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Abstract 
The present paper describes the development of a hyperspectral image classification scheme using support vector 
machines (SVM) with spectrally weighted kernels. The kernels are designed during the training phase of the SVM using 
optimal spectral weights estimated using the Bacterial Foraging Optimization (BFO) algorithm, a popular modern 
stochastic optimization algorithm. The optimized kernel functions are then in the SVM paradigm for bi-classification of 
pixels in hyperspectral images. The effectiveness of the proposed approach is demonstrated by implementing it on three 
widely used benchmark hyperspectral data sets, two of which were taken over agricultural sites at Indian Pines, Indiana, 
and Salinas Valley, California, by the Airborne Visible Infra-Red Imaging Spectrometer (AVIRIS) at NASA’s Jet 
Propulsion Laboratory. The third dataset was acquired using the Reflective Optical System Imaging Spectrometer 
(ROSIS) over an urban scene at Pavia University, Italy to demonstrate the efficacy of the proposed approach in an urban 
scenario as well as with agricultural data. Classification errors for One-Against-One (OAO) and classification accuracies 
for One-Against-All (OAA) schemes were computed and compared to other methods developed in recent times. Finally, 
the use of the BFO-based technique is recommended owing to its superior performance, in comparison to other 
contemporary stochastic bio-inspired algorithms. 
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1 Introduction 
In recent years, hyperspectral imaging has become extremely popular in remote sensing and aerial reconnaissance 
activities [1, 2]. The technique involves the acquisition of spectral information over a large region and the consequent 
analysis and interpretation of the acquired data [8]. Availability of advanced sensor technology such as NASA’s Airborne 
Visible-Infrared Imaging Spectrometer (AVIRIS) has resulted in the collection of spectral data over terrestrial regions at 
high, medium and low altitudes through adjacent multi-band channels [3], enabling its utilization in a multitude of 
applications ranging from environmental planning and assessment, monitoring of oil spills, geological research, and target 
detection in military applications [2-6]. Prolific research has taken place in the last decade in the development of novel 
mathematical formalisms to solve the image classification problem of hyperspectral data. Hyperspectral image 
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classification involves the identification of various pixels in the hyperspectral image sequence on the basis of their spectral 
signatures. These spectral signatures are unique electromagnetic “fingerprints” left uniquely by an object and can thus be 
used to distinguish between objects in the hyperspectral image. Variability in spectral signatures, presence of noise, high 
dimensionality of data (Hughes’ phenomenon [7]) and the high correlation of features coupled with the limited amount of 
training data (pixels on the hyperspectral image set whose truth values are known to us from the ground truth data) makes 
the problem of supervised hyperspectral image classification (an image classification formalism in which a small portion 
of the image, called the training set whose truth values are known, is used to train an intelligent classification system to 
identify to which class each pixel belongs) an extremely difficult endeavour [9-12]. In this respect, a methodology using 
artificial intelligence-based computing has been used to provide a viable solution to this complex problem. 

Extensive research in remote sensing applications has shown the superiority of neural computation techniques such as 
Artificial Neural Networks (ANN) [13-16] as well as kernel-based methods such as Support Vector Machines  
(SVMs) [17-19, 21-24] in ill-posed hyperspectral image classification problems over older technologies such as maximum 
likelihood or Bayesian methods [13, 20]. The effectiveness of incorporating a priori knowledge of the hyperspectral data 
obtained with customized kernels has been explored in [26, 54], demonstrating the discriminatory nature of hyperspectral 
data over a range of spectral bands and indicating that only a fraction of the spectrum contains information valuable in the 
classification context. Widely used feature extraction technologies such as PCA, ICA, LDA, 3D-DWT have been utilized 
previously with the major drawback of these techniques being the inevitable loss of important data [27-30]. A weighting 
scheme was proposed in [26] which provided a suitable proportion of each spectral band to be used for the purpose of 
classification while retaining complete original information in all the spectral bands during the employment of various 
classification strategies. Optimal spectral weights were derived using gradient descent, mutual information and 
Bhattacharya distance and were integrated into the support vector machine classifier in order to boost the classification 
accuracy. 

The present work describes how a population-based bio-inspired global optimization algorithm seeks optimal spectral 
weights to effectively customize the SVM kernel in order to leverage the accuracy of hyperspectral image classification 
without the need for first-derivative information, that is, information from the gradient (or its derivatives) of the function 
as in the case of gradient-based methods. The Bacterial Foraging Optimization (BFO) technique [49] is a modern 
population-based evolutionary optimization tool simulating the behavior of biological swarms for solving 
multi-dimensional global optimization problems. It is based on Darwinian evolution, asserting the “survival of the fittest”, 
and has obtained extraordinary significance in the domain of optimization algorithms [32]. This nature-inspired algorithm is 
based on the principle of foraging, in which a bacterium seeks out nutrients in minimum time with the minimal use of 
energy in an environment containing nutrients as well as noxious substances which are analogous to minima and maxima 
respectively in a minimization problem. The bacteria travel towards nutrients conducive to their metabolism and the fittest 
bacteria survive. This phenomenon has motivated researchers to develop an optimization technique in which an iterative 
search is performed on a multi-dimensional search space, making best use of previous best positions encountered by itself, 
as well as other members of the population [47]. The BFO technique iteratively optimizes a given objective by sharing 
mutual information about the optimality of each of the previously encountered points on the search space in order to finally 
arrive at a global optimum. 

In the proposed approach, a fraction of the original hyperspectral data is selected for training and the rest is reserved for 
testing. Next, a radial-basis function (RBF) kernel SVM is employed for bi-classification with randomly initialized 
spectral weights and the margin of the SVM is used as a viable objective function. Bi-classification of images means the 
categorization of the pertinent pixels in the hyperspectral image into two classes. This concept may be extrapolated for 
multi-classification algorithms where more than two classes are formulated. The BFO algorithm iteratively maximizes this 
objective and seeks the optimal spectral weight vector. Finally, the newly designed customized kernel SVM is used to 
classify the testing pixels over multiple test runs. The utility of the proposed scheme is demonstrated by implementing it on 
three popular benchmark hyperspectral image sets, and comparing the effectiveness of the proposed approach vis-à-vis 
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other methods developed so far. The superiority of the Bacterial Foraging Optimization technique in optimizing spectral 
weights is conclusively proven in this paper by significantly outperforming many popular contemporary bio-inspired 
algorithms. 

