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Applied water research, like the one derived from open-channel hydraulics, traditionally links empirical formulas to observational
data; for example Manning’s formula for open channel flow driven by gravity relates the discharge (Q), cross-sectional average
velocity (V'), the hydraulic radius (R), and the slope of the water surface (.S) with a friction coefficient n, characteristic of the
channel’s surface needed in the location of interest. Here we use Genetic Programming (GP), a machine learning technique
inspired by nature’s evolutionary rules, to derive empirical relationships based on synthetic datasets of the aforementioned
parameters. Specifically, we evaluated if Manning’s formula could be retrieved from datasets with: a) 300 pentads of A, n, R, S,
and Q (from Manning’s equation), b) from datasets containing an uncorrelated variable and the parameters from (a), and c) from
a dataset containing the parameters from (b) but using values of () containing noise. The cross-validated results show success
retrieving the functional form from the synthetic data in the first two experiments, and a more complex solution of () for the
third experiment. The results encourage the application of GP on problems where traditional empirical relationships show high
biases or are non-parsimonious. The results also show alternative flow equations that might be used in the absence of one or more

predictors; however, these equations should be used with caution outside of the training intervals.
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1. INTRODUCTION

1.1 Overview

With growing data complexity and an increasingly large
amount of observations and model simulations within the
geosciences, the discovery of new scientifically significant
relationships could be daunting given the dimensions of these
big-datasets.!!! However, techniques from other disciplines
like computer science, economics and bioinformatics can
often be used to tackle common problems in water sciences.
In particular, novel fields like climate informatics and hydro-

informatics relate climate and hydrological sciences, respec-
tively, with approaches from statistics, machine learning and
data mining. These disciplines, inspired by the advances
in computer science and bioinformatics during the last 30
years, can provide innovative ways of analyzing data and of
extracting knowledge from data collections.

Genetic programming (GP — an extension of genetic algo-
rithms to the domain of computer programs!?!), a technique
generated from the seminal work of numerous researchers
in the 1970s and 1980s, generates possible solutions that fit
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the data given an evaluation metric. The adaptation of these
solutions to the data is akin to the biological adaptation of an
individual member of a population to an environment. The
solutions’ equations are obtained by randomly combining
different building blocks (operators). These operators are
typically algebraic (+, —, +, X), trigonometric (e.g. sin(x),
cos(x), tanh(x)), or conditional (e.g. if statements). However,
other functions typically used in computer programs can also
be used.*! GP origins can be tracked to Turing’s machine, !
and more recently to the Corewar project;™ more complex
evolutionary operations were later incorporated to the project
by Vowk, Wait.l% In general, GP abandons unviable solu-
tions (offspring) and retains viable ones. The solutions are
usually evaluated in terms of fitness functions such as mean
absolute error (MAE), correlation coefficient, and Bayesian
Information Criterion (BIC), among many others; and the
algorithm stops when a desired accuracy level is reached.
GP also has the added advantage of being able to run in
parallel,’°! moreover, the technique can be considered as
embarrassingly parallel, and therefore being computation-
ally efficient; as the population of candidate solutions can
be evaluated independently of each other (in parallel), and
because the fitness cases can also be considered indepen-
dently of each other (in parallel). These two characteristics
are commonly known as, “population parallel” and “data
parallel”.[!

In stark contrast with classical regression approaches (i.e.
multiple linear regression, nonlinear regression and polyno-
mial regression), GP’s symbolic regression, searches both
the parameters and the form of equations simultaneously.!'!
This expressive power is key to advance the knowledge in
meta-learning and meta-heuristics as GP can be used for
algorithm design and selection.!'"! Unlike numerical regres-
sions that simply assert an inexplicable pattern in data, sym-
bolic regression offers the powerful possibility of gaining
actual physical insights from the resulting functional form.
In particular, Koza?! reported 76 instances of work where
GP produced “human competitive” results according with
eight criteria (see Koza!?! for details). Applications include
data-mining of physical systems to infer physical laws like
equations of motion and Lagrangians,!'”! astronomy,!!! and
hydraulics,'?! among many others.

