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Abstract 

In this paper, we establish an intensity based multi-factor model to value LCDS. The pricing model incorporates the 
modeling of default, prepayment and recovery risks. Using one factor model, negative correlation between the default 
and prepayment intensities and positive correlation between the default intensity and the loss given default are described. 
The interest rate and the house price are chosen as the relevant factors. Under these assumption, a Cauthy problem of 
PDE is derived, which has a closed-form solution. Based on the solution, numerical examples are provided. 
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1. Introduction 

Recent years, credit markets have a vigorous development, where new products, such as CDS, CDO, CPDO are brought 
up. However, with the stronger abilities, these derivatives have also more risky potentials as well. Recent financial crisis 
makes valuing these credit products more significant. 

Loan Credit Default Swaps (LCDS) are almost identical to the standard Credit Default Swaps (CDS) except two features. 
First, the reference obligation of a LCDS contract is limited on loans; secondly, LCDS contract can be cancelled. This 
means that correlated prepayment and default should be both considered to price LCDS. Therefore, pricing LCDS is 
more complicated than doing a standard CDS. 

To deal with the risk of LCDS, different types of models have been developed. Zhen Wei (2007) considered a single 
name LCDS, where using reduced framework, default and prepayment intensities d  and p  were involved. He used 
a single-factor model with common factor X and correlation coefficient   to depict the negative relationship between 
default and prepayment. However, in his model, the prepayment intensity might be negative, which is meaningless for a 
single name LCDS. Zhou & Liang (2010, 2011), Liang & Wang (2011) developed the model to value a basket LCDS. 
These models usually require the recovery rate to be constant. 

It has already been concluded in several researches that the stochastic recovery rate has a negative correlation with the 
default intensity. Especially for a loan, the recovery rate is uncertain. However, up to the authors' knowledge, very few 
papers have involved stochastic recovery rate into pricing credit derivatives. Duffie (2005) introduced stochastic 
recovery rate theoretically without applications. Peter Dobranszky (2008) built a simple continuous-time stochastic 
recovery rate to describe the relationship between CDS and LCDS, where he described the negative correlation between 
default intensity and recovery rate simply by choosing a negative coefficient. 

In this paper, based on the models presented in Zhen Wei (2007) and Peter Dobranszky (2008), a pricing model for 
LCDS under the reduced form framework is established. The negative correlation between default and prepayment risks, 
and positive correlation between the default intensity and the loss given default are considered in the model. Since all 
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rates should be non-negative, we model them as CIR related processes. In this way, we overcome the shortage of Zhen 
Wei's work, where the prepayment intensity might be negative. To deal with negative correlation, we describe that the 
negative correlation as an inverse proportion, which was first proposed by Ahn and Gao (1999) and developed by Wu, 
Jiang & Liang, (2011) and Qian, Jiang and Xu (2010). Then if one satisfies a CIR process, the other follows inverse CIR 
process. The problem induces a non-standard partial differential equation which is studied by Hurd & Kuzneton (2008). 
Common factors in our 2-factor model for prepayment, default and recovery rates are interest rate and inflection index, 
which all follow the CIR processes. Under these assumptions, pricing LCDS is modelled where an explicit solution is 
obtained. 

The rest of this paper is organized as follows. In the next section, under some basic notations and assumptions, we 
establish a pricing model for LCDS. In the third section, we use two-factor model to describe the relationship of default, 
prepayment, and recovery rate. Then we derive PDE problems and obtain a closed-form of solution for the spread. From 
the solution, the numerical examples are given in the fourth section. 

2. Notations and Assumptions 

Consider a single-name LCDS contract. The contract is ended before expired time only if a default or a prepayment 
event happens. Consider a probability space ( , , ) PY  and set the following notations: 

 d and p : default and prepayment times of the reference of the contract; 

 ( )R t : recovery rate if the reference defaults; 

 tr  and tH : risk free interest rate and inflation rate processes; 

 d
t  and p

t : default and prepayment intensity rates; 

 it  and mC : coupon payment date and day count fraction for coupon period m. 

 tS : LCDS spread, T: maturity time of the contract;. 

As describing in [11], assuming that d  and p  are conditional independent, then 
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Denote d p     the first stopping time, that means, the contract survives until . On the coupon payment date mt , 
the buyer should pay mSC . Supposing the last coupon payment date before  is it , the present value of the coupon 
payment paid till it  is given by 
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If the first stopping time is during [ti, ti+1], the contract is unwound. In this case, by (2), the present value of the coupon 
accrual. Supposing the last coupon payment date before  is unwound. In this case, the present value of the coupon 
payment paid till it  is given by 
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The buyer stops paying coupons once the prepayment or default occurs. Then the present value of the premium leg is 
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given by 
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On the other hand, using (3), the expected present value of the losses in case of default is: 
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Hence, the value of LCDS spread at time t comes: 
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3. LCDS price Modeling 

3.1 Default intensity, prepayment intensity and recovery rates 

As mentioned before, on pricing LCDS, the default and the prepayment risks are negatively correlated. If stochastic 
recovery rate is involved, it is also negatively correlated with the default risk. 