The rest of this paper is organized as follows. Section 2 provides an overview of the theory of the support vector machine 
classifier and describes its utility in supervised learning problems in the image classification paradigm as well as the 
development of spectrally weighted kernel functions. Section 3 discusses the Bacterial Foraging Optimization in detail and 
illustrates how the evolutionary computation tool is implemented in spectral weight estimation. Section 4 presents the 
performance evaluation of the proposed approach when applied to three popular datasets for OAO and OAA 
bi-classification for comparison with the findings with that of previous reports as well as the assessment of the efficacy of 
the BFO-based strategy over competing algorithms such as the Particle Swarm Optimization (PSO), the Artificial Bee 
Colony (ABC) and the Genetic Algorithms (GA) [31, 33, 34, 50, 53]. Finally, conclusions inferred from the results are discussed 
in Section 5. 

2 Support vector machines 

2.1 Classical SVM theory 
The support vector machine (SVM) is a controlled bi-classification strategy which was developed in the mid-90’s by 
Cortes and Vapnik [45]. It aims to distinguish between the given samples of two different classes by seeking an optimal 
hyperplane which introduces maximum distance (margin) between these two classes in the original feature space (linear 

SVM) or modifies the feature space by a non-linear mapping ϕ (nonlinear SVM) in order to induce separability amongst 

them when the classes are not linearly separable [41]. In the present paper, we have utilized SVM for two classification 
strategies---One-Against-All (OAA), where the objective is to discriminate between a single class amongst all present 
samples and One-Against-One (OAO), where the target is to differentiate solely between the samples of two unique 
classes when provided with a limited data set [43]. We present the basic relations required for SVM classification; a detailed 
discussion of SVMs can be found in [44, 45]. 

Cover’s theorem of separability of patterns states that the chances of linear separability of inherently non-linearly 

separable patterns is leveraged if the input feature space is projected onto a higher dimensional Hilbert space H by the 
means of a nonlinear mapping function [36, 39, 40]. This can be expressed mathematically in its inner product form by  

 1

( ) ( ), ( )   
N

i
i

f x w x x bϕ ϕ
=

= < > +
                                                                   (1) 

In accordance with Mercer’s theorem [42, 43], we can replace the inner product of the relatively unknown nonlinear mapping 

ϕ  with a kernel function K  of positive magnitude such that  
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                                                              (2) 

Now let us consider d-dimensional pixel vectors x and ix which denote hyperspectral data where i denotes the index 

number of each particular pixel. The corresponding kernel-based SVM classifier can be described by the revised equation: 
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Where [ 1, 1]iy ∈ − +  are the labels of the corresponding i th samples, iα are the Lagrange multipliers, b is a threshold term 

and sN is the total number of samples. 

 

Figure 1. A Graphical Representation of the SVM bi-classifier 

Some widely used kernels that satisfy Mercer’s conditions are: 

Radial Basis Function (RBF) Kernel: 

 

2

2

|| ||
( , ) exp( )

2
i jRBF

i j

x x
K x x

σ
− −

=
                                                             (4) 

Polynomial Kernel: 

 
( , ) ( 1)POLY T d

i jK x x x x= +
                                                                      (5) 

During the training phase of the SVM, the objective is to maximize the margin by seeking optimal SVM parameters. The 
bi-classification scheme using SVM is depicted pictorially in Figure 1. The margin which must be expanded to ensure high 
classification accuracy is given by the equation 

 

2

w
λ =

                                                                               (6) 

Where w is the d-dimensional vector orthogonal to the optimal separating hyperplane which is denoted by: 
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=
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Here, T is the total number of training samples, iα is the ith Lagrange multiplier, and ( )ixϕ denotes the mapped ith 

training sample. It follows from (6) and (7) that in order to maximize the SVM margin, w  must be minimized. In 

mathematical terms, we can write this as an objective function J, where 
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2.2 Spectrally weighted kernels 
The general kernels described in (4) and (5) do not have an inherent discriminatory nature with regard to the spectral bands 
of the input samples. They provide equal emphasis to all the spectral components while projecting onto the modified 
feature space, thereby retaining the components which have meager quantities of essential information. It was proposed [26] 

to introduce a spectral weighting scheme by modifying kernel functions using a spectral weight vector 1 2{ , ,..., }ds s s s=  

for d-dimensional data in order to maintain the original information by avoiding feature extraction. Instead the scheme was 
altered by incorporating a priori information in this spectral weight vector, which can be represented in matrix form by

( )S diag s= . Integrating this spectral weight matrix into the kernels in (4) and (5) results in the following customized 

kernel functions: 
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Using these tailored kernels, the non-uniformity of spectral distribution in hyperspectral data can be incorporated into the 
SVM learning scheme thereby enabling lower values of spectral weights to de-emphasize certain bands which are not 
essential to the classification objective. Placing higher weights on bands containing informative data and reducing the 
effect of others introduces a measure of feature extraction into the proposed approach. Thus, Hughes phenomenon [7] 
which relates an increase in classification accuracy with a decrease in dimensionality of data aptly explains the gradual 
increase of classification accuracy as the tuning of the SVM parameters are carried out with spectral information 
embedded in its kernels. After the kernel is updated with the optimal spectral weight vector, the objective function in (8) 
can be reformulated as: 
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Minimization of this objective involves the seeking of the optimal spectral weight vector *s  and results in the formulation 