On the other hand, open-channel hydraulics’ (OCH) applied
research often links empirical formulas to observational data
(e.g. Weisbach (1845), St. Venant (1851), Neville (1860),
Darcy and Bazin (1865)). For example, the Manning formula,
also known as the Gauckler-Manning-Strickler formula (here-
after GMS), is an empirical formula for open-channel flow,
or free surface flow driven by gravity. The formula is at-
tributed to the engineers Philippe Gauckler (1967), Robert
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Manning (1890) and Albert Strickler (1923). The formula (1)
relates the cross-sectional average velocity (V = Q/A), the
hydraulic radius (R), and the slope of the water surface (.5),
with a friction coefficient n, characteristic of the channel’s
surface.

V = (1/n)R*33%5 (1)
Where, V is the cross-sectional average velocity in m/s, n is
a non-dimensional roughness coefficient, R is the hydraulic
radius (m), and S is the slope of the water surface (m/m).
The relationship can be used to calculate the discharge (Q) if
we substitute V' in (1) by /A, obtaining:

Q = (A/n)R¥3505 )

Research involving the GMS equation traditionally focuses
on the determination of the roughness coefficient, (n),
under different flow regimes (e.g. Ayvaz!'*! and Ding,
Jial'"*) and/or for different riverbed materials (e. g. Candela,
Notol!3)), as even the presence of biological soil crusts can
affect the surface roughness, runoff and erodibility of the
channel.!'®!

From the aforementioned antecedents, it is clear that soft
computing is ideally suited to solve, or overcome the difficul-
ties of engineering sciences, where progress still depends on
the advances in theoretical, experimental and computational
hydraulics.!”! Therefore, genetic programming is ideally
suited to be used in environmental sciences to obtain sym-
bolic regressions. Although, this manuscript is not the first
one using GP in hydraulics; here we show the first applica-
tion of GP’s symbolic regression to Manning’s formula for
open-channel flow driven by gravity. In particular, our goal is
to retrieve the GMS equation from synthetic hydraulic data,
and to evaluate alternative solutions with varying degrees of
complexity using genetic programming.

This document is structured as follows, first we described the
GP approach and the data used, then we showed the model
results, and afterwards we discussed the results and made
recommendations about the alternative candidate solutions.
Finally, we mentioned future applications to geosciences and
possible research avenues.

1.2 Related work

There are numerous studies using artificial intelli-
gence/machine learning methods to solve problems in hydrol-
ogy, climatology and geosciences. For example, evolutionary
algorithms (EAs) were first used in hydraulic research by
Babovic and Abbot’s!'? '8! and applied to sediment transport,
salt water intrusion in estuaries, and to flow resistance stud-
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ies. Similarly, Tang, Reed!"”! tested different multi-objective
evolutionary algorithms for hydrologic model calibration,
and showed that a strength Pareto evolutionary algorithm
attained competitive results when used to calibrate the Sacra-
mento soil moisture accounting model for the Leaf River
watershed, and when calibrating an integrated hydrological
model for the Shale Hills watershed in Pennsylvania (USA).
Other common applications of machine learning methods
include: forecasting of non-stationary hydrological time se-
ries using dynamically driven recurrent neural networks,!
prediction of longitudinal dispersion coefficients in natural
streams using different types of neural networks,?!! the use
of quantile regression forests to determine sediment trans-
port,/??! downscaling of stream-flow using relevance vector
machines, >3 using support vector regression to predict sea-
sonal winter extreme precipitation,’** and downscaling of
maximum and minimum temperatures,'?>! wind speeds,2%!
and daily precipitation'?”! using Bayesian neural networks.

