Pediatric hypereosinophilia: \textit{FIP1L1-PDGFRA} myeloproliferative disease in a 14-year-old male

Shiqi S Wang, Rachel K Conyers

Children’s Cancer Centre, Royal Children’s Hospital, Melbourne, Australia

Received: March 10, 2016 Accepted: March 28, 2016 Online Published: May 5, 2016
DOI: 10.5430/crim.v3n2p41 URL: http://dx.doi.org/10.5430/crim.v3n2p41

Abstract

Hypereosinophilic myeloproliferative disease is a rare entity in the pediatric population. We report the fifth known pediatric case of \textit{FIP1L1-PDGFRA} hypereosinophilia. This fusion drives hypereosinophilia, and often neutrophilia, with the propensity for T-cell or myeloid transformation. The exquisite sensitivity of the \textit{FIP1L1-PDGFRA} fusion to the tyrosine kinase inhibitor Imatinib, abrogates the short-term life threatening complications of hyper-eosinophilia. The issues arising from long-term treatment with Imatinib, including optimal dosing, length of treatment, and bone marrow transplantation, are explored in the accompanying discussion. These issues are particularly relevant in pediatric patients facing life-long therapy.

Key Words: Hypereosinophilia, \textit{FIP1L1-PDGFRA}, Pediatric hematology/Oncology, Lmatinib

1. Introduction

The hypereosinophilic syndromes, first described by Chusid et al. in 1970s,\cite{1} comprise a heterogeneous group of non-hematologic (secondary or reactive) and hematologic (primary or clonal) diseases. The diagnosis is united by a persistently elevated eosinophil count of greater than 1,500/mm3, and resultant end-organ damage from eosinophilic tissue infiltration. Hypereosinophilia contributes to significant morbidity and mortality, with frequently reported causes of death from progressive cardiac disease, thromboembolic phenomena, neurologic dysfunction, and infection.\cite{2}

Treatment for secondary eosinophilia focuses upon treating the underlying disease process; in contrast, treatment of primary/clonal hypereosinophilia historically has been limited to corticosteroids and cytotoxic agents, \textit{e.g.} hydroxyurea, with profoundly disappointing high mortality and morbidity rates.\cite{3} The discovery of the fusion protein \textit{FIP1L1-PDGFRA} revolutionized treatment and outcome for patients, as the presence of the \textit{FIP1L1-PDGFRA} fusion correlates to an exquisite sensitivity to the tyrosine kinase inhibitor (TKI) Imatinib.\cite{4} Whilst well described in adults, pediatric hypereosinophilia is rare, with only four cases of \textit{FIP1L1-PDGFRA} fusion in children reported.\cite{4-6} We report the fifth known case of pediatric \textit{FIP1L1-PDGFRA} hypereosinophilia; the fourth with documented morphological and molecular remission to Imatinib.

2. Case Presentation

Our patient was a 14-year-old male of Sri-Lankan origin, who presented with a 2-week history of loss of weight, shortness of breath on exertion, and frequent cough. Examination revealed hepato-splenomegaly and bilateral inguinal lymphadenopathy, with no identified focal neurology. A 1.5 cm lump was noted on his posterior occiput that was firm to palpate, non-tender and non-mobile. Ophthalmological examination was normal.
Initial white cell count was $200 \times 10^9/L$, with a predominance of eosinophils (40%, $39.88 \times 10^9/L$). A chest X-ray demonstrated bilateral peri-bronchial thickening and pulmonary infiltrates. Echocardiogram showed no evidence of pulmonary hypertension and good biventricular function with a normal fractional shortening. Lumbar Puncture was normal.

Bone marrow aspirate and trephine revealed a markedly hypercellular medullary space with immature and mature myeloid cells including neutrophils and eosinophils (see Figure 1). The immunophenotypic features were consistent with an excess of eosinophils and precursors with a modest myeloblast excess (6%) and evidence of monocytoid differentiation by flow cytometry.

The patient commenced steroid and hydroxyurea whilst awaiting completion of molecular studies, but the peripheral blood eosinophilia and leucocytosis continued to rise. Fluorescent in-situ hybridisation (see Figure 2) revealed a FIP1L1-PDGFR fusion, and the patient was commenced on Imatinib at a dose of 100 mg daily. His response to Imatinib was brisk, with normalisation of his peripheral eosinophil count within 48 hours of commencing the TKI (see Figure 3). After a week of treatment with Imatinib, the patient had no further respiratory symptoms and the lump on his posterior occiput was no longer palpable.

