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ABSTRACT

This paper presents a robust real-time method for detection of moving cast shadows which employs the assumption of higher
interdependence of luminance values for the shadow pixels in larger regions compared to the object pixels. First, a fast modified
image differencing technique is used to separate foreground pixels from the background. Next, for a moving window of fixed
width scanning the foreground regions, a new measure called Modified Correlation is introduced. The new measure is determined
by first computing the correlation between the luminance values of the moving window and luminance values of its neighbouring
windows; this correlation is then divided by a robust-to-noise range measured based on the luminance values of the moving
window. The modified correlation exhibits abrupt rising transitions as it enters the shadow region from the object region,
transitions which can be used to separate object pixels from shadow pixels. Thus, the new method is very effective at suppressing
moving cast shadows, while avoiding limiting structures, unrealistic assumptions, the need for a-priori knowledge, and manual
selection of critical parameters. An average shadow detection rate of 85.4% and an average shadow discrimination rate of 99.5%
over multiple different sequences, higher than those of available methods in the literature, confirm the efficacy of the method.
The robustness of the method is examined under different lighting conditions, different target-environment combinations, and
sequences with object-shadow occlusion. The proposed method is computationally efficient and suitable for real-time situations.
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1. INTRODUCTION

1.1 Problem introduction and importance

It is a routine task for the human eyes to immediately dis-
tinguish shadows from objects, but identifying shadows by
a computer algorithm is a challenging problem.[1] Shadow
pixels and object pixels share two important visual features:
1) motion dynamics and 2) detectability.[2] For instance, to
detect a moving object, a surveillance system might estimate

the foreground via image differencing. However, the shadow
cast by the moving object will also be detected, since it is
moving. The cast shadow makes it difficult to detect the
exact shape of the object. Segmentation techniques would
also fail to localize cast shadows, because cast shadows are
adjacent to object points.[3] Shadows cause serious problems
while segmenting and extracting objects, due to the mis-
classification of shadow points as foreground. Shadows can
cause object merging, object shape distortion and even object
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losses.[4, 5] Therefore, accurate detection of a moving object
and acquisition of its exact shape by eliminating shadows has
a great effect on the performance of subsequent steps, such as
tracking, recognition, classification, and activity analysis.[6]

1.2 Relevant literature

Prati et al.[7] classified shadow detection algorithms by us-
ing a two-layer taxonomy, namely deterministic and sta-
tistical approaches, based on whether the decision process
introduces and exploits uncertainty. The taxonomy further
classifies deterministic approaches into model-based and
nonmodel-based methods, and probabilistic approaches into
parametric and nonparametric methods. An alternative clas-
sification of cast-shadow detection algorithms is proposed
in Ref.,[8] based on object/environment dependency and the
implementation domain of the algorithm (pixel or transform
domain).

Although a large volume of literature exists in the field of
moving cast-shadow suppression, many of which are sophis-
ticated and accurate,[3, 9] there are limitations common to
most. A general limitation is the real-time implementation
of the method, since the more sophisticated and accurate is
the algorithm, the larger is the required computation time,
which impairs application of the method for many real-time
situations. In some statistical methods, manual parameter
selection is a critical issue,[9–11] which prevents unsupervised
implementations. The need for a-priori knowledge, such as
the height of pedestrians[12] (which is not available in many
cases), manual segmentation, and non-rigorous assumptions,
such as the linear transformation of pixel RGB values after
being covered by a shadow,[12] are other disadvantages, even
though they may provide accurate results.

In deterministic methods, a model-based approach might
achieve the best results, but it is often too complex[13, 14]

and time-consuming compared to nonmodel-based methods.
In this category, the number and complexity of the models
increase rapidly if the aim is to deal with complex and clut-
tered environments with different lighting conditions, object
classes, and perspective views. Also, many of the model
assumptions used in this category cannot be confirmed in
real-world conditions, such as the assumption of a Gaussian
distribution for the light intensity of background pixels in
Ref.[15]

Some deterministic nonmodel-based methods might be im-
plemented in real-time situations, and do not depend on
a-priori knowledge. However, some methods are suited only
for specific environments (indoor/outdoor) and specific tar-
gets (human/vehicle/others).[15–17] For instance, Ref.[17] only
deals with detection of vehicle cast shadows. Some publi-

cations employ assumptions that do not match real-world
conditions, such as assuming the presence of a strong light
source,[2, 18] and neglecting the penumbra.[2] Furthermore,
the features used for shadow detection are not always robust
and reliable, such as small changes in hue.[2] Stauder et
al.[18] suggest a shadow model used in many publications, in-
cluding Refs.[2, 3, 19] This method provides a basis for shadow
detection and is one of the earliest publications that considers
and models light intensity variation within the shadow region
and the penumbra.

It worth mentioning that while researchers typically utilize
colour information as well as light intensity, texture, or other
cues to detect cast shadows, the authors have examined mul-
tiple methods which assumed chromaticity invariance of a
region when covered by a cast shadow.[3, 20–22] It was con-
cluded that these assumptions are not always valid and robust
for different types of applications and illumination condi-
tions. As observed by the authors, in most of the compressed
videos,[3] when the light source is not white or there is colour
blending among objects in the scene, the chromaticity invari-
ance assumption cannot always be trusted. Therefore in our
proposed algorithm, we only utilize luminance values. This
also helps maintain the computation time smaller.

1.3 Proposed approach
In our proposed method, called the AHC method, which
is classified as a deterministic nonmodel-based approach,
we overcome some of the abovementioned disadvantages,
namely the considerable computation time, the need for a-
priori knowledge, the manual selection of parameters, and
limiting structures and assumptions. AHC employs the as-
sumption of higher interdependence of luminance values for
shadow pixels in larger regions and consists of two consecu-
tive stages. During the first stage, we detect foreground pixels
using a fast modified image differencing technique. In the
second stage, we introduce a new measure called “Modified
Correlation” which is calculated for each moving window
scanning the foreground regions; the modified correlation is
computed by dividing the correlation between the luminance
values of the moving window and its neighbouring windows
by a robust-to-noise range of luminance values for the mov-
ing window. Modified correlation exhibited a significant
drop as the moving window enters the object region from
the shadow region, while maintaining small variations within
each region, so it is utilized to segment the foreground pixels
into shadow and object regions.