In particular, some publications during the late 90’s and early
2000’s in water resources have already demonstrated the abil-
ity of machine learning techniques like genetic programming
to re-discover empirical equations commonly used in hydrol-
ogy and hydraulics. For example, Babovic and Keijzer!?%!
developed a variant of GP which takes into consideration
units of measurement and demonstrated its use to retrieve
Bernoulli’s equation; and Giustolisi®”! used GP to deter-
mine the Chezy coefficients in corrugated channels. That
research direction led to the development of more general
framework for the introduction of background knowledge in
data-driven knowledge discovery by GP (e.g. Keijzer and
Babovic,?”! Harris, Babovic,*!! Baptist, Babovic!®?), and
the work of Meshgi, Schmitter'*3! who used genetic program-
ming to approximate stream base-flow time series. Also, it
is worth mentioning the effort of Giustolisi and Savic,BP4
where they build upon Giustolisi,!*”! and applied symbolic
regression to find an explicit polynomial function for the
Colebrook-White friction factor (Colebrook & White, 1937);
their findings showed that an eleven-term polynomial plus
the bias presented the best results. More recently, Jagupilla
et al. Jagupillal®! used river flow information and symbolic
regression to obtain concentrations of E. Coli in water sys-
tems; Fallah-Mehdipour!®®! used GP for groundwater mod-
eling, and Azamathullal®” used it to predict scour under
bridge piers; while Ines et al.*® used Genetic Algorithms
to estimate parameters of soil hydraulic functions. In gen-
eral, the application of evolutionary techniques in hydraulics
has been centered on parameter optimization and/or param-
eter estimation (e.g., obtaining the Chezy resistance coeffi-
cient?! — comparable to the GMS’s n coefficient), with a
fraction of those studies focusing on symbolic regression
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(e.g.117:18:36.391) "or on obtaining functional forms that fit a
given dataset, unlike this study.

2. METHODS

Genetic Programming is an evolutionary computation tech-
nique that solves problems without requiring the user to know
or to specify the form of the solution in advance.[*?) As stated
by Poli, Langdon,! GP is a systematic, domain-independent
method for getting computers to solve problems automati-
cally. Similarly, if one considers Darwin’s adaptation theory
as the accumulation of knowledge about an environment,!!?!
GP’s solutions represent adapted solutions to the data. In
general terms, GP uses evolutionary operators like crossover
and mutation. Crossover creates two offspring solutions by
combining randomly chosen parts from two selected parent
solutions, while mutation creates a child/offspring solution
by randomly altering a randomly chosen part of the selected
parent solution. !

To create the programs, the user determines - a priori- func-
tion sets and terminal sets that could be part of the final solu-
tion (offspring); examples of function sets include arithmetic,
mathematic, boolean, and conditional functions, among
many others. On the other hand, a terminal set from which all
end (leaf) nodes in the parse trees representing the programs
must be drawn. Examples of terminal sets include variables,
constants and functions without arguments.!!

Here we used 300 instances of four different predictors (A4, R,
S and n) and the corresponding 300 values of Q (calculated
using equation 2). To generate data-driven solutions with
the GP tool, we opted to use the following building blocks:
constant, addition, subtraction, multiplication, division and
power. Hence avoiding trigonometric functions like sine and
cosine, often used when a periodic signal is expected (e.g.
seasonal cycle). To obtain the possible solutions we used
Eureqa™ 0.99.4 Betal*? and kept its default values for the
initial population size, stopping criteria and cross-validation
characteristics. A general flowchart of the GP algorithm is
shown in Figure 1, however the exact specifics of Eureqa’s
GP implementation are not publicly available, as it is com-
mercial software.

We archived non-optimal solutions to aid the evolving pro-
grams to discover common intermediate states and converge
to them, following the recommendation of Krawiec.[*3] The
software algorithm also controls the maturity and the sta-
bility of the proposed solutions. Where maturity measures
how long ago the top solutions last improved, and stability
measures how long it has been since any solution improved.

The model complexity is computed by summing the number
of times a particular type of expression (i.e. variable, real
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number, +, -) appears in an equation weighted by the build-
ing block complexity (e.g. 1 for constants, multiplications
and additions; 2 for divisions; 3 for sines and cosines, 4 for

tangents; and 5 for power operations).
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Figure 1. Schematic. Genetic Programming general flowchart

According to Graham, Djorgovskil'l the tool works from the
numerical partial derivatives of each pair of variables in the
input data set and uses an evolutionary algorithm to explore
this partial differential metric space for non-trivial invariant
quantities, looking for predicted partial derivatives that best
match the numerical ones:

Ay df df

%
a2 gl = gr gy ®

where f () is one of the candidate functions. The search
continues until some stopping criterion — time elapsed, good-
ness of fit, confidence of fit (maturity and stability), etc. — is
met.[