of the trained SVM. The outputs of the classifier on the testing set can be described by the equation (3). In order to 
minimize the objective function described in equation (11) various possible methods exist such as gradient descent or 
relevance evaluation [26], but due to the inherent non-linearity of the optimization problem, a derivative-free global 
optimization method is conducive towards seeking the optimal spectral weights. In this context, a stochastic bio-inspired 
population-based optimization technique such as the BFO has been proposed as an appropriate optimization method. 
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3 Bacterial foraging optimization 
Foraging strategies denote the phenomenon of search, handling and ingestion of nutrients [49, 56]. The implementation of the 
Bacterial Foraging Optimization algorithm, which is a modern global optimization tool using iterative stochastic searches, 
is a computational analogue of the behaviour of intestinal bacteria in their search for nutrients in a hostile environment 
with minimal loss in energy. This technique, proposed by Kevin Passino in 2002, was inspired by the group foraging 
behaviour of Escherichia coli in the human intestine [55]. The BFO algorithm comprises four stages, namely: Chemotaxis, 
Swarming, Reproduction and Elimination-Dispersal. It performs these four actions iteratively to obtain a global optimum 
if any is present. In this section the bacterial foraging procedure is briefly presented. A full and detailed mathematical 
discussion can be found in [49]. 

Let pRθ ∈ , where pR denotes a p-dimensional vector of real numbers which is a trial solution in the search space and

( )J θ  be any objective function whose global optimum is of interest and whose gradient may not be determined 

analytically. Different values of the function denote different conditions of the nutrient surface in the search space which 

the bacteria currently occupy. Negative, zero and positive values of ( )J θ  represent nutrient-rich, neutral and noxious 

gradients, respectively. Hence, the aim of the BFO is to minimize the objective function to facilitate bacterial growth [56]. 
The different stages of the Bacterial Foraging Optimization have been described as follows: 

3.1 Chemotaxis 
 Movement in E. coli is enabled by a set of flagella, with the help of which the bacteria can alternate between tumbling and 
running according to the nutrient gradient – a phenomenon known as Chemotaxis which can be utilized in optimization 
procedures [35]. A tumble step of the bacteria is exploitative in nature as it searches within a small region in the search 
space, whereas the alternate swimming step is exploratory as the bacteria “swims” with its flagella through large distances 
in the nutrient medium. The chemotactic movement is guided by the tendency of bacteria to move towards a high-nutrient 

gradient (lower values of ( )J θ  for a minimization procedure) or away from a noxious gradient (high values of ( )J θ ). Let 

the tumbling process be represented by a unit length random direction of movement denoted by ( )jϕ which is kept fixed 

throughout the procedure.  Let ( ), ,i j k lθ  represent the distance of the i th bacterium, after the j th chemotactic step, thk

reproductive step and l th elimination dispersal step. Let ( )C i  be the size of the step taken. Then the mathematical 

expression of the new position occupied by the bacterium after each chemotactic step is: 

 
( ) ( ) ( ) ( )1, , , ,i ij k l j k l C i jθ θ ϕ+ = +

                                                   (12) 

3.2 Swarming 
Some species of bacteria including E. coli exhibit a type of intricate pattern (known as swarms) in the presence of nutrient 
medium. In this particular phase, bacteria can be imagined to either release cell-attractants to attract other cells or release 
cell-repellents to repel the same. This process of attraction and repulsion can be expressed as – 
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Where, ( ), ( , , )ccJ P j k lθ  denotes the additional cost function, S is the total number of bacteria, p is the search space’s 

dimension. attractd , attractw , repellenth  and repellentw  are the appropriate coefficients whose values must be chosen 

accordingly. Computationally repulsion and attraction steps are utilized in order to prevent overcrowding of bacteria on 
local optima. In this paper, the additional cost function has not been used to simplify computational procedures. 

3.3 Reproduction 
During this phase a fraction of the initial bacterial population S  die due to poor health. The remaining healthy bacteria, 

having lower values of objective function survive and give rise to the next generation of bacteria by splitting up into two. 
Thus, the overall population of bacteria remains intact throughout the optimization procedure. 

3.4 Elimination and dispersal 
This step occurs after the reproduction step. In order to simulate real-world phenomena such as wind-dispersal, new 
bacteria are randomly placed on the search space and a fraction of the older bacterial population is eliminated to ensure 
swift attainment of the global optimum position. The total population S however, is always maintained constant. 

A detailed BFO algorithm has been presented in Algorithm 1. 

Algorithm 1: The complete Bacterial Foraging Algorithm [49] applied to a minimization problem 
BEGIN 
Initialize the parameters, C(i), i = 1,2,…,S. Also initialize all the counter values to zero. 
  REPEAT: 

    FOR l = 1 to edN  

       FOR k = 1 to reN  

              FOR j = 1 to cN  

                  FOR i = 1 to S  

                       Compute ( )lkjiJ ,,,  

  Then let ( ) ( ) ( ) ( )( )lkjPlkjJlkjiJlkjiJ j
cc ,,,,,,,,,,, θ+=  

  ( )lkjiJJlast ,,,=  

  Tumble: Generate a random vector ( ) pi ℜ∈Δ  

  Move: ( ) ( ) ( ) ( )
( ) ( )

1, , , ,i i

T

i
j k l j k l C i

i i
θ θ

Δ
+ = +

Δ Δ
 

  Compute ( )lkjiJ ,,1, +  

  Then let ( ) ( ) ( ) ( )( )lkjPlkjJlkjiJlkjiJ i
cc ,,1,,,1,,1,,,1, ++++=+ θ  

  0m =  

  WHILE SNm <  

      1m m= +  

      IF ( ) lastJlkjiJ <+ ,,1,  

           ( )lkjiJJlast ,,1, +=  

           Move: ( ) ( ) ( ) ( )
( ) ( )ii

i
iClkjlkj

T

ii

ΔΔ

Δ++=+ ,,1,,1 θθ   
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            Use this ( )lkji ,,1+θ  to compute new ( )lkjiJ ,,1, + , with  

                                     cell-to-cell attraction effect 

                              ELSE 

            SNm =  

                               ENDIF  
                            ENDWHILE 
                       ENDFOR 

                       FOR 1 to i S=  

     Compute ( )
+

=

=
1

1

,,,
cN

j

i
health lkjiJJ  

                        ENDFOR 

                         Sort bacteria in order of cost values of healthJ  

                         Destroy Sr bacteria with the highest values of healthJ   

                         (i.e. least healthy bacteria) 