The main contributions of this work are: 1) Remarkably
small computation time and implementation of the algorithm
in MATLAB and also in C++ using OpenCV libraries for real-
time videos; 2) Avoiding unrealistic models and assumptions,
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which increases the robustness of the method under different
conditions; 3) Avoidance of a-priori knowledge, manual se-
lection of crucial parameters, and application-dependence,
which makes an unsupervised implementation feasible; 4)
Higher detection accuracies compared to existing approaches
for benchmark sequences.

Our proposed AHC algorithm is described in Section 2. Qual-
itative results for recorded sequences are provided in Section
3.1. Evaluations and comparisons for benchmark videos and
discussion of results are presented in Section 3.2 and 3.3,

respectively. A performance analysis of a real-time imple-
mentation of AHC is provided in Section 4. Limitations and
future work are proposed in Section 5, and conclusions are
included in Section 6.

2. METHODS
The algorithm used to detect moving cast shadows includes
two consecutive stages: 1) Foreground detection in which
a mask for moving pixels is created; 2) Suppression of the
cast shadow using modified correlation. Figure 1 gives the
flowchart of the proposed algorithm.

Figure 1. Flowchart for the AHC method

In stage 1, after converting the first and second frames to
grayscale via a standard grayscale conversion method, image
differencing (subtracting consecutive frames) is used to ac-
quire an approximate foreground mask. Binary segmentation
might be needed if more than one moving blob exists in the
frames. After binary filling and dilation of the approximate
foreground mask, it is combined with an edge map of the
second frame (acquired using the Canny edge detector) to
yield an edge map of the foreground, which only contains
the edge pixels of moving objects and cast shadows. Here,
an element-wise product (elements are the same as pixels for
each image) is used for combining the second frame edge
map and the approximate foreground mask. Image filling
is then employed on the resulting foreground edge mask
to obtain the improved foreground mask that includes only
shadow and object interior and boundary pixels.

In stage 2, a sliding window with a width (and/or a height)
of a fixed number of pixels scans the luminance values of the
improved foreground mask pixels from stage 1 as it moves
horizontally (and/or vertically) within the boundaries of this

mask. Scanning here refers to reading the luminance val-
ues for the pixels within the window from the second frame
grayscale and storing them in a vector. At each location of
the window, the Pearson correlation coefficient between the
window’s luminance vector and the luminance vector of a
neighbouring window is calculated. This correlation coeffi-
cient shows higher values in the shadow region. As another
measure to distinguish between the cast shadow and moving
objects, a robust-to-noise range measure is calculated via
the difference between upper 97 percentiles and the lower
3 percentiles of the sorted luminance values in the stored
vector, which shows lower values in the shadow region. To
combine and reinforce the effects of both measures and make
it easier to distinguish a shadow region from a moving object
region, correlation values are then divided by the range val-
ues to give the “Modified Correlation” for each window. As
the moving window sweeps the improved foreground mask,
these modified correlation values calculated for each location
of the window are stored in a vector. This modified correla-
tion vector exhibits an abrupt rising transition as the sliding
window enters from the object region into the shadow region,
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while it maintains small variations within each region.

To localize the transition point between the shadow and ob-
ject regions (abrupt transition), first, the modified correlation
values are smoothed by a moving average filter. Then, a mov-
ing standard deviation filter is used to the smoothed modified
correlation values and the argmax operator applied to the
resulting vector provides the location of the transition point.
Because shadow regions exhibit higher values of modified
correlation, the side of the transition point with a lower aver-
age modified correlation corresponds to the object and can
thus be suppressed. More details on each step are explained
in the following subsections.

2.1 Creating the foreground mask
Any sequence with moving shadows includes three types
of pixels: 1) Background pixels; 2) Object pixels (and self-
shadow pixels); 3) Cast shadow pixels. However, only object
pixels are to be kept for accurate tracking. Many algorithms
separate stagnant background pixels from foreground moving
pixels (Types 2 and 3) using foreground detection methods,
including optical flow or image differencing.[20] Optical
flow was not used in this work, because of the consider-
able computation time required, which prevents real-time
applications.

We adopted image differencing with modifications to remove
the background pixels in a sufficiently small running time
according to the following algorithm, which is illustrated
by applying it to two consecutive frames of the Pedestrian
sequence (images (a) and (b) of Figure 2 with the first frame
on the left):

(1) Convert two consecutive frames (I1 and I2) into lu-
minance images (Ilum1 and Ilum2) according to (1),
where R, G, and B are RGB channel values, and the
weights employed are explained in Ref.[23]

Ilum = 0.299R+ 0.587G+ 0.114B (1)

It should be noted that grayscale images can be ac-
quired using different colour conversions and from dif-
ferent colour spaces. The simplest and fastest conver-
sion is to take the average of R, G, and B values. Equa-
tion (1) is a fast conversion similar to this approach,
while it also considers the differences in perception
of red, green, and blue colours by human eyes.[23, 24]

Light intensity values from HSV, HIS, Y CbCr, YUV,
CIEXYZ, and CIELab have also been examined by the
authors in order to determine if they can provide any
improvement in shadow detection and discrimination
rates. The difference in performance was negligible,
while these colour conversions added to the compu-
tation time, which is of vital importance to the pro-

posed real-time algorithm. Furthermore, for perform-
ing some of the conversions accurately, information
about the capture device is necessary, which cannot be
obtained for the recorded benchmark videos used in
this research.

