Comparison between mandibular malignant tumors and inflammatory lesions using 67Ga scintigraphy: Relationship with panoramic radiography, CT and MRI findings

Ichiro Ogura*, Mikiko Sue1, Takaaki Oda1, Yoshihiko Sasaki1, Kazuhide Hayama2

1Radiology, The Nippon Dental University Niigata Hospital, Niigata, Japan
2Department of Oral and Maxillofacial Radiology, School of Life Dentistry at Niigata, The Nippon Dental University, Niigata, Japan

Received: May 10, 2017 Accepted: July 4, 2017 Online Published: July 9, 2017
DOI: 10.5430/ijdi.v4n2p67 URL: https://doi.org/10.5430/ijdi.v4n2p67

ABSTRACT

Purpose: Gallium 67 (67Ga) scintigraphy is useful for the estimation of head and neck squamous cell carcinoma, especially tumor recurrence and distant metastases. We compared mandibular malignant tumors with inflammatory lesions using 67Ga scintigraphy with multimodal imaging, such as panoramic radiography, CT and MRI.

Methods: Nineteen patients with mandibular malignant tumors (7 squamous cell carcinoma and 2 malignant lymphoma) and inflammatory lesions (6 osteoradionecrosis, 3 medication-related osteonecrosis of the jaw [MRONJ] and 1 osteomyelitis) underwent 67Ga scintigraphy with panoramic radiography, CT and MRI. The statistical analysis with respect to comparison between imaging features of 67Ga scintigraphy and lesions was performed with the Pearson’s chi-squared test.

Results: 67Ga scintigraphy for 2 of 2 patients with malignant lymphoma were positive (100%), 4 of 7 patients with squamous cell carcinoma were positive (57.1%), and 10 of 10 patients with inflammatory lesions were positive (100%) in the mandible. The detection of squamous cell carcinoma with 67Ga scintigraphy was lower than that of inflammatory lesions ($p = .047$).

Conclusions: 67Ga scintigraphy is useful for detection of malignant lymphoma and inflammatory lesions in the mandible.

Key Words: Gallium radioisotopes, Gamma cameras, Carcinoma, Inflammation, Mandible

1. INTRODUCTION

Gallium 67 (67Ga) scintigraphy is an effective technique for the differentiation of oral malignant tumors from benign tumors or inflammatory disease.$^{[1]}$ 67Ga scintigraphy is useful for the estimation of head and neck squamous cell carcinoma, especially tumor recurrence and distant metastases.$^{[2,3]}$ However, in recent years, PET using the radiolabeled glucose analogue 18F-fluorodeoxyglucose has shown its potential to detect distant metastases.$^{[4-7]}$

Excepting for squamous cell carcinoma, some authors have reported that 67Ga scintigraphy is useful in the differentiation of malignant lymphoma,$^{[8]}$ sarcoidosis$^{[9-11]}$ and other inflammatory diseases.$^{[12,13]}$ However, to the best of our knowledge, 67Ga scintigraphy with panoramic radiography,
CT and MRI in comparison between mandibular malignant tumors and inflammatory diseases have not been reported in the literature. We compared mandibular malignant tumors with inflammatory lesions using 67Ga scintigraphy with panoramic radiography, CT and MRI.

2. MATERIALS AND METHODS

2.1 Patient population
The ethics committee of our institution approved this retrospective study. After providing written informed consent, 19 patients (11 men, 8 women; range age 53-95 years, mean age 70.7 years) with malignant tumors (7 squamous cell carcinoma and 2 malignant lymphoma) and inflammatory lesions (6 osteoradionecrosis, 3 medication-related osteonecrosis of the jaw [MRONJ] and 1 osteomyelitis) in the mandible underwent 67Ga scintigraphy with panoramic radiography, CT and MRI at our university hospital from October 2013 to February 2017. The histopathological diagnoses were obtained by surgery or biopsy in all cases.

2.2 Image acquisition
Panoramic radiographs was performed with a panoramic machine (Veraviewepocs; J MORITA MFG, Kyoto, Japan) using the maxillofacial protocol at our hospital: tube voltage, 70 kV; tube current, 10 mA.