In reality, the factors that affect the default risk, prepayment risk and recovery are complicated. Researchers have shown 
that among the factors, the interest rate is the most important one. When interest rate decreases, borrowers may refinance 
their loans, which lead to higher prepayment rate. However, the situation is opposite to the default events, i.e. the 
probability of default decreases. Another important fact is inflation rate, which affects the default and recovery rates. The 
higher the inflation rate is, the higher recovery and lower default rate are. To meet these facts, we take two-factor model 
to describe the relationship of the default risk, prepayment risk and recovery. Interest rate tr  and inflation rate tH  can 
serve as the correlated factors of them as follows: 

4 2
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1 2 3 40 , , , 1     . We suppose that tr , d
tX , p

tX , 
tH  are 

independent. They follow CIR processes as follows: 
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where  , , , i , 
i ,

i ,~ ,~ ,~ are positive constants; r
tW , H

tW , i
tW are independent standard Brownian motions. 

Under these assumptions, tr , i
tX , 

tH  are mean reverting processes. It is well know that, under the 

conditions, 22  k , 22 , ( , )i i ik i d p   , 22k    , tr , i
tX ,

tH are nonnegative and their boundary at origin are 

unattainable. 

On the other hand, 1/ tH follows Inverse CIR (ICIR) process. Let 1/t ty H , by Ito formula: 
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t t t

t

dy
k k y dt y dW

y
                                                                         (9) 

It has been proved that ty  is stable, and it cannot equal 0 or   if and only if 22k    , ~ >0, ~ >0. Under this 
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condition, the origin CIR process 
tH  still remains mean reverting and nonnegative. The situation is the same to 

tr . 

3.2 The solution under CIR process 

Taking equations (5) into equation (4), by noticing that the independence among tr , d
tX , p

tX  and 
tH , the pricing 

formula (4) turns to:  
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Observing the equation, we can find the problem can be solved as long as the following three expectations are derived: 
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Thus, we just need to solve the expectations in the following types: 
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where 
0( )t tX   follows CIR process. Then 1E , 2E , 3E can be expressed by the above three expectations, then the 

equation (9) is solved. 

Let us solve the three expectations of (11). From the method introduced from of Wei (2007), first, define 
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, by Feynman-Kac formula, ( , )u x t  is the solution of the following PDE 
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Suppose that this problem has affine structure solution ( ) ( )( , ) A t xB tu x t e  , then A(t) and B(t) can be solved from ODE 
problems to obtain: 
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Thus the solution of (12) is: 
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From (13), it comes 
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where 1d  and 2d  are defined in (15). 

Now, let us solve the third expectation of (11). Hurd and Kuznetsov (2006) have proved that if 
tX  follows CIR process, 

this expectation can be derived in closed form in terms of a confluent hypergeometric function. 

Define
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, using Feynman-Kac formula, v(x, t) satisfies the following PDE problem: 
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Let ( , ) ( , )ax bv x t e x w x t , where a, b are coefficients to be determined, and then w(x, t) satisfies the following 

equation: 
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where ' 2 ' 2 2, ( ) /( )a b a            . The solution is: 
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4. Numerical Examples 

So far, we have derived the solution of the pricing equation (4). Now using the solution, we give some numerical 
examples under the model, where we take t=0. And the parameters are shown as follows: 

0 0 0 0

1 2 3 4 1 2

0.03, 0.03, 0.03, 0.03, 0.05, 0.05, 0.05, 0.05,

0.15, 0.15, 0.15, 0.15, 0.02, 0.02, 0.02, 0.02,

2, 0.002, 0.3, 0.002, 2, 1.

r d h p r d p h

d p
r d p h x r x h

a a

       

   

   

       

       

     

 

Figure 1 shows the relationship of LCDS spread with 0r , r , r  and r  respectively. It is obvious that the LCDS 
spread increases as 0r , r  or r increases. That is, the LCDS spread increases as r increases, because d  increases 
and p  decreases when r increases. It also shows that the effects of 0r  and r  play more important roles than ones 
of r  and r . 

Figure 2 shows the relationship of LCDS spread with 0h , h , h  and h  respectively. The figure indicates that the 
LCDS spread decreases as 0h , h  or h increases. That is, the LCDS spread decreases as $h$ increases, because d  
decreases and p  increases when h increases. And it can be observed from Figure 1 and Figure2 that the effect of the 
inflection plays a more important role than that of the interest. 

Figure 3 indicates that the trend of LCDS spread with stochastic recovery rate is quite different from the one with the 
constant recovery rate. It suggests that the stochastic property of recovery rate gives the LCDS Spread volatility and the 
LCDS spread becomes more varying. We also find that the LCDS spread has a hump type shape which is similar to the 
one of many stochastic interest products. 

5. Conclusion 

In this paper, pricing LCDS is considered. We develop an intensity based multi-factor model, which incorporates the 
joint modeling of default, prepayment and recovery risks. We identified two correlations as risk factors that may explain 
the correlation among default intensity, prepayment intensities and recovery rates. The two common factors are assumed 
to be interest and inflection rates, which follow CIR process. This structure endure that the rates are non-negative and 
satisfy positive or negative correlations. A closed-form solution is obtained. Some numerical calculation examples are 
given, for which we get more direct view of the relationship among the parameters. The graph of the model shows that 
the inflection impacts the LCDS spread more than the interest does.  
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Figure 1. Term structure of the LCDS spread for different r. 
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Figure 2. Term structure of the LCDS spread for different h 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. LCDS spread with different recovery rate. 
 




