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ABSTRACT

A new neural network model containing fewer neurons is proposed for the linear bilevel programs. The Lyapunov stability
and convergence of the neural network are proved. To illustrate the feasibility of the neural network approach, we give the
corresponding numerical experiments. The comparison results show that the new neural network approach is feasible and has
lesser iterations to obtain the optimal solution.
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1. INTRODUCTION

As a powerful implement to describe the hierarchical relation-
ships in the real life, bilevel programming has attracted more
and more attentions, and been used extensively in traffic net-
work designing,[1] parameter calibrated,[2] supply chain,[3]

and resource allocation,[4] etc. And on the other hand, the
extensive applications of bilevel programming in the real
life have been driving people to propose some effective algo-
rithms to solve the bilevel programming problem. For more
detail theories and algorithms, the reader may consult Refs.
5 and 6 and the references therein.

Linear bilevel programming problem (LBLP), where both
the objective functions and the constraint functions are linear
functions, has been studied extensively both from theories
and solving approaches. In fact, more and more researchers
have been devoting to the algorithm aspects. Roughly speak-
ing, we can category these algorithms into four types. The
first one is the so-called extreme point searching approach.

The basic idea can be described as follows. Based on the fact
that the optimal solution to the LBLP can be obtained in the
vertex of the constraint region of the LBLP, through search-
ing the vertexes and judging the feasibility, one can obtain
the optimal solution of the LBLP. “Kth-best” algorithm[7]

and grid-search algorithm[8] are two typical extreme point
searching approaches. The second one is the transforming
method. That’s, based on the optimality conditions of the
lower level programs, one can transform the LBLP into the
usual one level programming problem, and some traditional
optimization approaches can be used to obtain the optimal
solutions. For more details on the transforming approach,
the reader may consult Refs.9-11. The third one is the intel-
ligent algorithms. In the last years, there have been various
intelligent algorithms for the LBLP problem, such as Tabu
search,[12] neural network approach.[13] The last category
is interior point approach, such as primal-dual algorithm by
Weng and Wen.[14]
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It has been verified that neural network has the capacity of
fast converging to the equilibrium point of the status space,
and obtaining the online solutions for some practical prob-
lems. Then, it has been a promising implement for some
problems. In fact, neural network has been used extensively
in solving equations, bilevel programs, variational inequali-
ties, et al.[15–17]

Nowadays, there are some researchers attempt to solve the
LBLP by neural network approach. For example, based on
the method of transforming the LBLP into the mixed integer
programming problem, Shih[17] proposes a neural network
model for the LBLP. As the neural network model proposed
contains a large enough penalty constant, it can cause the
instability in simulation calculations. In order to overcome
this drawback, Lan[12] combines the tabu search strategy to
the above neural network. Based on the smoothing method
for the complementary constraints, Hu[13] also proposes a
neural network approach. However, in Ref.13, the authors
introduce the slackness variables to transform the inequality
constraints into the equality constraints, then it can increase
the number of the neurons inevitably when proposing neural
network model.

In this paper, inspired by the method presented in Ref.13,
we will propose a new neural network model for the LBLP.
Compared with the existing approach presented in Ref.13,
the neural network approach proposed in this paper is differ-
ent in the two aspects. The first one is that for the inequality
constraints, we needn’t introduce the slackness variables.
Then, the neural network proposed here contains fewer neu-
rons. The second one is that for the proof of the asymptotic
stability, we adopt the concept of trajectory in ordinary dif-
ferential equations. It can make the readers more directly
understanding that with time changing the trajectory of the
neural network can converge to the equilibrium point, which
corresponds to the optimal solution of the LBLP.

In the next section, the LBLP will be transformed into the
single level programs, meanwhile the smoothing function
for the complementary constraints in the single level pro-
grams will be introduced. In Sect.3, based on the optimality
conditions of the smoothed single level programs, the neu-
ral network model will be proposed. Then, the Lyapunov
stability and convergence of the neural network model will
be analyzed. In Sect.4, to illustrate the feasibility and effec-
tiveness of the neural network model, we will solve some
linear bilevel programming problems using our neural net-
work model. Finally, we give some remarks to conclude the
paper.

2. LBLP AND SMOOTHING APPROACH

The LBLP, which is considered in this paper, can be written
as:

(1)

Where x ∈ Rn, y ∈ Rm; c1, c2 ∈ Rn; d1, d2 ∈ Rm; b1 ∈
Rp; b2 ∈ Rq;A1 ∈ Rp×n, B1 ∈ Rp×m;A2 ∈ Rq×n, B2 ∈
Rq×m.

