimated height and the actual height of the pole. The students discovered that the drone still achieved 

a mean error of 0.077 meters that is the closest to 0. An overall trend was found with the clinometer which 

consistently overestimated the height resulting in a positive mean error of 0.184 meters, while Pictometry 

consistently underestimating the height with a negative mean error of -0.383 meters. The reason the mean error of the 

drone being close to 0 was due to its higher variation in height estimate that canceled out the errors. This reflects the 

fact that the drone had the highest standard deviation of height estimates. When absolute errors were observed, a 

different picture revealed where the clinometer was the most accurate method with the lowest mean absolute error of 

0.222 meters and the lowest RMSE of 0.276 meters, with the drone being the least accurate with mean absolute error 

of 0.487 meters and RMSE of 0.658 meters. 

 

Figure 7. Graph of estimated light pole height errors 

Table 3. Statistics of errors of light pole height estimate by method used 

  Height estimate method 

(meters) Clinometer Pictometry Drone 

Mean error 0.184 -0.383 0.077 

Mean absolute error 0.222 0.383 0.487 

RMSE 0.276 0.389 0.658 

Assessment for each of the four student learning criteria (Evaluation of Information, Creative Thinking, Problem 

Solving and Communication of Content) increased for each of the two criteria for each topic from the initial 

assessment at the midpoint of the class and at the end of the class (Table 4). One student reached the Capstone for 

evaluation demonstrating synthesis of material and creativity in learning. The other eight students reached Milestone 

2 or Milestone 3. One student excelled at both the use of the DJI Phantom 3 and in situ measurement with Pictometry 
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and a clinometer and was asked to co-author the article as a mentored undergraduate as part of the MUGS program. 

The intent of the MUGS program was for students to work one-on-one with a faculty member for training and 

problem solving of a project for original research. As anticipated from earlier hands-on mentoring and collection of 

data in a senior level spatial science course (Kulhavy, Unger, Hung, & Douglass, 2015; Henley, Unger, Kulhavy, & 

Hung, 2016), a junior and sophomore forestry course (Unger, Kulhavy, Hung, & Zhang, 2014), and a freshman 

environmental science experimental learning course (McBroom, Bullard, Kulhavy, & Unger, 2015), students 

responded well to the one-on-one mentoring. Exceeding at the capstone level of the MUGS rubric meant synthesis of 

the data and insight into meaningful patterns, transforming ideas and solutions into new forms, and interpreting the 

assumptions of the information; and communicating the ideas clearly and concisely. ATCOFA strives to provide 

one-on-one instruction to provide students with skills to enter their chosen profession, and to “Make a Difference; 

Work Outdoors; and Use High End Technology.”  

Table 4. Student formative assessment results for use of the DJI Phantom3 and Pictometry for pole height estimate 

based on the rubric from Table 2 

Student 

No. 

Evaluation of 

information 

Creative Thinking Problem Solving Communication of 

Content 

 AI
a 

AF BI BF  AI AF BI BF AI AF  BI BF  AI AF BI BF 

1 4
b 

4 4 4 3 4 4 4 4 4 4 4 3 3 3 4 

2 2 3 2 3 2 2 2 2 2 3 2 3 2 2 3 3 

3 2 2 2 3 1 2 1 2 2 3 2 3 2 2 2 2 

4 3 3 3 4 2 2 2 3 2 3 2 3 2 2 1 2 

5 2 2 2 3 2 2 2 2 2 3 2 3 2 2 2 2 

6 2 2 2 3 1 2 2 3 2 2 2 3 2 2 1 2 

7 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 

8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 

9 2 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 
a
 AI: Initial assessment A, AF: Final assessment A, BI: Initial assessment B, BF: Final assessment B 

b
 1= Benchmark, 2 = Milestone 2, 3 = Milestone 3, 4 = Capstone  

 (See Table 1 for the rubric)  

4. Conclusion 

Using spatial science technology senior undergraduate students under the direction of spatial science faculty learned 

how to accurately measure the height of vertical features in a landscape that could be used for observation and 

decision making purposes. This project allowed students not only to collect real-world data using different methods, 

but also learn how to analyze the collected data and interpret the outcome properly. The results from the study and 

the students’ ability to acquire multifaceted spatial science information validate the hands-on instruction 

methodology employed in the spatial science curriculums within ATCOFA at SFASU. The results also reinforce 

ATCOFA’s mission by empowering students with the capability of employing sophisticated remote sensing 

technology to accurately quantify, qualify, map, and monitor natural resources. Students learned that by integrating 

research into a hands-on senior level undergraduate spatial science course that knowledge and cognitive retention 

increases along with improved insights into spatial science applications within a natural resource context. 

The integrated of the DJI Phantom 3 drone into the education process enhanced the ATCOFA message of work 

outdoors, make a difference and use high-end technology as active learners. The direction provided by the MUGS 

program reinforced higher order thinking skills and student achievement by integrating on-screen Pictometry 

measurements with in situ drone measurements compared to traditional height measurement techniques. Further 

research will be to explore the use of Pictometry and drone in quantifying natural recourses not only in height 

measurement, but also in area and volume measurements.  
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