CT imaging was performed with a 16-multidetector CT scanner (Aquilion TSX-101A; Toshiba Medical Systems, Otawara, Japan) using the maxillofacial protocol at our hospital: tube voltage, 120 kV; tube current, 150 mAs; field of view, 240 × 240 mm; rotation time, 0.5 sec; axial acquisition, 0.50 mm. The patients received contrast enhanced CT (CECT) with nonionic iodine for head and neck lesions. One nonionic contrast media was used: iohexol 300 mgI/ml (Omunipaque 300 Syringe, Daiichi-Sankyo, Tokyo, Japan). Contrast medium was administered as an injection of 100 ml at a rate of 2.0 ml/s (Autoenhance A-250, Nemoto-Kyorindo, Tokyo, Japan).

The MR images (1.5 Tesla MR unit; EXCELART Vantage MRT-2003; Toshiba Medical Systems, Otawara, Japan) with a head coil included unenhanced axial T1-weighted imaging (T1WI; repetition time (TR) 660 ms, echo time (TE) 12 ms), T2-weighted imaging (T2WI; TR 4,000 ms, TE 120 ms), short TI inversion recovery images (STIR; TR 2,500 ms, TE 15 ms, TI 190 ms). After an injection of contrast medium (gadobutrol; Gadovist 1.0mol/L Syringe, Bayer, Osaka, Japan; 0.1 mL/kg), axial and coronal T1WI were acquired.

67Ga scintigraphy was performed with a SNC-5100R (Shimadzu, Kyoto, Japan) and a Scintipack 24,000 (Shimadzu) with a 512 × 512 matrix at 72 hours after the injection, imaging features of malignant tumors and inflammatory diseases were recorded on the computer at 6 min/frame. The radiopharmaceutical used in this study was 67Ga-citrate (Galium Citrate,67Ga Injection, FUJIFILM RI Pharma, Tokyo, Japan). Each patient was administered the agent at 185 MBq with a rapid intravenous injection. The stored data were displayed on a screen for analysis.

2.3 Image analysis
For patients with mandibular malignant tumors and inflammatory lesions, imaging features of 67Ga scintigraphy, panoramic radiography, CT and MRI were independently analyzed by 2 oral and maxillofacial radiologists. 67Ga scintigraphy were classified into 2 groups: positive, where the intensity of 67Ga in the lesion area was higher than that in the surrounding normal area, and negative, where the intensity of 67Ga in the lesion area was the same as in the surrounding normal area. Any discrepancies of the imaging evaluation were resolved by consensus of the 2 oral and maxillofacial radiologists.

2.4 Statistical analysis
The statistical analysis with respect to comparison between imaging features of 67Ga scintigraphy and lesions was performed with the Pearson’s chi-squared test using the statistical package IBM SPSS Statistics, version 24 (IBM Japan, Tokyo, Japan). A P value lower than 0.05 was considered as statistically significant.

3. RESULTS
Table 1 shows imaging features of malignant tumors and inflammatory diseases in the mandible with 67Ga scintigraphy, panoramic radiography, CT and MRI.

Regarding malignant lymphoma (see Figure 1), panoramic radiography showed osteolytic changes in the jaws. Axial bone tissue algorithm CT revealed an osteolytic lesion with the destruction in the mandible. 67Ga scintigraphy showed increased uptake. On MRI, axial T1WI showed homogeneous, low-signal intensity. T2-weighted image (T2WI) revealed heterogeneous, high-signal intensity. Post-contrast T1WI showed heterogeneous enhancement.

Regarding squamous cell carcinoma (see Figure 2), panoramic radiography revealed a moth-eaten appearance in the jaws. Axial bone tissue algorithm CT showed an osteolytic lesion with the destruction in the mandible. 67Ga scintigraphy showed increased uptake in the mandible and submandibular region. On MRI, axial T1WI showed homogeneous, low-signal intensity. Post-contrast T1WI showed heterogeneous enhancement. Axial contrast-enhanced CT image showed submandibular lymph node with rim enhancement.

ISSN 2331-5857 E-ISSN 2331-5865
Table 1. Imaging features of malignant tumors and inflammatory diseases in the mandible with 67Ga scintigraphy, panoramic radiography, CT and MRI