                         Split each of the Sr bacteria with the lowest values of healthJ  into two and  

                         each such pair resides in the same original location of the parent  

                      ENDFOR 

                      FOR 1 to i S=  

                          Eliminate and disperse each bacterium with probability ped, keeping  
                          population of bacteria constant 

                      ENDFOR 
                    ENDFOR 
UNTIL termination criterion is satisfied 

END 

4 Performance evaluation 
In this section, the proposed BFO-based optimal spectral weighting scheme applied in conjunction with the SVM 
bi-classification system is implemented on three standard hyperspectral datasets. The objective of this section is to 
substantiate the superiority of the proposed approach over other contemporary competing classification approaches as well 
as to verify the efficacy of the BFO optimization technique over its contemporary competitors, the ABC, PSO and the GA. 

4.1 Hyperspectral datasets 
Three benchmark hyperspectral datasets were downloaded from [51, 52], and the number of major categories of data were 
noted. 7 major classes were selected from the Indian Pines and Salinas Valley datasets and 6 major classes were selected 
from the Pavia University data for One-Against-One (OAO) classification and the rest of the classes were discarded. For 
One-Against-All (OAA) classification, all classes of data were collected and reserved for experimentation with limited 
training samples. This subsection discusses briefly each of the three chosen datasets and describes the major classes which 
were chosen for further experimentation of the proposed approach. 

4.1.1 AVIRIS Indian pines, Indiana dataset 
The Indian Pines test site in North-western Indiana, USA serves as a popular benchmark hyperspectral dataset collected by 
the AVIRIS sensor in the early 1990’s. Each image comprises of 145 × 145 samples of an agricultural area. It uses 224 
spectral reflectance bands within a wavelength range of 0.4 to 2.5 µm, with a nominal spectral resolution of 10nm, a 16 bit 
radiometric resolution and a 20m spatial resolution [51]. The number of spectral bands was further reduced to 220 because 
four spectral bands contain no data. Some structures such as rail lines and highways were ignored as they are not properly 
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discernible [26]. The ground truth available is designated into 16 classes, namely Alfalfa, Corn-notill, Corn-min, Corn, 
Grass-pasture, Grass-trees, Grass-pasture-mowed, Hay-windrowed, Oats, Soybean-notill, Soybean-mintill, Soybean- 
clean, Wheat, Woods, Buildings-Grass-Trees-Drives and Stone-Steel-Towers. The major classes have been listed in Table 
1 with their corresponding number of samples. A single band image has been shown in Figure 2(a) with its corresponding 
reference map in Figure 2(b). 

 

Figure 2. (a) AVIRIS Sample Image of Indian Pines Dataset for a Single Spectral Band (b) Corresponding Color-coded 
Ground Truth Data 

Table 1. Description of the 7 Major Classes of Indian Pine Dataset [51] 

Class Class Description Number of Pixels 

A Corn-notill 1434 
B Corn-min 834 
C Grass/Trees 747 
D Soybeans-notill 968 
E Soybeans-min 2468 
F Soybeans-clean 614 
G Woods 1294 

4.1.2 AVIRIS salinas valley, California dataset 
The hyperspectral data contained in this dataset was acquired by the 224-band AVIRIS sensor over Salinas Valley in 
Southern California, USA at low altitudes resulting in an improved pixel resolution of 3.7 meter per pixel. Each image is 
made up of 512 lines of 217 samples. 20 spectral bands were removed due to water absorption and noise, resulting in a 
corrected image containing 204 spectral bands over the range of 0.4 to 2.5µm. A sample band and the corresponding 
ground truth data has been shown in Figure 3(a) and 3(b) respectively. The Salinas scene consists of the 16 ground truth 
classes, namely: Broccoli-green-weeds-1, Broccoli-green-weeds-2, Fallow, Fallow-rough-plow, Fallow-smooth, Stubble, 
Celery, Grapes-untrained, Soil-vinyard-develop, Corn-senesced-green-weeds, Lettuce-romaine-4wk, Lettuce-romaine- 
5wk, Lettuce-romaine-6wk, Lettuce-romaine-7wk, Vineyard-untrained and Vineyard-vertical-trellis. Due to the similarity 
in the spectral signatures among these classes, discrimination between these classes proves to be a difficult task. It is our 
aim to prove the effectiveness of the proposed scheme when faced with a challenging classification problem which is the 
major reason behind the selection of the Salinas dataset as a benchmark for experimentation. Table 2 provides a detailed 
list of the major classes of the Salinas Valley dataset. 
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Figure 3. (a) AVIRIS Sample Image of Salinas Valley Dataset for a Single Spectral Band (b) Corresponding 
Colour-coded Ground Truth Data 

Table 2. Description of the 7 Major Classes of Salinas Valley Dataset [52] 

Class Class Description Number of Pixels 

A Broccoli-green-weeds-2 3726 
B Stubble 3959 
C Celery 3579 
D Grapes-untrained 11271 
E Soil-vinyard-develop 6203 
F Corn-senesced-green-weeds 3278 
G Vineyard-untrained 7268 

4.1.3 ROSIS pavia university dataset 
The ROSIS sensor collected this data during a flight campaign over the Pavia district in north Italy. 103 spectral bands 
were used for data acquisition in this dataset comprising of 610 × 610 pixel images with a geometric resolution of 1.3m. A 
few of the samples in these images contain no information and were discarded before classification. A sample image has 
been portrayed in Figure 4 (a), with the corresponding reference map in Figure 4 (b). The ground truth data shows a total of 
9 distinct classes as listed in Table 3 with their respective number of pixels. 