(2) Perform subtraction on the resulting luminance images
to acquire the image difference Idf given by (2):

Idf = Ilum2 − Ilum1 (2)

(3) Apply a threshold to create an approximate binary
foreground mask (FGapx) according to (3). Use a
small threshold to avoid losing significant number of
foreground pixels:

(3)

Then, perform image filling to compensate for fore-
ground pixels left undetected due to overlapping, fol-
lowed by image dilation. Image dilation is used to
avoid losing edge pixels of the second frame, which
will be utilized in the next step. The result is displayed
in image (c) of Figure 2.

(4) Since the binary foreground mask in the previous step
is larger than the real object size (due to object mo-
tion and using image differencing), some background
pixels will be left inside this mask, which causes mis-
classifications in future steps. To further remove back-
ground pixels, extract the edge map of the second
frame (I2edge) using “Canny” edge detector (see Fig-
ure 2d), and perform a pixel-wise multiplication to
acquire the foreground edge map (FGedge) according
to (4) (see Figure 2e):

(4)

where A ∗B means pixel-wise multiplication of matri-
ces A and B. Filling inside this edge map will make an
improved binary mask (FGimp), displayed in image
(f) of Figure 2.

It is worth mentioning that many algorithms,[3] assume the
existence of a fixed background image which is not always
available, so they have to update this image which adds to the
computation time and fails to provide an accurate updated
background. Therefore, we only used consecutive frames.

Comparing the improved foreground map in image (f) with
the second frame in image (b) reveals that the resulting map
is more accurate than the approximate foreground map in
image (c). Although because of imperfections in edge de-
tection and the subsequent image filling procedure, the final
map in (f) still contains a limited number of erroneous pixels;
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nonetheless, the accuracy in shadow detection remains fairly
high, as we will demonstrate in Section 3.

Figure 2. Flowchart for the AHC method

2.2 Suppression of the moving cast shadow
After separating the foreground pixels from the background,
the next stage is to distinguish between the shadow and the
object. To be able to explain this stage in our algorithm in
more detail, we first provide an overview of a few related
contributions.

Shadows are created whenever an object blocks light rays
that would otherwise strike a surface. Shadow regions have
a darker part, which receives no light from the light source
(umbra), and a part surrounding the umbra that receives a por-
tion of light from the source (penumbra), depending on the
scene and object geometry. Shadows do not usually change
the hue or reflectance of the area they physically cover (if
they are achromatic), but alter only the irradiance (E), which
might be modelled according to (5) proposed by Stauder et
al.:[18]

(5)

where CA and CP are the intensities of ambient and light
sources, respectively; L represents the direction of the light
source; and N(x, y) represents the normal direction to the
surface at position (x, y). The term 0 ≤ k(x, y) < 1 ac-
counts for the lighting transition inside the penumbra. This
transition factor depends on the geometries of light source
and scene, and is characterized by slow spatial variation.[25]

There are five assumptions[18] concerning (5): 1) The light
source is strong; 2) Camera and background are both static; 3)
Background is a textured plane; 4) The light source position
is distant from the background; 5) Cast shadows have penum-
bras. Although assumptions (1), (2), and (4) are often unre-
alistic, assumptions (3) and (5) hold for many moving cast
shadow sequences. Assuming Lambertian reflectance,[26]

the luminance L(x, y) of a pixel at position (x, y) can be
calculated according to (6):[18]

L(x, y) = E(x, y)ρ(x, y) (6)

where ρ(x, y) is the reflectance for the pixel at position
(x, y). In many real-life sequences, shadows are cast on
nearly planar surfaces, which results in small variations of
the vector N(x, y) normal to the background pixels. Further-
more, two spatially-neighbouring pixels at positions (x, y)
and (x + ∆x, y + ∆y) would be expected to have values
of k(x, y) approximately the same.[25] As a result, since a
shadow does not change the Reflectance, luminance would
be constant in a small region within a cast shadow,[3] such
that from (5) and (6), we obtain:

(7)

Object surfaces, on the other hand, are usually composed of
smaller regions with different reflecting angles, and it leads to
a more complicated pattern for irradiance distribution within
the object.

The work by Amato et al.[3] employs the distinguishing prop-
erty of cast shadows mentioned earlier. However, since the
constancy assumption in (7) is valid only for a small neigh-
bourhood, Amato et al. applied gradient-space-connected
neighbourhoods (GSCN) segmentation to combine multi-
ple small neighbourhoods detected as belonging to either
a shadow or an object. Disadvantageous of this approach
are: 1) Assumption of colour constancy for a shadow region
instead of luminance constancy; 2) Need to have a fix back-
ground; 3) Calculating multiple thresholds from data (higher
computation time); 4) Intrinsic imperfection of segmentation
for attaching multiple regions.

In AHC, we attempted to detect connected areas of shadow
and object instead of detecting small disjoint blobs of shadow
and object and then using time-consuming imperfect segmen-
tation methods to connect them. We resorted to statistical
measures calculated for larger regions within the bound-
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aries of the foreground to avoid using segmentation, and to
avoid failure of (6) for non-small values of ∆x and ∆y. We
observed that although inside a larger shadow region, lumi-
nance values of pixels cannot be considered constant, the
luminance values exhibit spatial correlations, such that know-
ing one pixel’s luminance can help predict the luminance of
the other pixels in a relatively large neighbourhood, to a good
approximation. This observation can be deduced from the
procedure that leads to (6). In a larger region, N(x, y) and
ρ(x, y) exhibit small variations, if the support surface for the
shadow is planar. Furthermore, since k(x, y) shows smooth
spatial variation, L(x, y) is expected to change smoothly
over a shadow region, and have higher self-correlation for a
shadow region. Therefore, as one of the statistical measures,
we investigated correlation, which is a quantitative indication
of how correlated is a pixel’s luminance to its neighbouring
luminance values.

Here, we use a vertical sliding window (moving from left to
right) with a fixed width of N pixels and a varying height
that is constrained to the upper and lower boundaries of the
improved foreground mask. Images (a) and (b) of Figure
3 illustrate the sliding window (using N = 8) within the
shadow and object regions of the Pedestrian sequence in Fig-
ure 2, respectively. As can be seen, the size (height) of the
window changes according to the local foreground edge map
variations.