2.1 Data

Our experimental setup includes three experiments. The first
one (Experiment A) uses synthetic variables of A, R, S and
n, with the corresponding () - from the GMS equation - using
the data intervals shown in Table 1. The second experiment
(B) expands the data ranges used in the first experiment, shuf-
fles the data, and adds an uncorrelated variable. The uncorre-
lated variable was generated using seasonal cycle anomalies
of 2 m temperature from the 64 x 13Y NCEP/NCAR reanal-
ysis!*¥l grid point located over Vancouver Island, Canada and
obtained through the DAI portal.[*! While the third exper-
iment (C) uses the predictors from (B), shuffles them and
adds noise to the GMS solution to obtain new values of Q).

Published by Sciedu Press

The noise varies randomly between the 33 and 66 percentiles
of the wet area (A).

Table 1. Variables used in Experiments A, B and C
Experiment A

Experiment B Experiment C

Variable
ange Range Range
A 1.00-3.98 1-448.48
R 0.25-20.05 0.25-182.43
S 0.000 25-0.030 05 0.000 25-0.03005
n 0.009-0.074 56 0.009-0.074 56
T - -1.71-2.76
Q 0.69-59.25 0.69-33 597.90 1.69-33 878.90

With the first experiment, we wanted to show if the new
GP-generated equations represented under-fitted solutions
that worked only on a small subsample of the data, as we
used a group of data points with @) values below 60 m3s~!
for training, and tested the models with data points outside
this interval; we also wanted to know if the GP tool was able
to obtain the exact functional form of the GMS equation.
For experiment B, we tested GP’s ability to select relevant
predictors; and lastly for Experiment C, we tested if the GP
tool was able to retrieve GMS-like solutions in the presence
of noisy target data. For all the experiments we stopped the
algorithm after obtaining the GMS solution, or after obtain-
ing correlations higher than 0.999 between the GMS solution
and the best GP-derived solution.

We opted to use synthetic data for our experiments to facili-
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tate the analysis, as the river flow monitoring stations usually
record instantaneous flow as a function of time, and in some
cases, water depth-used to infer the A and R parameters,
after assuming the geometry of the cross-section where the
instrument is located. Other parameters usually require extra
in-situ observations to accurately calculate the river slope, or
the roughness coefficient that depends on the bed material,
and often needs to be calculated empirically.['*! Previous
studies used idealized conditions in hydraulic laboratories
- constrained by the capacity and flow design limitations
from their water tanks/channels, or modeling techniques
(e.g.,[1314461) Here, our maximum river discharge is similar
to the average discharge of the Yangtze River in China, and
we include the usual range of n and S values.

3. RESULTS & DIMENSIONAL ANALYSIS

The following results correspond to models of different com-
plexities (obtained by the GP environment), as the evolu-
tionary process described in the introduction involves the
creation of a large number of (potential) expressions, in-
volving multiple offspring and generations (iterations). It is

worth noting that not all the proposed solutions produced
satisfactory results, and in general for the three experiments,
the models identified with lower numbers in the following
tables (and figures) show a better fit.

For the first experiment (A), we trained the GP models on
a subset of data points with Q < 60 m3s™! and tested the
models with an independent set of points outside that interval.
The GP-generated equations in Table 2 include solutions of
different complexities with high (~1) correlation coefficients.
Howeyver, as seen in Figure 2, only the first two models were
general enough to work outside the training interval. Models
3,4, 5, 6 likely represent under-fitted solutions and should
not be used.

Table 2. Experiment A - Model solutions

Model ID Model solution
1A 1 AR %%75%%/(n)
2A AR0.667SI.5/(nS)
3A Sqrt(21.2AR*)
4A A(MR)***"/ n
5A (8.64AR)*6
6A 53.5sqrt(nR)
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Figure 2. Experiment A results: Simulated flow versus GMS solution