 

Figure 4. (a) ROSIS Sample Image of Pavia University Dataset for a Single Spectral Band (b) Corresponding 
Colour-coded Ground Truth Data 
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Table 3. Description of the 9 Major Classes of Pavia University Dataset [52] 

Class Class Description Number of Pixels 

A Broccoli-green-weeds-2 3726 
B Stubble 3959 
C Celery 3579 
D Grapes-untrained 11271 
E Soil-vinyard-develop 6203 
F Corn-senesced-green-weeds 3278 
G Vineyard-untrained 7268 

 

4.2 Methodology 
The major classes, as described in Tables 1, 2 and 3 are collected for OAO classification after comparing with their 
corresponding reference maps. Pixels collected from each pair of classes are then divided into a training set consisting of 
20% of the total number of pixels, and a testing set comprising of the other 80%. A population of initial random spectral 

weight vectors is initialized in the search space of (0,1] in  spaces d∈  for d spectral bands. Next, the BFO algorithm is 

implemented in conjunction with an SVM-classifier with a Gaussian RBF kernel using a standard deviation 0.4,σ = and a 

regularization parameter 60C = , values which are obtained from [26]. The objective in (11) is minimized by the foraging 

bacteria and the fittest particle is indicative of the optimal combination of spectral weights. For each pair of classes, the 
optimal weights obtained by the BFO are used to customize the RBF kernel as shown in equation (10). Testing pixels are 
then applied to the modified SVM to compute the classification results. In order to reduce the effects of randomness, the 
results are collected for 10 iterations and the mean and standard deviations of the classification errors are tabulated. This 
scheme is repeated for all three datasets and has proved to yield favourable results.  

In order to further evaluate the performance of the proposed method, OAA classification is performed with very limited 
training samples (2%) and the mean classification accuracies over 10 iterations with randomly selected training samples 
are noted. The results obtained are presented in the following subsections. All support vector machine based computations 
were carried out using the LibSVM toolbox [19] in MATLAB 7.7.0.  

Algorithm 2 shows how the BFO algorithm is utilized in conjunction with spectrally weighted SVM to develop the 
proposed hyperspectral image classification method.  

Algorithm 2: A complete algorithm of the proposed BFO-based spectrally weighted SVM-kernel scheme for 
Hyperspectral Image Classification 

FOR kk = 1:
2

N C  

Collect all pixels of the kk th pair of classes 

Distribute these pixels into training sets (20%) and testing sets (80%) 

BEGIN BFO 
Initialize the parameters, C(i), i = 1,2,…,S. Also initialize all the counter values to zero. 
  REPEAT: 

    FOR l = 1 to edN  

       FOR k = 1 to reN  

              FOR j = 1 to cN  

                  FOR i = 1 to S  

                       Compute ( )lkjiJ ,,,  using equation (11)  

  ( )lkjiJJlast ,,,=  
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  Tumble: Generate a random vector ( ) diΔ ∈  

  Move: ( ) ( ) ( ) ( )
( ) ( )ii

i
iClkjlkj

T

ii

ΔΔ

Δ+=+ ,,,,1 θθ  

  Compute ( )lkjiJ ,,1, +  

  0m =  

  WHILE SNm <  

      1m m= +  

      IF ( ) lastJlkjiJ <+ ,,1,  

           ( )lkjiJJ last ,,1, +=  

           Move: ( ) ( ) ( ) ( )
( ) ( )ii

i
iClkjlkj

T

ii

ΔΔ

Δ++=+ ,,1,,1 θθ   

                              ELSE 

            SNm =  

                               ENDIF  
                            ENDWHILE 
                       ENDFOR 

                       FOR 1 to i S=  

     Compute ( )
+

=

=
1

1

,,,
cN

j

i
health lkjiJJ  

                        ENDFOR 

                         Sort bacteria in order of cost values of healthJ  

                         Destroy Sr bacteria with the highest values of healthJ   

                         (i.e. least healthy bacteria) 

                         Split each of the Sr bacteria with the lowest values of healthJ  into two and  

                         each such pair resides in the same original location of the parent  

                      ENDFOR 

                      FOR 1 to i S=  

                          Eliminate and disperse each bacterium with probability ped, keeping  
                          population of bacteria constant 

                      ENDFOR 
                    ENDFOR 
UNTIL termination criterion is satisfied 

END 

Optimal spectral weights = ( ) *
best n sθ =

 

Customize SVM kernel by pre-multiplying initial dataset with 
*( )diag s  

FOR k = 1:10 
Perform training and testing with randomly selected samples 
  Compute classification error / accuracy 

ENDFOR 
Compute mean and standard deviation of classification error / accuracy 

ENDFOR 
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4.3 Results 
Spectral weights are considered to be in the range (0,1] in ds R∈ , defining a unit d-dimensional hypercube as the 

optimization search space in accordance with the values reported in [26]. The total number of iterations for the stochastic 
iterative techniques is considered to be 400 for all experiments.  

 

Figure 5. Effect of Optimal Values with Iteration Number (BFO) 

Table 4. Performance Evaluation of Proposed Approach on AVIRIS Indian Pines Dataset in comparison with previous 
results [26]. All values in this table are error mean/error S.D. values. 

 
SVM 
(without 
weighting)[26] 

Weights 
based on 
Gradient 
Descent[26] 

Weights based 
on Mutual 
Information[26] 

Weights based 
on GA- 
optimization 

Weights based 
on ABC- 
optimization 

Weights based  
on PSO- 
optimization 

Weights based 
on BFO- 
optimization 

Class-Pair Mean/SD (%) Mean/SD (%) Mean/SD (%) Mean/SD (%) 
Mean/SD 
(%) 

Mean/SD (%) Mean/SD (%) 