Figure 3. Vertical sliding window within the boundaries of
the improved foreground mask. a) An adaptable-height
sliding window inside the shadow in the Pedestrian
sequence; b) An adaptable-height sliding window inside the
object in the Pedestrian sequence

Next, we calculate the Pearson Correlation Coefficient be-
tween the luminance values of the sliding window and a
neighbouring window. Let Lx denote the vector consisting
of luminance values for the sliding window at location x,
and let Lx,d denote a similar vector for the window shifted
d pixels to the right. In order to calculate ρ between Lx and
Lx,d, we need to have vectors of identical size. Therefore,
we first trim these vectors using the minimum size of both
denoted by sz. Denoting the trimmed vectors by Lt

x and
Lt

x,d, the correlation for the sliding window at location x,
Corrx, is computed as:

(8)

A discussion of the selection of N and d is provided in Sec-
tion 3.3.

Part (a) of Figure 4 shows Corrx plotted versus the centre
position of the sliding window, x, as it sweeps the foreground
edge map of the Pedestrian sequence. Here d = 1 pixel is
used for the window shift. As can be observed, there is a
decreasing transition in the correlation measure as the sliding
window moves from the shadow region to the object region
shown by the vertical red line.

In addition to using correlation as a distinguishing factor
between a shadow region and an object region, we have con-
sidered the range of luminance values. According to Ref.[3]

and other researches, a cast shadow reduces the dispersion
of luminance values for the background pixels on which it
is cast. It has been shown that range and standard deviation
are considerably sensitive to outliers in the sample. There-
fore, researchers typically utilize other methods of measuring
dispersion in a data set, such as Interquartile Range (IQR)
or Median Absolute Deviation (MAD). Here, we opted a
“Modified Range” similar to IQR which considers more data
points in a sample than the middle 50%. We defined the
modified range to be the difference between the data point
at the 100 −∆ and the ∆ percentiles. Denoting Lx sorted
ascendingly by Ls

x, the modified robust-to-noise range for
the sliding window at location x, MRx, can be calculated
by:

(9)

To avoid discarding significant amount of data points, we use
a value of ∆ = 3 here.

Part (b) of Figure 4 shows MRx plotted versus x. As can
be observed, there is a relatively abrupt decreasing transition
in the range measure as the sliding window moves from the
shadow region to the object region shown by the vertical red
line.

Since both statistical measures introduced so far exhibit tran-
sitions where the sliding window enters the shadow region
from the object region or vice versa, we considered com-
bining these measures into a single measure which we call
“Modified Correlation” to further reinforce the abrupt transi-
tions seen in both measures. Since a shadow region exhibits a
high correlation with its neighbouring windows and exhibits
a a small modified range, we define the modified correlation,
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MCx, for the window at location x as follows:

(10)

As can be seen in part (c) of Figure 4, the modified correla-
tion shows a more abrupt transition than the two contributing
measures, and the transition point in the plot approximately
matches the real transition point.

Figure 4. Luminance statistics of the vertical sliding window of width N = 8 pixels for the Pedestrian sequence. a)
Correlation of the luminance values of a sliding window at location x with a neighbouring window shifted one pixel to the
right versus the location of the window centre; b) Modified range for a sliding window at location x versus the location of
the window centre using δ = 3; c) Modified correlation for a sliding window at location x versus the location of the window
centre

The reason for the approximate match is that when the slid-
ing window falls within the green ractangle shown in the
top image of Figure (4c), it will contain shadow, object, and
background pixels. Hence, the correlation among adjacent
windows is reduced and the range of luminance values within
the sliding window increases. This misidentification can hap-
pen for objects with concave boundaries due to using merely
vertical (and/or horizontal as shown later) sliding windows
in AHC; this issue is further discussed in Section 3.3.

Although MCx shows smaller variations within the shadow
or object region compared to the abrupt change at the tran-
sition point, we can post-process MCx values to smoothen
the signal to better render the transition point. To do so, we
apply a moving average filter of length M to the MCx val-
ues to get the smooth modified correlation for each window
denoted by MCs

x:

(11)

The length of the moving average filter was empirically cho-
sen to be 10% of the length of modified correlation vector.
The result of smoothening the modified correlation values
can be seen in part (b) of Figure 5 for the Pedestrian sequence,
while the second frame of this sequence is shown in part (a).
A clear transition is observable in the MCs

x plot (here, the
first five and last five points are discarded to compensate for

the sudden changes at the beginning and the end of signal).

To determine the location of the transition point, denoted by
pttr from the MCs

x plot while avoiding local minima, we
applied a moving standard deviation filter of length Q to the
MCs

x values, which highlights the locations at which abrupt
variation in the values occur. The results of this filtering,
denoted by JMCx for each window, is given by:

(12)

where MCs
X is average of the vector formed by all MCs

i

values for the window locations at i ∈ [x− Q
2 , x+ Q

2 ].

Q can be determined in a fashion similar to M . The result of
applying this filter can be seen in part (c) of Figure 5, where
the transition point can be clearly observed and it coincides
with the location of the abrupt change in the smooth modified
correlation values.

Finally, location of the transition point, pttr, can be found by
(13):

(13)

Similar abrupt transitions were observed in other sequences
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used in this research (shown in the Results Section), as ex-
pected. After localization of the transition point using (13),
the final segmentation of foreground pixels is performed,
where the pixels on the side of transition point with larger
average of MCs

x values are labelled as shadow pixels (de-
picted green) and the pixels on the other side of transition
points with smaller average of MCs

x values are labelled as
object pixels (depicted red) in part (d) of Figure 5.

Figure 5. Using modified correlation to segment the
foreground. a) Second frame of the Pedestrian Sequence; b)
Smooth modified correlation using an Average filter of
length 14 vs. centre position of the sliding window; c)
Localizing the transition point via applying a moving
standard deviation filter MCs

x values; d) Final segmentation
of the foreground (Moving cast shadow is depicted in green
and the object in red)

3. RESULTS AND DISCUSSION
The performance and robustness of the method was examined
under different combinations of illumination strength, target,
and environment for recorded videos, discussed in Section

3.1. Evaluation of the performance of the new method and
comparison with available methods in the literature is pre-
sented in Section 3.2. A discussion of the results is provided
in Section 3.3.

