Malignant peripheral ameloblastoma arising from the gingiva: A case report

Jasmine Saleh1, Laura Malone2, John C. Papadimitriou∗2

1 Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, United States
2 Department of Pathology, University of Maryland Medical Center, Baltimore, United States

Received: November 26, 2017 Accepted: January 1, 2018 Online Published: January 27, 2018
DOI: 10.5430/crcp.v5n1p1 URL: https://doi.org/10.5430/crcp.v5n1p1

ABSTRACT

Ameloblastomas account for 9%-11% of all odontogenic tumors and usually arise from the mandible. Peripherally arising ameloblastomas are exceedingly rare, comprising 1%-2% of all ameloblastomas. We present a case of peripheral ameloblastoma with malignant differentiation in a 72-year-old male patient. The patient underwent a biopsy of the left palatoglossal fold, and histological examination of the specimen demonstrated a well differentiated squamous cell carcinoma in situ with at least superficially invasive growth and features suggestive of peripheral ameloblastic carcinoma. The patient chose radiation therapy as opposed to surgical excision.

Key Words: Peripheral ameloblastoma, Ameloblastoma, Gingiva, Peripheral

1. INTRODUCTION

Ameloblastomas are rare, benign epithelial odontogenic tumors involving the jaw, with an incidence of 0.5 cases per million individuals per year.[1,2] They account for 1% of all oral ectodermal tumors and 9%-11% of all odontogenic tumors.[1] While approximately 80% of the cases arise from the mandible, 1%-2% of all ameloblastomas are peripheral and develop in extraosseous locations.[1,3] We represent a case of peripheral ameloblastoma arising from gingiva in a 72-year-old male patient.

2. CASE REPORT

A 72-year-old male with a history of non-Hodgkin’s lymphoma of the right upper extremity status post treatment with rituximab and radiation, in remission since 2010, and a 87.50 pack-year smoking history presented with a lesion in his left retromolar trigone. On examination, a 3.0 cm × 2.0 cm raised, verrucous-type lesion with a rough, erythematous surface was noted. A biopsy of the lesion was taken, and histological examination revealed islands of epithelial cells and stellate reticulum surrounded by peripherally palisading columnar cells, which was consistent with the follicular type of ameloblastoma. Significant nuclear pleomorphism and hyperchromasia, high mitotic rate, squamous metaplasia with keratin pearl formation, and cystic degeneration within the nests of epithelial cells, which were suggestive of ameloblastic carcinoma, were also observed in the biopsy (see Figure 1). The lesion was found to be connected to and continuous with the overlying gingival mucosa. There was no bone present within the biopsy for evaluation. The patient chose to receive radiation therapy instead of surgical resection and will be continuously followed-up.
Figure 1. Histological examination demonstrated squamous cell carcinoma showing in situ and at least superficially invasive growth with features of follicular ameloblastic carcinoma, including islands of epithelial cells lined by peripherally palisading columnar cells (A-B). The ameloblastic component of the lesion is seen to be arising directly from the gingival mucosa (A).

3. Discussion

Peripheral ameloblastomas are extremely rare variants of ameloblastomas, constituting 1%-2% of all cases. In a 2001 systematic literature review, Philipsen et al. reported 160 documented cases of peripheral ameloblastomas. Peripheral ameloblastomas are more predominant in males (1.9:1) with an average age at diagnosis of 52 years compared to 37.4 years in intraosseous ameloblastomas. Additionally, malignant ameloblastomas, which can arise de novo or from a preexisting ameloblastoma, occur in 1.6%-2.2% of all ameloblastomas. Ameloblastic carcinomas arising from peripheral ameloblastomas are exceedingly rare, with only approximately eleven cases of peripheral ameloblastic carcinoma having been reported to date, including one case of an initially benign appearing peripheral ameloblastoma recurring as ameloblastic carcinoma. Although there have been no prior studies demonstrating the relationship between non-Hodgkin lymphoma or radiation and the development of peripheral ameloblastoma, a retrospective study evaluating 322 non-Hodgkin lymphoma cases found a significantly increased risk for head and neck cancers among patients receiving radiation therapy for early-stage non-Hodgkin lymphoma. Peripheral ameloblastomas typically manifest as slow-growing, firm, painless masses, which can be sessile or pedunculated with a smooth, granular, or warty surface. Peripheral ameloblastomas vary in size but are usually limited to the gingiva without invading the underlying bone. Differential diagnosis includes peripheral giant cell granuloma, peripheral odontogenic fibroma, peripheral ossifying fibroma, papilloma, pyogenic granuloma, epulis, and fibroma. Radiological examination may demonstrate superficial cortical bone erosion or depression, which are known as “cupping” or “saucerization”. However, there may not be any radiographic evidence of bone involvement. Histological examination would reveal similar characteristics to intraosseous ameloblastomas. According to the World Health Organization, the histological features of the follicular variant of peripheral ameloblastomas include islands of odontogenic epithelium within a fibrous stroma and peripherally palisading basal cells with vacuolated cytoplasm and hyperchromatic nuclei displaced away from the basement membrane. The centrally located cells may be loosely arranged, resembling nests of odontogenic stellate reticulum. Although several subtypes of ameloblastoma have been documented, the follicular variant is the most common subtype, comprising 29.5% of all ameloblastomas. Ameloblastic carcinomas combine the histologic characteristics of ameloblastomas with overtly malignant cellular features such as increased nucleus-to-cytoplasm ratio, high mitotic rate, necrosis, calcifications, perineural or vascular invasion, clear cell change, keratin production, nuclear atypia with hyperchromatism, large or atypical nuclei, and irregular nuclear contours. The first-line therapy for peripheral ameloblastomas is conservative supraperiosteal surgical excision with adequate disease-free margins, whereas the first-line therapy for ameloblastic carcinomas is radical surgical excision. However, the patient in our case declined surgical excision and will therefore undergo radiation therapy and be followed closely. While a wide range of recurrence rates have been reported for central ameloblastomas based on the extent of the initial resection, the recurrence rate of peripheral ameloblastomas has been reported to be 16%-19%. The recurrence
rate of ameloblastic carcinomas (both central and peripheral) following radical surgical excision is 28%.4,13,18

4. CONCLUSION
Peripheral ameloblastomas are extremely rare, benign odontogenic tumors, constituting 1%-2% of all ameloblastomas. They undergo malignant transformation in an extremely small number of cases. However, since both recurrence and malignancy have been documented despite resection, long-term follow-up is necessary, especially in cases with features suggestive of malignancy.13–15

REFERENCES