Overall, two models (3A and 5A) used A and R as predictors,
one model (4A) used A, R and n as predictors, one model
used n and R as predictors (6A), and the other two models
(1A and 2A) used A, S, n and R as predictors. Numeri-
cally, the solution of model 1A represents the GMS solution,
while model 2A is a less parsimonious version of it. In gen-
eral, values below the black line (GMS solution) indicate
under-prediction of (), while points above this line indicate
over-prediction versus the GMS solution.
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The results from Figure 3 show that the GP method obtained
the GMS solution and proposed good alternative solutions
even after adding an uncorrelated variable to the pool of
available predictors. This experiment also showed that the
method worked with non-ordered predictors. The experiment
also shows that other GP-generated equations approximated
the GMS solution when the predictors followed the intervals
in Table 1. Specifically the results (see Table 3) suggest that
models 1B to 6B can be used as approximations to GMS.
With 6B being the only solution that omitted .S from the
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formula. All the GP-generated models presented high corre- varied from 0 (1B) to 54.35 m3s~! (6B).

lation coefficients, while the MAEs on the validation dataset
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Figure 3. Experiment B results: Simulated flows versus the GMS solution

Table 3. Model solutions — Experiment B

Model ID Model solution

1B 1 AR %%¥7515/(nS)

2B ARO.66751.5/(nS)

3B [0.653A 0.6513171e5RE)(RG2) 0.722]/(nS)
4B [0.629A 0.607°%%° 1*1R(RS?) ©75]/(nS)
5B 0.62A(RS?) *"2/(nS)

6B 0.0101RA#/n

On the other hand, Experiment C was the only one that did
not reproduce the GMS solution; it seems that adding this
level of noise compromised the ability to retrieve the GMS
solution. However the experiment produced approximations
that contained A, R, S and n as predictors (see Table 4).

Table 4. Experiment C - Model solutions

Model ID Model solution

1C 0361 AR 0.775/(ns(-0_377) 2253.689-7 A/\Z)
2C 0.432 AR | ng 0404

3C 2.09 A(RS)** /n

ac 0.010 9 (AR) " /n

5C 0.005 46 A>3 /n

6C 142 AR

Graphically, the solutions from Experiment C fit well the
GMS solution (as shown in Figure 4). However, when look-
ing at the solutions’ MAEs and correlation — Table 5 - it
is clear that having a high correlation does not guarantee a
lower MAE. With 2C having an MAE of 20.38 and 6C and
MAE of 150.64. Moreover, Figure 5 shows the differences
between the data-driven solutions and the GMS equation for
different values of (). The results corroborate the better fits
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from 1C, 2C, and 3C versus the results obtained from 4C, 5C
and 6C. Overall, the bigger differences between 6C and the
GMS solution are found for @ < 12,000 m®/s over-prediction
of ~ 500 m3/s, while the differences between 5C and the
GMS solution became more evident for @ > 5,000 m3/s. In
contrast, 4C was considered a not viable solution, as it could
not approximate the result from the GMS equation for any
range.

Table 5. Solution characteristics from Experiment C
Correlation

ID Model solution Complexity . MAE
coefficient
GMS 1 AR™S/(nS) 24 1 0.0
0.361AR0'775/(HS_0'377
1C (225)0 5 72) 36 0.9999 20.38
0.765

2C 35403 fMAR / 22 0.9999 22.47
3C 2.09A(RS) °%/n 16 0.9999 23.86
4C 0.010 9(AR)**®/n 14 0.9999 65.85
5C 0.005 46A%** / n 12 0.9998 102.12
6C 14.2AR03%6 11 0.9999 150.64

Table 6. Proposed solutions (Experiment C), coefficients
and their SI units

1D Model solution Coefficient Units
GMS 1 AR*™S™%/(nS) 1 mBsT
0.361 ARO.??S/(n 5—0.377 )
1C (2056557 0.361 mo225g1
2C 0.432 AR [ n 5040 0.432 o235 1
3C 2.09 A (RS) *%8/n 2.09 mP42 g1
4C 0.0109 (AR)**®/n 0.010 9 021871
5C 0.005 46 A>® /n 0.005 46 mLe7g L
6C 14.2 AR"3206 14.2 mO6194g1
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Now that we obtained different formulas that approximate
(with different degrees of success) the GMS equation, it is
important to balance the equations taking into consideration
that both sides of the proposed solutions should have the
same units (i.e. m® s~1). For example, the right hand side of
1C’s equation has to be multiplied by a factor k = 1 m'/3/s,
so the equation has flow units. Table 6 shows the equations’
coefficients and their units.