3.1 Qualitative results
We applied the proposed method to a number of differ-
ent appropriate cases, including indoor and outdoor scenes
with human and non-human objects, and different illumi-
nation/contrast conditions to examine robustness and effi-
ciency, and to investigate object-environment independence.
Throughout this paper, HAC will be tested on 8 different
sequences, two of which are benchmark sequences used in
many publications for comparison,[3, 7, 8, 27] as well as in Sec-
tion 3.2 in this research.

Six of the sequences mentioned above can be seen in Figure
6. Note that these frame pairs have different resolutions, but
they are displayed using similar sizes here. The first sequence
in Figure 6 is the Highway sequence, an outdoor scene with
a non-human target, where the shadow has medium strength.
The first frame, second frame, ground-truth for the second
frame, and the final detection results can be seen in the first
row, Figure (6a) to Figure (6d), with the object (only one
object is considered) depicted in red and shadow depicted
in green. The second sequence is the Pedestrian sequence,
which is an outdoor scene with a human target, where the
shadow has high strength. Similar results in the same order
as the first sequence are shown in the figures of the second
row. The third sequence is the Laboratory sequence, which
is an indoor scene with a human target, and the shadow has
low strength, where results are observed in the third row. The
fourth sequence is the Saltshaker sequence, an indoor scene
with a non-human target, where the shadow has medium
strength, with results demonstrated in the fourth row. In the
fifth sequence which is more complicated and is chosen from
an animation, called the Wooden Model Sequence, the object
casts more than one shadow in an indoor environment with
medium to low strength. The shadows lie on both sides of
the object in the. Finally, the Truck sequence in the seventh
row shows two vehicles casting shadows on one side in an
outdoor environment with medium to high strength. For
this sequence and similar sequences where the foreground
has more than one blob, binary foreground segmentation is
needed and separate sliding windows need to be considered
for each blob.

Although, evaluation of the method’s efficiency is discussed
in Section 3.2, a good match between ground-truth images in
the third column with detection results in the fourth column
can be seen.
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Figure 6. AHC qualitative results for moving cast detection. a) to d) First frame, second frame, ground-truth, and final
shadow detection of the Highway sequence; e) to h) First frame, second frame, ground-truth, and final shadow detection of
the Pedestrian sequence; i) to l) First frame, second frame, ground-truth, and final shadow detection of the Laboratory
sequence; m) to p) First frame, second frame, ground-truth, and final shadow detection of the Saltshaker sequence; q) to t)
First frame, second frame, ground-truth, and final shadow detection of the Wooden Model sequence; u) to x) First frame,
second frame, ground-truth, and final shadow detection of the Truck sequence

To generate ground-truth images, first, the edge map of the
second frame was delineated using the Canny edge detector
with manually selected parameters determined to be the best.
Next, extra edge pixels were manually eliminated, and non-
connected edges were connected manually. Finally, image
filling was performed on the accurate edge maps.

In complicated video sequences with occluding objects and
shadows (see Figures 7a and 7b), multiple sliding windows
can be used for one centre position of the window inside
the foreground mask, as illustrated in image (c) of Figure
7. Each moving window belongs to a shadow-object com-
bination, and a similar procedure as described above was
performed for each individual window. As can be seen in
image (d), final results correctly separate the foreground, and
demonstrate the capability of the AHC method to handle
shadow detection for multiple objects with occlusion.

We note that the method was shown to work for cases with
non-smooth backgrounds.[28] We considered this case be-
cause we assumed in AHC that the normal vector to the
background surface is fairly constant over the shadow region.
If the background surface is mildly curved or is moderately
non-smooth (such as a field of grass) the abrupt transition
still exists and the method can perform well.

3.2 Quantitative results

To evaluate the accuracy of our proposed method, shadow de-
tection rate η and shadow discrimination rate ξ proposed by
Prati et al.[7] were used, given by (13) and (14), respectively:

η = TPS

TPS + FNS
(14)
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ξ = TPF

TPF + FNF
(15)

where TP indicates true positives, meaning the pixels de-
tected correctly as belonging to a group, and FN indicates
false negatives, meaning the pixels detected incorrectly as
not belonging to a group. Subscripts “S” and “F” refer to
shadow and foreground object, respectively. The term TPF

is the number of ground-truth pixels of the foreground ob-
jects minus the number of pixels detected as shadow, but
belonging to foreground objects. Since these two metrics are
used in most of the recent shadow detection methods and
surveys,[8] we employ them here for comparison purposes.

Figure 7. Handling occlusion scenarios in AHC. a) First
frame of the Highway sequence with occlusion; b) Second
frame of the Highway sequence with occlusion; c) Multiple
sliding windows at a fixed centre position within the
foreground mask; d) Final detection result

Table 1 summarizes image attributes for each sequence, in-
cluding sequence type, shadow strength, and object class, in
addition to efficiency metrics computed for seven sequences
used in Figure 6. High individual and average metrics indi-
cate that AHC works efficiently for different combinations of
environment, target, and illumination condition. As can be
seen, illumination and contrast do not affect the performance
of AHC directly. For instance, shadow detection rate for a
sequence with low contrast and low shadow strength (e.g.
the Saltshaker Sequence) is higher than a sequence with high
contrast and high shadow strength (e.g. the Truck Sequence).
The reason is that in AHC, the difference between a shadow
and an object region lies in the amount of correlation among
luminance values, and because changing the illumination
alters the luminance values of a region together, it does not
change the correlation significantly.