To well define the LBLP, in the rest of the paper, the follow-
ing assumption is satisfied.

(A1) For any (x, y) ∈ R = {(x, y)|A1x+B1y ≤ b1, A2x+
B2y ≤ b2, x ≥ 0, y ≥ 0}, the vectors B2, i ∈ I =
{i|A2ix + B2iy = b2i, i = 1, · · · , q} are linear indepen-
dent, where the vector B2i denotes the i-th row of B2.

In problem (1), for the given upper level variable x, the lower
level problem

is a linear programming problem. Then, based on the above
assumption , we can transform problem (1) into the follow-
ing single level programs by the corresponding optimality
conditions of the lower level programs.

min
x,y,u,v

c1x+ d2y

s.t. A1x+B1y ≤ b1,

A2x+B2y ≤ b2,

uB2 − v = −d2,

u(b2 −A2x−B2y) + vy = 0,
x ≥ 0, y ≥ 0, u ≥ 0, v ≥ 0

(2)

Where u ∈ Rq, v ∈ Rm are complementary variables.

Problem (2) is the non-smooth optimization problem as the
existence of the complementary constraints, and proposing
the neural network model for the non-smooth optimization
problem is a quite tough task. To overcome this difficulty, we
adopt the following smoothing method to deal with problem
(2). Through transforming the complementary constraints
equivalently, we can obtain the following programs, which
is equivalent to the above programs (2).
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Let ε ∈ R be a parameter. Define the function φε : R2 → R

by

The following Proposition 2.1 gives the characters of the
above function φε(a, b).

Proposition 2.1.[6] For every ε ∈ R, we have

It is obvious that for ε = 0, φε(a, b) = −2 min(a, b). And
for every ε 6= 0, φε(a, b) is differential for every (a, b). Fur-
thermore, for every (a, b), limε→0 φε(a, b) = −2 min(a, b).

Based on the above analysis, we can take the function
φε(a, b) as the approximation of the complementary con-
ditions. That’s, problem (2) can be approximated by

(3)

Problem (3) is the usual smooth optimization problem. And
based on the above transformation, it is convenient to pro-
pose the corresponding neural network model for problem
(2). Before this, we give the following notations to simply
the following presentations.

Let x′ = (xT , yT , uT , vT )T , based on the above notations,

problem (3) can be rewritten as,

(4)

Definition 2.1. Suppose that is feasible to the above programs
(4), and denote

If the gradient vectors5Hk(x′),5Gl(x′), l ∈ L are linearly
independent, then x′ is called a regular point to the above
programs (4).

Following some results (Theorem 6.11) on the smooth
method for the bilevel programming problem in Ref.6, on
the relationships between the optimal solutions to problem
(2) and that to problem (4), we can also give the following
theorem without proof.

Theorem 2.1. Suppose that {(x′)ε} is a solution sequence to
the above programs (4). If the sequence {(x′)ε} converges to
some x̃ for ε→ 0, meanwhile x̃ is also regular to the above
programs (4). Then, x̃ is an optimal solution to the programs
(2).

Following some results in optimization theory,[18] we have
the following results on the optimal solutions of problem (4).

Suppose that there exist a point (x′∗, λ∗, µ∗) satisfying that
for all x′ ∈ R2m+n+q, and all (λ, µ) ∈ R2m+n+p+q with
µ ≥ 0,

(5)

Then the point (x′)∗ is an optimal solution to the above

programs (4), where de-
notes the Lagrange function to the programs (4).

Proof. See Ref.18.

In fact, the above result is the so called saddle point theo-
rem. Let x′ be a regular point, and also feasible to problem
(4). Following (5), there exist (λ, µ) ∈ R2m+n+p+q with
µ ≥ 0, such that the following K-T optimality conditions are
satisfied at (x′, λ, µ).

5 (x′) +5G(x′)µ+5H(x′)λµ = 0,
G(x′) ≤ 0, H(x′) = 0,
µTG(x′) = 0, x′ ≥ 0, µ ≥ 0

(6)
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3. NEURAL NETWORK MODEL FOR PROB-
LEM (4)

Following the equality systems (6), the following so-called
energy function can be constructed

(7)

where G+
l = max{0, Gl(x′)}. It is obvious that the point

W ∗ = (x′∗, λ∗, µ∗) is a minimization optimal solution of the
function Φ(w) if and only if w∗ satisfies the above system
(6). That’s, w∗ is a K-T point to problem (4).

Then, we can construct the following neural network, whose
transient behavior is depicted by the equations (8).