A|B 14.95/1.69 11.21/0.70 8.22/1.13 6.36/0.76 6.15/0.79 5.64/0.97 5.17/0.51 
A|C 0.42/0.05 0.57/0.19 0.55/0.07 0.31/0.12 0.32/0.13 0.44/0.14 0.30/0.21 
A|D 15.56/0.70 12.32/1.03 13.05/0.61 7.15/0.89 6.95/0.57 6.47/0.70 6.91/0.89 
A|E 19.45/0.62 11.46/0.79 15.54/0.51 6.89/0.31 6.34/0.37 6.51/0.51 6.30/0.72 
A|F 17.83/0.54 11.99/1.88 10.98/0.71 2.71/0.35 2.46/0.72 3.21/0.75 2.36/0.34 
A|G 0.10/0.04 0.10/0.05 0.09/0.05 0.15/0.06 0.14/0.05 0.18/0.10 0.16/0.08 
B|C 0.30/0.13 0.22/0.06 0.19/0.04 0.24/0.17 0.34/0.18 0.28/0.31 0.21/0.18 
B|D 5.02/0.40 4.68/0.50 3.21/0.28 2.81/0.55 2.83/0.36 2.85/0.32 2.73/0.77 
B|E 12.06/0.52 11.43/1.88 12.35/1.05 5.29/0.57 5.01/0.44 4.97/0.35 4.87/0.50 
B|F 19.15/1.58 11.44/2.05 14.43/1.45 4.11/0.34 4.76/0.83 4.74/0.91 4.21/0.49 
B|G 0.04/0.03 0.06/0.00 0.01/0.03 0.01/0.04 0.01/0.02 0.02/0.01 0.01/0.04 
C|D 0.67/0.23 0.58/0.14 0.55/0.13 0.65/0.24 0.63/0.14 0.63/0.20 0.61/0.14 
C|E 1.19/0.22 1.07/0.39 1.05/0.20 0.32/0.28 0.31/0.21 0.28/0.16 0.19/0.19 
C|F 0.48/0.20 0.50/0.05 0.53/0.12 0.60/0.26 0.37/0.16 0.48/0.46 0.45/0.37 
C|G 1.25/0.20 1.41/0.33 1.32/0.15 0.65/0.32 0.46/0.22 0.55/0.22 0.44/0.19 
D|E 14.43/0.49 12.87/0.68 11.81/1.17 7.27/0.59 7.26/0.49 7.42/0.73 7.42/0.63 
D|F 10.72/0.21 8.87/1.16 9.11/0.63 3.06/0.60 3.64/0.56 3.11/0.60 2.78/0.86 
D|G 0.03/0.03 0.00/0.00 0.00/0.00 0.03/0.04 0.02/0.05 0.06/0.05 0.00/0.00 
E|F 9.32/0.41 7.89/1.24 10.95/1.19 2.89/0.47 2.72/0.28 2.76/0.56 2.70/0.33 
E|G 0.25/0.07 0.39/0.11 0.23/0.10 0.21/0.07 0.21/0.09 0.20/0.07 0.13/0.07 
F|G 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 0.01/0.02 0.00/0.00 0.00/0.00 
Mean Error 
(%) 

6.82 5.33 5.44 2.47 2.34 2.38 2.30 
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Graphically, the variation of J as in equation (11) has been shown with the number of iterations for the BFO program. It is 
clear from Figure 5 that a 12% decrease in the normalized margin values occurs till the 400th iteration, after which the 
minimization is 1% in 100 iterations. Thus, 400 is selected after several trials as the optimal iteration number required to 
perform satisfactorily without adversely increasing the computation time. 

Results using un-weighted SVM, gradient descent-based weighted SVM, mutual information-based SVM and 
stochastically derived spectral weighted SVM are shown in Table 4 when employed on the AVIRIS Indian Pines dataset. It 
can be observed that the proposed approach outperforms both the previous results as well as other stochastic optimization 
techniques employed in recent times. It is known that the classes A, B, D, E and F are very similar thereby making 
classification amongst these classes quite difficult as is indicated by errors greater than 10% in [26]. However, in the 
proposed approach, the corresponding errors (although larger in comparison to the errors produced by the other pairs of 
classes) have been lowered to almost half of the errors computed using MI or Gradient Descent-based approaches. 
Furthermore, spectral weighting shows the effectiveness on class pairs like A|E and B|F whose errors have been reduced 
from almost 20% with un-weighted kernels to 6% and 4% with the proposed approach. This can be explained by the 
integration of exploration and exploitation that highlights the BFO algorithm’s random search in comparison to the 
greedier gradient descent which only exploits its current position instead of exploring a larger region and is constrained to 
differentiable objective functions only thereby increasing the probability of getting stuck in a local minimum [31]. The 
standard deviations over 10 iterations is used as an index for the scheme’s robustness, and the lower values of S.D. as 
compared to the previous methodologies’ results indicate that the proposed scheme is relatively immune to random 
sampling. 

The proposed approach is also implemented for the OAA classification problem. The results obtained in 10 iterations with 
2% randomly selected samples are shown in Table 5. The overall mean classification accuracies have been compared and 
it is observed that the highest value obtained is 95.86% by the BFO-based paradigm. 

Table 5. OAA Classification Mean Accuracies for Indian Pines Data 

 
ABC-based Spectral 
Weighting 

GA-based Spectral Weighting 
PSO-based Spectral 
Weighting 

BFO-based Spectral 
Weighting 

Class Mean/S.D. (%) Mean/S.D. (%) Mean/S.D. (%) Mean/S.D. (%) 
A 97.24/0.19 97.54/0.35 97.88/0.03 97.40/0.63 
B 89.70/1.30 89.81/0.97 86.15/0.04 90.24/0.80 
C 93.34/0.78 93.49/0.74 91.96/0.03 93.68/0.82 
D 97.74/0.33 97.81/0.24 97.75/0.02 97.81/0.23 
E 98.28/0.41 98.10/0.50 95.21/0.02 98.39/0.23 
F 97.75/0.46 98.11/0.49 92.79/0.04 98.12/0.43 
G 97.46/0.53 97.56/0.40 97.68/0.02 97.71/0.22 
H 99.06/0.82 99.24/0.29 95.27/0.02 99.28/0.38 
I 97.66/0.34 97.52/0.40 97.87/0.01 97.47/0.44 
J 91.95/0.97 91.85/0.87 90.67/0.04 92.11/0.94 
K 84.92/1.06 85.15/1.03 76.22/0.07 86.83/0.64 
L 94.80/0.64 94.81/0.53 94.08/0.05 94.59/0.69 
M 99.41/0.20 99.24/0.47 97.88/0.02 99.37/0.17 
N 97.93/0.76 97.86/0.76 87.51/0.04 97.95/1.01 
O 96.46/0.51 96.58/0.45 96.33/0.02 96.65/0.27 
P 98.62/0.10 98.36/0.42 97.88/0.03 98.29/0.54 
Mean Overall 
Accuracy (%) 