As observed in Table 1, Pedestrian and Truck Sequences

have the lowest η values, because a considerable number
of shadow pixels were not detected as belonging to shadow
(small TPS). This happened because in these sequences, due
to using vertical scanning windows, shadow and foreground
(and sometimes background) pixels were lying in the same
window and correlation was calculated for a mixed region
(shadow to the left of pedestrian and under his arm; shadow
to the right of truck and under its bed). Shadow discrimina-
tion values on the other hand were not negatively affected
because not so many foreground pixels were incorrectly de-
tected as shadow (large TPF ). Typically in AHC, when a
window scans a mixed region of shadow and foreground ob-
ject, the correlation values drop, the range measure increases,
and the region is detected as a foreground region.

Table 1. Videos used, image attributes, and metrics for our
AHC method

 

 

 
Sequence 
Type 

Shadow 
Strength 

Object 
Class 

  ࣈ ࣁ

Highway 
Seq 

Outdoor Medium Vehicle 95.9 98.8 

  85.4 = ߟ̅

 99.5 = ̅ߦ

Pedestrian 
Seq 

Outdoor High People 83.2 100 

Laboratory 
Seq 

Indoor Low People 94.6 98.9 

Saltshaker 
Seq 

Indoor Low Object 93.4 99.4 

Wooden 
Model Seq 

Indoor Low Object 81.5 99.8 

Truck Seq Outdoor High Vehicle 63.7 100 

 

Table 2 compares the efficiency metrics from AHC method
with the efficiency metrics from six other methods in the
literature used in the recent survey of shadow detection meth-
ods,[8] all calculated for the Laboratory sequence. Among the
competing methods in Table 2, Refs.[2, 10] are fast determin-
istic methods with medium accuracy, which employ back-
ground subtraction and the assumption of small change in
hue when a shadow is cast on the background. As mentioned
earlier, in many sequences the authors observed, this as-
sumption is not valid, especially for low-quality surveillance
videos. Furthermore, these methods use multiple empirically-
determined thresholds for changes in hue, saturation, and
value, which have to be experimentally determined based
on the scene illumination conditions, and this is not fea-
sible for recorded videos. The work[3] is more similar to
the proposed AHC and provides relatively accurate results
for benchmark videos; however it uses the assumption of
colour constancy for a shadow region instead of luminance
constancy, which is not always valid; it needs to have a fix
background (not feasible) as well as multiple thresholds from
data (higher computation time); and it employs segmenta-
tion for attaching multiple detached regions of shadow and
object, while segmentation algorithms have intrinsic imper-
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fection. The statistical method[9] for monochrome videos,
while showing higher accuracy, is too complex, iterative, and
requires training and accurate assumptions of many parame-
ters. These limitations make this algorithm image dependent,
environment dependent, and training dependent. It fails in
the presence of multiple illumination sources and in outdoor
environments with strong shadows. Authors in Ref.[12] uti-
lized local, spatial, and temporal information for detecting
shadows. While providing medium detection rates and high
discrimination rates, this method has high computational
complexity, requires information about the position of the
sun with respect to the camera, and shows low illumination
independence. The method by Stauder et al.[18] uses various
heuristic techniques in order to exploit its main four assump-
tions. Results show an excellent detection and removal of
indoor shadows. However, the limitations come from the
fact that the approach is not applicable to outdoor shadows,
and that it requires the background to be of a uniform colour.
While the method in Ref.[29] provides relatively high ac-
curacy measures for most of the scenes and conditions, it
employs the assumption that the light energy received by
a background point while not covered by a shadow is, to a
high degree of approximation, affinely related to the energy
it receives when a shadow is cast over it by an object. This
assumption has not been validated by the authors and the
real-time performance of the method has not been mentioned.
Finally, the authors[30] used the change in chromaticity simi-
lar to Refs.,[2, 10] but this statistical non-parametric method
shows moderate higher accuracy at the expense of higher
computational complexity.

Table 2. Results of different shadow detection methods in
Ref.[8] and our AHC method applied to the Laboratory
sequence

 

 

 
Method        

Horprasert et al. [10] 84 92.4 

Stauder et al. [18] 60.3 81.6   

Mikic et al. [12] 64.9 95.4 

Cucchiara et al. [2] 76.3 89.9  

Al-Najdawi et al. [29] 90.2 92.8     

Jung [9] 85.8 95.1      

AHC 94.6 98.9 

As can be seen, our AHC method shows improved perfor-
mance compared with other methods in terms of both de-
tection and discrimination rates. We believe it notable that
AHC can be employed in real-time situations without lim-
iting assumptions, manual selection of critical parameters,
need for prior knowledge, or modelling complexity. No other
competing method in this table has demonstrated real-time

performance. A fair comparison in accuracy is only pos-
sible when computational times are comparable. Also as
mentioned earlier, some methods require further external
information to provide high accuracy and have to be used in
specific conditions and applications.

Table 3 provides another comparison between the efficiency
metrics from AHC with the efficiency metrics from five
other methods in the literature, calculated for the Highway
sequence. The first method is the work by Amato et al.[3]

mentioned in Section 2.2, and four others are presented in
the survey of shadow detection methods by Prati et al.[7] As
can be seen, our AHC method outperforms other methods.

Table 3. Results of different shadow detection methods in
Refs.[3, 7] and AHC method applied to the Highway
sequence

 

 

Method        

Amato et al. [3] 81.0 85.4 

Haritaoglu et al. [31] 81.6 63.8   

Mikic et al. [12] 59.6 84.7 

Cucchiara et al. [2] 69.7 76.9  

Stauder et al. [18] 79.5 62.4     

AHC 95.9 98.8 

 

While AHC outperforms the other methods in Tables 2 and
3, comparing the results reveals that for the Highway Se-
quence, this performance difference is more considerable as
this sequence has a very low quality and negligible colour
information upon which some of the methods relied (e.g.
Ref.[2]). Methods designed to work with monochromatic in-
formation,[9] exhibit better performance for these benchmark
sequences.

Note that due to unavailability of codes for other algorithms,
we were not able to apply them to all sequences used in this
research and could not provide statistical measures for η and
ξ, such as average or standard deviation for each algorithm.