<table>
<thead>
<tr>
<th>Case</th>
<th>Age (years)</th>
<th>Gender</th>
<th>Lesion</th>
<th>67Ga scintigraphy</th>
<th>Panoramic radiography</th>
<th>CT findings</th>
<th>MRI findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>54</td>
<td>female</td>
<td>lymphoma</td>
<td>positive</td>
<td>did not undergo examination</td>
<td>did not undergo examination</td>
<td>heterogeneous enhancement</td>
</tr>
<tr>
<td>2</td>
<td>71</td>
<td>male</td>
<td>lymphoma</td>
<td>positive</td>
<td>osteolytic changes</td>
<td>osteolytic lesion with the destruction</td>
<td>heterogeneous enhancement</td>
</tr>
<tr>
<td>3</td>
<td>61</td>
<td>male</td>
<td>SCC</td>
<td>positive</td>
<td>moth-eaten appearance</td>
<td>osteolytic lesion with the destruction</td>
<td>heterogeneous enhancement</td>
</tr>
<tr>
<td>4</td>
<td>63</td>
<td>male</td>
<td>SCC</td>
<td>positive</td>
<td>moth-eaten appearance</td>
<td>osteolytic lesion with the destruction</td>
<td>heterogeneous enhancement</td>
</tr>
<tr>
<td>5</td>
<td>75</td>
<td>female</td>
<td>SCC</td>
<td>negative</td>
<td>no evidence of disease</td>
<td>no evidence of disease</td>
<td>no evidence of disease</td>
</tr>
<tr>
<td>6</td>
<td>76</td>
<td>male</td>
<td>SCC</td>
<td>negative</td>
<td>no evidence of disease</td>
<td>did not evaluate because of metal artifact</td>
<td>heterogeneous enhancement</td>
</tr>
<tr>
<td>7</td>
<td>79</td>
<td>female</td>
<td>SCC</td>
<td>negative</td>
<td>extracted tooth fossa, sclerotic lesions</td>
<td>osteolytic change, sclerotic lesions</td>
<td>heterogeneous enhancement</td>
</tr>
<tr>
<td>8</td>
<td>83</td>
<td>female</td>
<td>SCC</td>
<td>positive</td>
<td>moth-eaten appearance</td>
<td>osteolytic lesion with the destruction</td>
<td>heterogeneous enhancement</td>
</tr>
<tr>
<td>9</td>
<td>95</td>
<td>male</td>
<td>SCC</td>
<td>positive</td>
<td>moth-eaten appearance</td>
<td>osteolytic lesion with the destruction</td>
<td>heterogeneous enhancement</td>
</tr>
<tr>
<td>10</td>
<td>65</td>
<td>female</td>
<td>MRONJ</td>
<td>positive</td>
<td>osteolytic change, sclerotic lesions</td>
<td>osteolytic change, sclerotic lesions, sequestrum, periosteal bone proliferation</td>
<td>heterogeneous, high-signal intensity on T2WI and STIR</td>
</tr>
<tr>
<td>11</td>
<td>70</td>
<td>female</td>
<td>MRONJ</td>
<td>positive</td>
<td>osteolytic change, sclerotic lesions</td>
<td>osteolytic change, sclerotic lesions, sequestrum</td>
<td>heterogeneous, high-signal intensity on T2WI and STIR</td>
</tr>
<tr>
<td>12</td>
<td>84</td>
<td>female</td>
<td>MRONJ</td>
<td>positive</td>
<td>osteolytic change, sclerotic lesions</td>
<td>osteolytic change, sclerotic lesions, sequestrum</td>
<td>heterogeneous, high-signal intensity on T2WI and STIR</td>
</tr>
<tr>
<td>13</td>
<td>53</td>
<td>male</td>
<td>ORN</td>
<td>positive</td>
<td>osteolytic change, sclerotic lesions</td>
<td>osteolytic change, sclerotic lesions, sequestrum, periosteal bone proliferation</td>
<td>heterogeneous, high-signal intensity on T2WI and STIR</td>
</tr>
<tr>
<td>14</td>
<td>64</td>
<td>male</td>
<td>ORN</td>
<td>positive</td>
<td>osteolytic change, sclerotic lesions</td>
<td>osteolytic change, sclerotic lesions, sequestrum</td>
<td>heterogeneous, high-signal intensity on T2WI and STIR</td>
</tr>
<tr>
<td>15</td>
<td>65</td>
<td>male</td>
<td>ORN</td>
<td>positive</td>
<td>osteolytic change, sclerotic lesions</td>
<td>osteolytic change, sclerotic lesions, sequestrum</td>
<td>heterogeneous, high-signal intensity on T2WI and STIR</td>
</tr>
<tr>
<td>16</td>
<td>67</td>
<td>male</td>
<td>ORN</td>
<td>positive</td>
<td>osteolytic change, sclerotic lesions</td>
<td>osteolytic change, sclerotic lesions, sequestrum</td>
<td>heterogeneous, high-signal intensity on T2WI and STIR</td>
</tr>
<tr>
<td>17</td>
<td>69</td>
<td>male</td>
<td>ORN</td>
<td>positive</td>
<td>osteolytic change, sclerotic lesions</td>
<td>osteolytic change, sclerotic lesions, sequestrum, periosteal bone proliferation</td>
<td>heterogeneous, high-signal intensity on T2WI and STIR</td>
</tr>
<tr>
<td>18</td>
<td>72</td>
<td>female</td>
<td>osteomyelitis</td>
<td>positive</td>
<td>osteolytic change, sclerotic lesions</td>
<td>osteolytic change, sclerotic lesions, sequestrum</td>
<td>heterogeneous, high-signal intensity on T2WI and STIR</td>
</tr>
</tbody>
</table>

