An interpretable classifier for detection of cardiac arrhythmias by using the fuzzy decision tree

Omar Behadada, M. A Chikh

Abstract


An extraction of medical knowledge from cardiological data is proposed in this work, it is based on relevant intelligent method called fuzzy decision tree. It could lead to increase understanding the cause of various abnormal beats in cardiac activity, leading to a better medical diagnosis. The performance of this technique is evaluated on the MIT-BIH Arrhythmia Database following the AAMI recommendations.

The first part of this paper discusses the characterization of heart beats. It is considered as an important step in arrhythmias classification. In a second part we apply the fuzzy decision tree to recognize some cardiac abnormalities. In the last part we discuss the activity of fuzzy decision rules extracted from cardiological data analyzing.

Full Text: PDF DOI: 10.5430/air.v2n3p45

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.

Artificial Intelligence Research

ISSN 1927-6974 (Print)   ISSN 1927-6982 (Online)

Copyright © Sciedu Press 
To make sure that you can receive messages from us, please add the 'Sciedu.ca' domain to your e-mail 'safe list'. If you do not receive e-mail in your 'inbox', check your 'bulk mail' or 'junk mail' folders.