Evidence of response to Imatinib was demonstrated clearly by Bone Marrow Aspirate (BMA) analysis, and Minimal Residual Disease (MRD) analysis – FIP1L1-PDGFR identi-
fied by Polymerase Chain Reaction (sensitivity down to \(10^{-4}\)).

A BMA performed at Day 29 of treatment already demonstrated impressive response to Imatinib, with no eosinophils or blast cells identified (see Figure 1), and MRD identified by Polymerase Chain Reaction of \(1 \times 10^{-3}\). His 6-month marrow showed MRD further reduced to \(1 \times 10^{-4}\), and by 9 months of treatment, MRD was not detectable. His parents were keen to discuss the merits of a bone marrow transplant as a potentially curative option for his condition.

3. DISCUSSION

The exquisite sensitivity to the TKI Imatinib appears to abrogate the immediate complications of hypereosinophilia in children (see Table 1), as it does in adults. However, this case report highlights several outstanding issues relating to treatment, particularly relevant to pediatric and young adult patients.

Table 1. Clinical characteristics of pediatric patients with clonal hypereosinophilia and molecular abnormalities of PDGFRα, PDGFRβ or FGFR1

<table>
<thead>
<tr>
<th>Reference</th>
<th>Age</th>
<th>Sex</th>
<th>History at presentation</th>
<th>Clonal cytogenetic abnormality</th>
<th>Eosinophil count at diagnosis</th>
<th>Treatment</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wang et al., 2015</td>
<td>14</td>
<td>M</td>
<td>3 months loss of weight, bone pain, headaches, dizziness</td>
<td>FIP1L1-PDGFRA fusion</td>
<td>60 × 10^9/L</td>
<td>Steroids</td>
<td>Recovery</td>
</tr>
<tr>
<td>Rives et al., 2005</td>
<td>7</td>
<td>M</td>
<td>Pruritus and malaise. No HSM</td>
<td>FIP1L1-PDGFRA fusion</td>
<td>6.1 × 10^9/L</td>
<td>Steroids</td>
<td>Recovery</td>
</tr>
<tr>
<td>Rupanoti et al., 2010</td>
<td>16</td>
<td>M</td>
<td>Restrictive cardiomyopathy, lymphadenopathy. HSM present</td>
<td>FIP1L1-PDGFRA fusion</td>
<td>5.3 × 10^9/L</td>
<td>Imatinib</td>
<td>Recovery</td>
</tr>
<tr>
<td>Rathe et al., 2010</td>
<td>2</td>
<td>year</td>
<td>3 days malaise, fatigue, loss of appetite. No HSM</td>
<td>FIP1L1-PDGFRA fusion</td>
<td>22.5 × 10^9/L</td>
<td>Imatinib</td>
<td>Recovery</td>
</tr>
<tr>
<td>Farmagia et al., 2013</td>
<td>14</td>
<td>M</td>
<td>2 months weight loss, pallor. Left shoulder pain HSM present</td>
<td>FIP1L1-PDGFRA fusion</td>
<td>49 × 10^9/L</td>
<td>Imatinib 200 mg daily</td>
<td>Recovery</td>
</tr>
<tr>
<td>Li et al., 2010</td>
<td>8</td>
<td>M</td>
<td>Cough, pallor and ulcers. HSM present</td>
<td>TPM3-PDGFBR fusion</td>
<td>N.A.</td>
<td>Hydroxyurea</td>
<td>Recovery</td>
</tr>
<tr>
<td>Abraham et al., 2012</td>
<td>3 months</td>
<td>M</td>
<td>Nodular lesions, HSM</td>
<td>TPM3-PDGFBR fusion</td>
<td>5.6 × 10^9/L</td>
<td>Hydroxyurea, Imatinib 340 mg/m^2 daily</td>
<td>Recovery</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>M</td>
<td>Failure to thrive, respiratory infections, HSM</td>
<td>FISH positive for 5q33 arrangement involving PDGFRB</td>
<td>3.9 × 10^9/L</td>
<td>Imatinib 340 mg/m^2 daily</td>
<td>Recovery</td>
</tr>
<tr>
<td>Wilkinson et al., 2003</td>
<td>11 months</td>
<td>F</td>
<td>Malaise, poor feeding, HSM</td>
<td>PDGFRB-PDE4DIP fusion</td>
<td>WCC 43.9 × 10^9/L with "marked eosinophilia"</td>
<td>Etoposide, Cytarabine, Interferon, Imatinib</td>
<td>Recovery</td>
</tr>
</tbody>
</table>