Note: SCC: squamous cell carcinoma; MRONJ: medication-related osteonecrosis of the jaw; ORN: osteoradionecrosis, T2WI: T2-weighted image; STIR: short TI inversion recovery image.

Regarding MRONJ (see Figure 3), panoramic radiography showed osteolytic changes in the jaws and sclerotic lesions. Axial bone tissue algorithm CT revealed an osteolytic changes in the jaws, sclerotic lesions, sequestrum separation, and periosteal bone proliferation. 67Ga scintigraphy showed increased uptake. On MRI, axial T1WI showed homogeneous, low-signal intensity in the mandible and spread of soft tissue inflammation to buccal space. T2WI and STIR showed heterogeneous, high-signal intensity in the mandible and spread of soft tissue inflammation to buccal space.
Figure 1. Malignant lymphoma of the left side of the mandible in a 71-year-old male
a. Panoramic radiography shows osteolytic changes in the jaws (arrow); b. Axial bone tissue algorithm CT shows an osteolytic lesion with the destruction of buccal cortex in the left mandible (arrow); c. 67Ga scintigraphy shows increased uptake (arrow); d. On MRI, axial T1-weighted image (T1WI) revealed homogeneous, low-signal intensity (arrow); e. T2-weighted image (T2WI) revealed heterogeneous, high-signal intensity (arrow); f. Post-contrast T1WI showed heterogeneous enhancement (arrow)

Regarding osteoradionecrosis (see Figure 4), panoramic radiography showed osteolytic changes in the jaws and sclerotic lesions. Axial bone tissue algorithm CT revealed an osteolytic changes in the jaws, sclerotic lesions and sequestrum separation. 67Ga scintigraphy showed increased uptake. On MRI, axial T1WI showed homogeneous, low-signal intensity in the mandible and spread of soft tissue inflammation to buccal space. T2WI and STIR showed heterogeneous, high-signal intensity in the mandible and spread of soft tissue inflammation to buccal space.

Figure 2. Squamous cell carcinoma of the left side of the mandible in a 63-year-old male
a. Panoramic radiography shows a moth-eaten appearance in the jaws (arrow); b. Axial bone tissue algorithm CT shows an osteolytic lesion with the destruction of buccal cortex in the left mandible (arrow); c. 67Ga scintigraphy shows increased uptake in the mandible (arrow) and submandibular region (arrowheads); d. On MRI, axial T1WI revealed homogeneous, low-signal intensity (arrow); e. Post-contrast T1WI showed heterogeneous enhancement (arrow); f. Axial contrast-enhanced CT image shows submandibular lymph node with rim-enhancement (arrowheads)
Table 2 shows the comparison between imaging features of 67Ga scintigraphy and lesions. The 67Ga scintigraphy for 2 of 2 patients with malignant lymphoma were positive (100%); 4 of 7 patients with squamous cell carcinoma were positive (57.1%), and 10 of 10 patients with inflammatory lesions were positive (100%) in the mandible. The detection of squamous cell carcinoma with 67Ga scintigraphy was lower than that of inflammatory lesions ($p = .047$).