3.3 Discussion of the Results
One issue is selection of the width for the sliding window
(N ). Although N = 8 pixels was used for all figures in
Section 3.1 and all tables in Section 3.2, here, we try to elab-
orate more on how we selected N = 8 pixels. As we expect,
increasing N would reduce the accuracy of transition point
localization. This accuracy reduction is not significant as
long as the width of the window is included in calculation of
the transition point location. Also as we expect, increasingN
leads to small increment of the computation time (here using
MATLAB) since more window locations has to be scanned.
Figure 8 shows the effect of change in the window’s width,
N , on the inverse of computation time (frames per second,
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fps) and shadow detection accuracy for the Pedestrian Se-
quence (here, only η is considered since ξ remains 100%
for this sequence). The value N = 8 selected for HAC was

found to be a trade-off between accuracy and computation
time.

Figure 8. Effect of width for the sliding window on shadow detection rate and inverse of the computation time (frames per
second)

Selecting the amount of shift used for the sliding window
location (d) to calculate Corrx values in (8) is another topic
that has to be discussed. When d becomes larger, the correla-
tion between the luminance values within adjacent windows
would decrease regardless of the location of the sliding win-
dow. Therefore the transition of Corrx values between the
shadow and the object region fades. In parts (a) to (c) of
Figure 9, Corrx values for the Pedestrian Sequence filtered

by a moving average filter (filter is used to smooth the oscil-
lations and better render the transition in the plot) denoted by
Corrf

x are shown versus the location of the sliding window
for d = 1, d = 3, and d = 5 pixels, respectively. As can
be seen, when d increases, correlation values for windows
within the shadow region start to decrease and so, the tran-
sition become less abrupt and vivid. Therefore, we opted to
use d = 1 pixel for AHC.

Figure 9. Effect of shift for the sliding window, d in (8) on filtered correlation values. a) d = 1 pixel shift was used; b)
d = 3 pixels shift was used; c) d = 5 pixels shift was used

The final discussion in this section is about the orientation
of the sliding window. When the cast shadow does not lie to
the right or left of the object, scanning using vertical sliding
windows as we did so far will not detect the shadow region
as we discussed using part (c) of Figure 4. The Surveillance
Camera Sequence in Figure (10a) and (10b) demonstrates
such situation. As shown in part (c) of this figure, vertical
sliding windows will only detect the portion of shadow that
is within the red rectangle. Shadow pixels within the green
rectangle will be inside one window with object pixels and
due to small modified correlation values for these window

locations, they will be misclassified as the object pixels. This
is while horizontal scanning windows can be more helpful
in shadow detection in such sequence where the shadow lies
to the top or bottom of the object. This is demonstrated in
part (d), where vertical sliding windows can only detect the
shadow pixels in the blue and the hatched regions, while
horizontal windows can detect significantly more shadow
pixels (white region+hatched region). The suggestion from
this discussion is to use both vertical and horizontal sliding
windows in AHC for any sequence. In horizontal windows,
the height is fixed and width will be adaptable to the left and
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right boundaries of foreground mask. Here, if both horizontal
and vertical windows are used for scanning, η will increase
from 26% to 79%, while ξ will stay 100%. This is because a

large portion of shadow lies to the bottom of the vehicle and
it can only be detected using horizontal scanning windows.

Figure 10. Using vertical and horizontal sliding windows for the Surveillance Camera Sequence. a) First frame; b) Second
fame; c) Foreground mask: shadow pixels within the red rectangle will only be correctly detected as shadow by vertical
sliding windows; shadow pixels within the green rectangle will be misclassified as object pixels by vertical sliding windows;
d) Blue region: shadow pixels detected by vertical sliding windows only; White region: shadow pixels detected by
horizontal windows only; Hatched region: shadow pixels detected by vertical and horizontal windows; Green region:
shadow pixels not detected by vertical or horizontal windows

Note that shadow pixels within the green region will not be
detected by either type of window mentioned above. Further
processing, such as searching for pixels in the object region
which have similar hue and luminance values in a neigh-
bourhood of the transition point with a given radius might
detect the remainder of such shadow pixels at the expense of
computation time increase as mentioned in Ref.[28] Devising
a searching algorithm which can detect a significant num-
ber of remaining shadow pixels, but still allows real-time
application of AHC is left as a future work.

4. REAL-TIME IMPLEMENTATION
To analyse the performance of the AHC method, we imple-
mented the algorithm in C++ using the OpenCV library. We
then examined the algorithm’s run-time requirements on a
modern desktop computer for the six sequences in Figure 6.
The details of apparatus for this investigation are provided in
Table 4.

4.1 Software implementation and test images
The AHC method was implemented in C++ by using a combi-
nation of the C++ Standard Library and OpenCV. All source
and intermediate image data were represented in memory as

OpenCV Mat objects. Other one-dimensional data arrays
were represented in memory by using the C++ vector class.

Creation of the foreground mask (Section 2.1) was performed
entirely in OpenCV via direct pixel access (for the thresh-
olding); via a combination of the findContours() and draw-
Contours() functions for the image filling; via the morpholo-
gyEx() function for the image dilation; and via the Gaussian-
Blur() and Canny() functions for the edge detection. Detec-
tion of the shadow (Section 2.2) was performed via custom
C++ code which used methods and associated functions of
the vector class and direct pixel access to the Mat objects.

Table 4. Hardware and software specifications for the
performance analysis

 

 

Specification Value 

C++ Environment 
Visual Studio Professional 2013 Version 
12.0.21005.1 

OpenCV Version 2.4.10 

OS Version Windows 7 Enterprise 64-bit SP1 

Processor Model Intel Core i7-4470  

Processor Frequency 3.4 GHz 

Processor Cores 8 Cores 

System RAM 8 GB Dual-Channel DDR3 @ 800 MHz 
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It is important to note that no explicit attempts were made
to parallelize the implementation to take advantage of the
multiple cores available on the test system. Accordingly,
during the analysis, we observed that only one of the cores
(sometimes, but rarely, two of the cores) was active at any
given time.