Note: N.A., not available; HSM, Hepatosplenomegaly; WCC, white cell count; Bold and italicised font indicates treatment that achieved clinical remission.

Like Chronic Myeloid Leukaemia (CML), FIP1L1-PDGFRA hypereosinophilia patients face challenges regarding total length of required therapy. A group from the Mayo Clinic recently reported upon 741 adult patients with hypereosinophilia, of which 3% (21) were FIP1L1-PDGFRA positive. 14 of the 21 patients treated with Imatinib all achieved a complete response. Of these 14, 4 patients attempted to discontinue therapy but all relapsed. Several other studies have also reported small numbers of patients who relapsed following Imatinib discontinuation. These findings suggest that the use of TKI does not completely eradicate the clone, and that the use of TKI should be life-long.

Given that pediatric patients may require Imatinib long-term, the issue of possible Imatinib resistance becomes more relevant. To date, there are no reported pediatric cases of Imatinib resistance in patients with FIP1L1-PDGFRA. Imatinib resistance in adult patients with FIP1L1-PDGFRA positive disease is low, occurring most frequently in patients developing blast crisis. A 2005 case report of a 67-year-old male patient with FIP1L1-PDGFRA positive hypereosinophilia reported that Imatinib resistance occurred 6 months into treatment, and correlated with blast crisis. The T674I mutation present showed a change of nucleotide 2417 of PDGFRα from cytosine to thymine, and has been described in three other reported cases of advanced disease, including blast crisis. Therefore, although few reported cases of resistance exist, what is clear is that in the face of resistance, disease factors (i.e. blast crisis) contribute to poor therapeutic options.

The optimal dose of Imatinib that maintains remission is unclear. Helbig et al. reported upon 6 patients positive for FIP1L1-PDGFRA initially treated with Imatinib 100-400 mg daily, until they achieved complete haematological remission (CHR). Subsequently they were dose decreased, till most were maintained on a single weekly dose of Imatinib of 100 mg-200 mg weekly. A similar dose reduction method was also adopted by the French Eosinophil Network series, who achieved complete molecular response in 95% of patients at a starting daily dose of 165 mg, then tapered Imatinib to a maintenance dose of 58 mg daily. The limited studies to date suggest that in certain circumstances Imatinib can be dose reduced, provided MRD can be easily monitored.
There are very few case reports in the literature that analyse the efficacy of bone marrow transplant in eradicating the FIP1L1-PDGFRA transcript. Halaburda et al.[20] report a 29-year-old patient who was transplanted for hypereosinophilia, in whom the FIP1L1-PDGFRA transcript was retrospectively shown to be positive in the sample at diagnosis. The patient received a matched sibling donor transplant using a myeloablative regime, and three years post-transplant remains well, in a molecular remission for the FIP1L1-PDGFRA fusion transcript.

This case highlights the importance of ongoing molecular target research in this new area of target therapy. The exquisite sensitivity to the TKI Imatinib appears to abrogate the immediate complications of hypereosinophilia in children. Though the incidence of Imatinib resistance in this disease is low in adults, it appears the use of Imatinib needs to be life-long; as yet, the long-term prognosis of these children is uncertain. Given the scant case reports for bone marrow transplant in FIP1L1-PDGFRA hypereosinophilic disease, it would appear that in pediatric or young adult patients, matched sibling transplants are only to be explored in cases that are refractory to Imatinib. Parents requesting transplantation should have individual cases presented to hospital Ethics committees, as this request would stand outside of current recommendations for this condition.

CONFLICTS OF INTEREST DISCLOSURE

The authors have declared no conflicts of interest.

REFERENCES