Figure 3. MRONJ of the left side of the mandible in a 65-year-old female

a. Panoramic radiography shows osteolytic changes in the jaws and sclerotic lesions (arrow); *b.* Axial bone tissue algorithm CT shows an osteolytic changes in the jaws, sclerotic lesions, sequestrum separation (arrow), and periosteal bone proliferation (arrowheads); *c.* 67Ga scintigraphy shows increased uptake (arrow); *d.* On MRI, axial T1WI revealed homogeneous, low-signal intensity in the mandible (arrow) and spread of soft tissue inflammation to buccal space (arrowheads); *e, f.* T2WI and short TI inversion recovery (STIR) revealed heterogeneous, high-signal intensity in the mandible (arrow) and spread of soft tissue inflammation to buccal space (arrowheads)

Figure 4. Osteoradionecrosis of the right side of the mandible in a 65-year-old male

a. Panoramic radiography shows osteolytic changes in the jaws and sclerotic lesions (arrow); *b.* Axial bone tissue algorithm CT shows an osteolytic changes in the jaws, sclerotic lesions and sequestrum separation (arrow); *c.* 67Ga scintigraphy shows increased uptake (arrow); *d.* On MRI, axial T1WI revealed homogeneous, low-signal intensity in the mandible (arrow) and spread of soft tissue inflammation to buccal space (arrowheads); *e, f.* T2WI and STIR revealed heterogeneous, high-signal intensity in the mandible (arrow) and spread of soft tissue inflammation to buccal space (arrowheads)
4. DISCUSSION
The 67Ga scintigraphy has been widely used to detect squamous cell carcinoma$^{[1,3]}$ and malignant lymphoma$^{[8]}$ of the head and neck. In our study, the 67Ga scintigraphy for 2 of 2 patients with malignant lymphoma were positive (100%), and 4 of 7 patients with squamous cell carcinoma were positive (57.1%).

Regarding mechanism of 67Ga accumulation in tumors, Tsan et al.$^{[14]}$ showed that 67Ga was delivered to the tumor through capillaries with increased permeability, and 67Ga binding proteins might also contribute to the accumulation and retention of 67Ga in tumors. We showed that images for 3 out of 7 patients who had squamous cell carcinoma were negative (42.9%) in the 67Ga scintigraphy. These 3 cases (case 5-7) were small size of tumors. We consider that the size of tumors also is a factor of the degree of 67Ga accumulation in lesions, furthermore, relationship between negative 67Ga scintigraphy for SCC and T staging of the tumor.

Regarding malignant lymphoma, in our study, the 67Ga scintigraphy for 2 of 2 patients with malignant lymphoma were positive (100%). However, Okada et al.$^{[8]}$ showed that PET is replacing 67Ga scintigraphy in the diagnosis and management of malignant lymphoma.

In this study, the 67Ga scintigraphy for 10 of 10 patients with inflammatory diseases were positive (100%). Li et al.$^{[1]}$ indicated that 67Ga scintigraphy for 2 of 11 patients who had chronic inflammatory diseases (1/4 parotitis, 1/5 submaxillaritis and 0/2 lymphadenitis) were positive (18.2%).

Tsan et al.$^{[14]}$ showed that some in tumors may be taken up by inflammatory cells when they are present. Furthermore, Keijser et al.$^{[9]}$ showed imaging the inflammatory activity of sarcoidosis, namely, overall sensitivity to detect active sarcoidosis was 88% for 67Ga scintigraphy. Ishii et al.$^{[10]}$ showed that 67Ga scintigraphy was useful in differentiating between sarcoidosis and IgG4-related disease. Tsai et al.$^{[13]}$ suggested that the kidney uptake index from the absolute quantitative renal 67Ga scintigraphy may be a useful parameter for evaluating the disease activity in lupus nephritis. Consequently, the authors consider that 67Ga scintigraphy was more useful for inflammatory lesions than malignant tumors, and a combination of 99mTc MDP and 67Ga scintigraphy can used to help diagnose osteomyelitis as indications of scintigraphy. Furthermore, we recommend the 67Ga scintigraphy with panoramic radiography, CT and MRI for detection of malignant tumors and inflammatory diseases.

There were several limitations of this study. The sample was relatively small. Moreover, several types of tumors and inflammatory lesions in the mandible. Therefore, further research is necessary to validate these results.

5. CONCLUSIONS
We compared mandibular malignant tumors with inflammatory lesions using 67Ga scintigraphy with panoramic radiography, CT and MRI. 67Ga scintigraphy is useful for detection of malignant lymphoma and inflammatory lesions in the mandible.

ACKNOWLEDGEMENTS
The authors wish to thank Professor Y. Okada, Department of Pathology, The Nippon Dental University School of Life Dentistry at Niigata and Professor M. Tsuchimochi, Department of Oral and Maxillofacial Radiology. This work was supported by NDU Grants N-16020.

CONFLICTS OF INTEREST
Disclosure
The authors reported no conflicts of interest related to this study.

REFERENCES