Overall, the results show that the GP methodology can be
used for nonlinear predictor selection, as the proposed solu-
tions of Experiment B successfully omitted the uncorrelated
surface temperature predictor; however the GP methodology
struggled to find the GMS equation when adding noise to
the target solution; nevertheless the technique produced solu-
tions with different levels of complexity that tried to fit the
data.

GMS
— Model 1C
Model 2C
Model 3C
Model 4C
Model 5C
Model 6C

25000

Simulated Q (m3/s)
15000

5000

0

T T T

T

T T

0 5000 10000 15000 20000 25000 30000
GMS target value (m3/s)
Figure 4. Results from experiment C. Simulated flows versus the GMS solution
S
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? — 6C-GMS
s
(2]
=
o o |
E
[}
g o
o -
o
(=3
f=3
8 -

T T T
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o
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Figure 5. Differences between the data-driven models and the GMS solution

4. DISCUSSION AND RECOMMENDATIONS

Here we showed a new application of GP in hydrological sci-
ences and corroborated the ability of GP methods of retriev-
ing the functional form of the GMS equation that generated
the data (Experiments A and B). However, we found that
adding noise to the target solution (Experiment C) severely
compromised the ability of the technique to obtain the GMS
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solution. Additionally, we found novel OCH’s equations us-
ing genetic programming. The new proposed equations offer
approximations to the GMS equation for free surface flow
driven by gravity of various degrees of complexity. However,
we do not recommend the use of the under-fitted solutions,
as they must be applied with extreme caution outside of the
training intervals. Other solutions, like 1C, could be used
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under certain noise conditions, but this solution is a more
complex equation than the GMS, so its applicability is ques-
tionable.

Overall, we used genetic programming and implemented two
genetic programming operations: mutation and crossover,
to detect nonlinear equations of open channel hydraulics, in
various synthetic datasets derived from the GMS equation.
The analytical solutions that we found often included the
original relationship, together with more parsimonious and
less complex solutions, involving a fewer number of predic-
tors. However, even thou the method suggested promising
expressions that approximated the GMS equation, it also sug-
gested under-fitted expressions that worked only in certain
intervals, as seen in Figures 2 and 5.

As mentioned by Schmidt and Lipson!!”! automated discov-
ery methods (like the one used in this study) can be applied to
any general dataset, and many potential applications can be
found in fields where theoretical gaps exist despite abundance
in data. Similarly, according to Graham, Djorgovskil!! this
kind of techniques may help the scientists to focus on other
interesting phenomena more rapidly and to interpret their
meaning. This characteristic is especially appealing when
dealing with big-datasets, like the ones found in hydrology,
climatology, astronomy and other geophysical sciences.

Here we used the GP for knowledge discovery and tested
GP’s feature selection and extraction capabilities. As the
method successfully omitted unrelated variables—like 2 m
temperature-from the proposed equations, we conceive that
the method could also be used for nonlinear predictor selec-
tion, complementing classical approaches like the stepwise
selection, often used in conjunction with multiple linear re-
gression (e.g.!*7-*81). The method also provides an alternative
to the graphical sensitivity analysis technique by Cannon
and McKendry,*’! and to the Bayesian approach used by
Robertson and Wang®”! for seasonal streamflow forecast-
ing. Finally, we did a dimensional analysis on all the GP-
generated models from Experiment C, including the ones

omitting some of the GMS predictors; so these alternative
solutions that can be used in the absence of certain explana-
tory variables or when the data quality of the predictors is
compromised -as observations’ errors can heavily impact the
output of hydrological and hydraulic studies.”!]

Future applications include (but are not limited to): a) pre-
dictor selection in statistical downscaling, as GP avoids the
use of uncorrelated predictors, b) determination of empirical
relationships between river flow and suspended sediments,
c) calibration of soil moisture functions, d) generation of
alternative evapotranspiration equations, and d) creation of
alternatives to the empirical equations that determine the
watershed time of concentration (i.e. the time required for
the runoff to travel from the hydraulically most distant point
to the outlet).
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