95.77 95.83 93.33 95.86 

From Tables 4 and 5, it is apparent that the proposed BFO-based strategy is generally more effective for both OAA and 
OAO classification paradigms. Further comparison is made among the overall classification accuracies the stochastic 
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optimization algorithms with previously reported results [46, 54] on the Indian Pines Dataset. The lowest accuracies are 
found in the Euclidean and default LibSVM approaches. Window based classification formalisms introduced in [46] prove 
to be effective, but are outperformed conclusively by the kernel methods optimized by stochastic algorithms, consolidating 
the efficacy of the spectral weighting scheme using random search algorithms. 

Table 6. Comparison of Overall Accuracies of OAA Classification on Indian Pines Dataset 

Classifiers Used Window Type[46] Overall Classification Accuracy (%) 

LibSVM Default [54]  52.79 
ENVI Default [54]  82.45 
Euclidean  48.23 
bLOOC+DAFE+ECHO  82.91 

Kω
  87.30 

Kω
[46] 

 88.55 

Spatial/Spectral Classifiers   
Mean-based Spatial 84.55 
 Stacked 94.21 
 Summation 92.61 
 Weighted 95.97 
 Cross Terms 94.80 
 Summation+Stacked 95.20 
 Cross Terms + Stacked 95.10 
   
Mean + Standard Deviation-based Spatial 88.00 
 Stacked 94.21 
 Summation 95.45 
 Weighted 96.53 
 Summation+Stacked 96.20 
   
Spectral Weighting-based using Stochastic 
Optimization 

GA-based 96.04 

Population Size 40, Training Pixels 5% 
PSO-based 
(without feature extraction) 
(with feature extraction)[54] 

 
96.46 
95.25 

 ABC-based 96.01 
 BFO-based 96.88 

Next, the population size of each of the stochastic optimization techniques are varied in order to gauge the effect of 
classification accuracy with increasing population members. It can be seen from Figure 6 that while each of the 
population-based algorithms show a definite increase in accuracy with increments made in the population size, the 
maximum accuracy resulting from these increases in bacteria takes place in BFO from 95.97% to 96.88%. 

However, due to the exorbitant increase in computational time per classification with variation in population size as 
observed from Table 7, it is preferred to use a population size of 10 to boost computational speeds.  

It is also expected for a classification scheme to perform better with the increase of the amount of training samples. 
Experimentation was performed on the proposed method with gradually increased training samples and the results were 
plotted graphically as shown in Figure 7. It is observed that the increase of training samples greatly leverages the 
performance of the BFO-based proposal. It is also noteworthy that the GA and PSO-based algorithms also follow similar 
accuracy trajectories under identical simulation conditions, but attain maximum accuracies 0.4% less than the proposed 
approach. 
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Figure 6. Mean Classification Accuracy of OAA Scheme with Variation of Population Size of all competing algorithms 

Table 7. Computation Times for 16 classes OAA Classification with Increase in Population Size 

Population Size 10 20 30 40 

GA-based Scheme 418.50 925.71 1248.44 1527.57 
BFO-based Scheme 214.28 414.36 687.99 941.29 
ABC-based Scheme 201.22 407.41 600.14 838.97 
PSO-based Scheme 183.20 257.92 377.44 589.76 

 

 

Figure 7. Variation of Mean Classification Accuracy in OAA Scheme with increase in training samples 

In order to compare the spectral weight vector obtained by the proposed approach to those reported in [26], an optimal 
spectral weight vector was plotted. 

A closer inspection of the spectral weight plots in [26] confirms the importance of the certain ranges of spectral bands such 
as from 1 to 20, from 100 to 150 and from 160 to 210. The BFO-optimized spectral weights bear a strong influence to the 
Bhattacharya distance plot in [26] also, indicating that this technique correctly identified the spectral bands which contained 
the bulk of essential information. Thus, the Figure 8 consolidates the proposal of approaching the hyperspectral image 
classification problem as an optimization procedure for the attainment of optimal spectral weights thereby enhancing the 
contribution of those bands of data which contain essential information. 



www.sciedu.ca/air                                                                                       Artificial Intelligence Research, September 2012, Vol. 1, No. 1 

Published by Sciedu Press                                                                                                                                                                                     79

 

Figure 8. Spectral Weight Vector of Indian Pines Dataset for bi-class A|B 

In order to further test the proposed method, two more datasets are selected. The Salinas Valley dataset offers a higher 
spatial resolution image, and the inherent similarity of spectral features makes it a very difficult benchmark set for image 
classification purposes. Additional experimentation is also executed on the Pavia University Dataset, which provides an 
insight into the performance of the proposed approach in the urban land cover context. 

Table 8. OAO Classification Results on Salinas Valley Data. All values in this table are error mean/error S.D. values 