Table 5. Native and resized dimensions of the six sequences
used in the performance analysis; the percentages denote
total numbers of pixels

 

 

Sequence 25% 50% 100% (native) 200% 400% 

Truck 146×70 207×99 292×140 413×198 584×280 

Wooden 240×180 340×255 480×360 679×510 960×720 

Highway 320×203 453×287 640×405 906×573 1280×810 

Laboratory 320×240 453×340 640×480 906×679 1280×960 

Pedestrian 320×240 453×340 640×480 906×679 1280×960 

Saltshaker 320×240 453×340 640×480 906×679 1280×960 

 

Six sequential-image-pair sequences were used for the per-
formance analysis: Highway, Pedestrian, Laboratory, Salt-

shaker, Truck, and Wooden. All of the sequences originally
contained 24-bit colour images spanning a range of spatial
sizes and shadow intensities and extents. To evaluate the
effects of image size on the run-time, each sequence was
resized by factors of 50%, 70.7%, 141.4%, and 200% in each
dimension, corresponding to 25%, 50%, 200%, and 400%
of the total number of native pixels, respectively. The native
and resized dimensions of each sequence are listed in Table
5.

4.2 Timing results

For each sequence, at each size, we ran the AHC implemen-
tation 100 times. The means and standard deviations of the
100 trials (in milliseconds) are shown in Figure 11 for each
sequence at each size. Note that the sequences were resized
and converted to grayscale prior to the timing; thus, the data
shown in Figure 11 do not include these pre-processing times,
nor do they include the times required to load the images
from disk.

Figure 11. Computation time of AHC on test sequences of various sizes. The value of each bar denotes the average over
100 trials; error bars denote standard deviations over these 100 trials. Note that the vertical axis is on a logarithmic scale. a)
Average run-time in ms; b) Average frame rate in frames/sec

Observe from Figure (11a) that for all of source sequences,
the average run-time for AHC increases linearly with the
number of pixels. Specifically, for any given source sequence,
doubling the number of pixels approximately doubles the
run-time. Furthermore, the source sequences are ordered
from left to right in Figure (11a) in terms of an increasing
number of pixels (Trucks has the least number of pixels;
Laboratory, Pedestrian, and Saltshaker have the most number
of pixels), and the corresponding run-times also generally
increase in a left-to-right fashion for any given scaling factor
(any given coloured bar). For example, at a 50% scaling fac-
tor, Laboratory, Pedestrian, and Saltshaker contain 307,200
pixels, which is 7.5 times the number of pixels of Trucks at a

50% scaling factor (40,880 pixels). Accordingly, the former
three sequences require approximately 8x, 10x, and 9x the
run-time of the latter.

However, it is also evident from Figure (11a) that the run-
time is not independent of the source sequence. In particular,
observe that the last three sequences (Laboratory, Pedestrian,
and Saltshaker) exhibit a variation in run-time for any given
scaling factor, despite the fact that these sequences have
equal sizes. Nonetheless, as shown in Figure (11b), even at a
size of 1,280 × 960 pixels, the implementation can achieve
a processing rate in excess of 10 frames/sec. An increase in
the processing rate could possibly be achieved via strategic
parallelization (e.g., processing separate frames on different
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cores).

Figure 12 shows the distributions of the run-times required
for the various stages for each sequence at its native size
(100% scaling; see Table 5). For each pie chart, the slice
shown in green denotes the run-time required for the segmen-
tation (Section 2.1), and the slice shown in light blue denotes
the run-time required for the correlation, range, and other
statistical computations of the shadow detection (Section

2.2). Roughly, these data suggest that the run-times required
for the segmentation vs. shadow detection depend on the
size of the shadow; for Truck and Laboratory, the shadow is
small, and thus the segmentation consumes the majority of
the run-time. For the other sequences, the segmentation vs.
shadow-detection run-times are nearly equal. In regards to
the segmentation, the majority of the run-time is attributable
to either the image filling or the Canny edge detector.

Figure 12. Average run-time of each stage of AHC on the test sequences at their natives sizes (100%)

In summary, the proposed AHC method can achieve real-
time performance, even for relatively large sequences, when
run on a modern desktop computer. Furthermore, for the
sequences tested here, at least 50% of the run-time is at-
tributable to the segmentation stage; and, as we mentioned in
Section 2, this stage could be greatly simplified given a fixed
background setting. A further reduction in run-time could
possibly be achieved by taking advantages of multiple cores.
The most straightforward approach would be to process se-
quential frames on separate cores, assuming that the frame
rate of the capture device is faster than the processing time.
In regards to per-frame parallelization, although the segmen-
tation stage is not easily parallelized due to the dependency
between its sub-stages, and due to the spatial dependency of
its operations (e.g., filtering during Canny edge detection),
the statistical computations of the shadow-detection stage
are quite straightforward to distribute across multiple cores.

5. LIMITATIONS AND FUTURE WORK
A fast foreground detection method, which reduces the de-
pendence of the method’s efficiency on the edge map results,
is preferred over the combination of image differencing and

edge detection. If the shadow region is separated from the
object region by a concave boundary, AHC will misidentify
some shadow pixels, and efficiency will be reduced at the
transition point. Devising a searching algorithm which can
detect a significant number of remaining shadow pixels, but
still allows real-time application of AHC is left as a future
work.

6. CONCLUSION
In this research, a new real-time approach for detection of
moving cast shadows (called the AHC method) is presented.
While avoiding the need for a-priori knowledge, limiting
structures, unrealistic assumptions, and non-robust features,
the AHC method demonstrates highly accurate detections
and provides improved performance compared with other
shadow detection methods in the literature. A deterministic
nonmodel-based approach, employing 2D luminance scan-
ning provides a fast detection, which is useful for real-time
situations. Finally, an unsupervised real-time implementation
in C++ using OpenCV library shows possibility for applica-
tion of the method to real-time tasks, such as surveillance
and tracking systems, remote sensing, and border security.
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