Class 
Pair 

GA-based Spectral Weighting 
Classification Error 

ABC-based Spectral Weighting 
Classification Error 

PSO-based Spectral 
Weighting 
Classification Error 

BFO-based Spectral 
Weighting 
Classification Error 

 Mean/S.D. (%) Mean/S.D. (%) Mean/S.D (%) Mean/S.D. (%) 
A|B 0.03/0.06 0.05/0.07 0.02/0.02 0.01/0.01 
A|C 0.05/0.05 0.03/0.03 0.05/0.05 0.05/0.05 
A|D 0.01/0.01 0.02/0.02 0.01/0.01 0.00/0.04 
A|E 0.00/0.01 0.00/0.00 0.00/0.00 0.00/0.00 
A|F 0.05/0.03 0.04/0.04 0.04/0.05 0.04/0.03 
A|G 0.05/0.03 0.03/0.05 0.04/0.01 0.03/0.05 
B|C 0.05/0.03 0.06/0.04 0.04/0.01 0.03/0.03 
B|D 0.04/0.02 0.02/0.01 0.01/0.02 0.02/0.03 
B|E 0.03/0.03 0.01/0.01 0.06/0.01 0.02/0.03 
B|F 0.09/0.06 0.10/0.06 0.09/0.03 0.04/0.07 
B|G 0.03/0.02 0.02/0.01 0.03/0.02 0.02/0.01 
C|D 0.02/0.01 0.02/0.01 0.02/0.02 0.02/0.01 
C|E 0.02/0.01 0.02/0.01 0.04/0.08 0.01/0.01 
C|F 0.14/0.11 0.08/0.04 0.08/0.05 0.08/0.04 
C|G 0.03/0.04 0.05/0.06 0.02/0.02 0.02/0.10 
D|E 0.02/0.01 0.02/0.02 0.02/0.02 0.02/0.02 
D|F 0.32/0.07 0.34/0.08 0.32/0.06 0.30/0.03 
D|G 16.98/0.13 16.35/0.29 16.72/0.26 16.29/0.19 
E|F 0.48/0.07 0.43/0.09 0.48/0.13 0.42/0.07 
E|G 0.05/0.01 0.02/0.01 0.04/0.04 0.02/0.01 
F|G 0.30/0.09 0.32/0.11 0.20/0.10 0.20/0.07 
Mean 
Overall 
Error % 

0.89 0.86 0.87 0.84 

Tables 8 and 9 present the results obtained by the implementation of the proposed approach on the Salinas Valley dataset, 
and Tables 10 and 11 offer details of the performance of this scheme on urban classification problems. Reported results 
found in the literature [3] have also been provided for comparison with the devised swarm-based technology. 
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Table 9. OAA Classification Results on Salinas Valley Data compared to previous research methods [3] 

Morphological Feature Extraction[3] OA (%) 

Original 81.25 

Reduced (MNF) 87.94 

Multi-channel (D-ordering) 91.44 

Multi-channel (L-ordering) 80.67 

Multi-channel (R-ordering) 89.57 

Multi-channel reduced (MNF) 90.22 

Mono-channel (MNF) 80.45 

 
Spectral Weighting Scheme 
 

 

GA-Based 98.75 

PSO-Based 93.75 

ABC-Based 98.80 

BFO-Based 98.83 

In Table 8 and 10, best classification results have been represented in boldface. It is easily concluded from these tables that 
the proposed approach can be applied seamlessly to both agricultural and urban datasets and produce results which are 
comparable even to the some advanced methods used at present [3, 26, 46]. From Table 9, it is also recommended that the 
optimal spectral weights be estimated using a global search procedure like the algorithms tested in this paper, as the 
accuracy of these methods exceeds those of its predecessors by a significant margin. 

Table 10. OAO Classification Results on Pavia University Data. All values in this table are error mean/error S.D 

Class 
Pair 

ABC-based Spectral 
Weighting Classification 
Error (%) 

GA-based Spectral 
Weighting Classification 
Error (%) 

PSO-based Spectral 
Weighting 
Classification Error (%) 

BFO-based Spectral 
Weighting 
Classification Error (%) 

 Mean/S.D. Mean/S.D. Mean/S.D Mean/S.D. 

A|B 0.11/0.04 0.11/0.05 0.09/0.03 0.08/0.05 

A|C 1.46/0.16 1.42/0.11 1.40/0.19 1.40/0.18 

A|D 0.09/0.05 0.14/0.03 0.13/0.04 0.09/0.04 

A|E 0.32/0.12 0.42/0.10 0.35/0.07 0.33/0.08 

A|F 2.45/0.18 2.41/0.19 2.45/0.08 2.53/0.15 

B|C 0.10/0.02 0.10/0.02 0.08/0.02 0.08/0.02 

B|D 0.89/0.08 0.95/0.07 0.89/0.08 0.88/0.08 

B|E 2.87/0.06 2.79/0.06 2.66/0.11 2.51/0.09 

B|F 0.13/0.04 0.15/0.03 0.13/0.04 0.13/0.04 

C|D 0.08/0.02 0.07/0.03 0.08/0.02 0.07/0.03 

C|E 0.30/0.13 0.39/0.08 0.30/0.07 0.30/0.07 

C|F 10.17/0.42 11.44/0.47 10.93/0.42 9.90/0.50 

D|E 0.39/0.06 0.49/0.12 0.42/0.04 0.39/0.17 

D|F 0.04/0.01 0.08/0.04 0.05/0.04 0.05/0.03 

E|F 0.73/0.09 0.72/0.08 0.77/0.09 0.70/0.11 

Mean 
Overall 
Error % 

1.88 1.45 1.39 1.31 



www.sciedu.ca/air                                                                                       Artificial Intelligence Research, September 2012, Vol. 1, No. 1 

Published by Sciedu Press                                                                                                                                                                                     81

Table 11. OAA Classification Results on Pavia University Data compared to previous research [46] 

Scheme used OA (%) 

Spectral Information[46] 87.17 

Morphological Information [46] 91.87 

Spectral Weighting Scheme  

GA-Based 97.71 

ABC-Based 97.66 

PSO-Based 97.61 

BFO-Based 97.87 

5 Conclusion 
The present paper proposes an improved hyperspectral image classification methodology utilizing a modern popular 
stochastic optimization technique called the Bacterial Foraging Optimization (BFO). The BFO algorithm is employed to 
maximize the margin of a support vector machine bi-classifier, where the decision variables correspond to the spectral 
weight vector integrated with the SVM kernel. The quantitative presentation of performance indices and the graphical 
presentations demonstrate that the BFO based image classification scheme could significantly out-perform the competing 
classifiers, for varied benchmark datasets, thereby providing a superior alternative to hyperspectral image classification 
for future applications. Finally, the proposed approach has been shown to conclusively outperform other commonly used 
stochastic optimization techniques such as Genetic Algorithms, Bee Colonies and Particle Swarms used for similar 
spectral weight optimization applications [54]. 
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