(8)

where w ∈ Ω = {(x′, λ, µ) ∈ R4m+2n+p+2q|x′ ≥ 0, µ ≥
0}. In fact, the above equations depict the changing proces-
sion of the variable w with time t.

Remark 3.1. It is noted that for the inequality constraints, we
don’t introduce the slack variables, then compared with the
existing neural network in Ref.13, our neural network model
(8) contains fewer neurons.

Now we are the position of exploring that whether the equilib-
rium point of the LBLPNN is also an approximately optimal
solution to problem (4) as ε→ 0+. On the above problem,
we have the following result.

Theorem 3.1. Suppose that the point w∗ is an equilibrium
point of the network model LBLPNN. Meanwhile the part
(x′)∗ in w∗ is regular to problem (4). Then, the point (x′)∗
solves problem (4) locally.

Proof. Suppose that the point w∗ is an equilibrium point of
the network model (8), i.e., 5Φ(w∗) = 0. Since Φ(w) is
twice continuously differentiable on Ω, there exists a ball

with center w∗ and
radius δ such that Φ(w) is convex in the ball B(w∗; δ). Fol-
lowing the characters of the convex function, we have

(9)

In (9), let5Φ(w∗) = 0, we can obtain that

(10)

It means that the point w∗ solves problem (4) locally.

Theorem 3.2. Suppose that the network model LBLPNN
has only one equilibrium point, which is denoted by w∗, then
w∗ is uniformly and asymptotically stable.

Proof. Let E(w) = Φ(w) − Φ(w∗) = Phi(w) ≥ 0, then
∀w 6= w∗, E(w) > 0. That’s, E(w) is a positive definitive
function. Moreover, given an arbitrary initial point w0, there
exists a unique trajectory w = w(t, w0) of the system (8),
along it there is

Following the Lyapunov Theorem, Theorem 3.2 is proved.

The following theorem shows that under some conditions,
the trajectory of the LBLPNN (8) does converge to the equi-
librium point.

Theorem 3.3. Suppose that the level set L(w0) = {w :
Φ(w) ≤ Φ(w0)} is bound, then there exists an equilibrium
point w̄ and a strictly increasing sequence {tn}(tn > 0),
such that

Proof. Firstly, we will prove the following two results.

(a) The function Φ(w(t, w0)) is monotone non-increasing
along the trajectory w = w(t, w0). In fact, following Theo-
rem 3.2, the above result (a) is obvious.

(b) W = {w(t, w0) : t ≥ 0} is a bound positive semi-
trajectory.

Following the definition of the energy function Φ(w), it is
obvious that is bound form below. In addition, Φ(w) is
continuous, following the above result (a), the set L(w0) is
bound and close, and

Hence, the result (b) is proved.

Now, we will prove limn→+∞ w(tn, w0) = w̄.

Firstly, W is a bound points set. Take strictly increasing
sequence
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w(tn, w0) is a bound and infinite sequence. Then, the se-
quence w(tn, w0) exist some limiting point w̄. In other
words, there exists a trajectory w(tn, w0) with the rigidly
increasing time sequence

Satisfying

Secondly, we prove that5Φ(w̄) = 0.

By (a), Φ(w) is a Lyapunov function. Φ(w̄) = 0 ⇔
5Φ(w̄) = 0. By LaSalle invariance principle,[19]

w(t̄n, w0) → W ′(t → +∞), where the term W ′ denotes
the largest invariant set in the set of equilibrium point. That
means, there exists a time sequence {tn}(tn ≥ 0) such that

The following theorem shows that the neural network (8) is
locally and asymptotically stable.

Theorem 3.4. Suppose that the level set L(W 0) = {w :
Φ(w) ≤ Φ(w0)} is bound, then the neural network model
(8) is Lyapunov stable, and the limiting point of the trajectory
of the neural network model (8) solves problem (4) locally.

Proof. Following Theorem 3.1, 3 .2 and 3.3, this theorem is
obvious.

4. COMPUTATION SIMULATIONS

In order to illustrate the feasibility and effectiveness of the
new network model (8), and compare with the existing ap-
proach in Ref.13, we consider the following three LBLP,
which are also considered in Ref.13.

Example 1[13] In this linear bilevel programming problem,
the upper level variable x ∈ R1 and the lower level variable
y ∈ R1.

Example 2[13] In this linear bilevel programming problem,
the upper level variable x ∈ R1 and the lower level variable
y ∈ R2.

Example 3[9] In this linear bilevel programming problem,
the upper level variable x ∈ R2 and the lower level variable
y ∈ R3.

For the above three linear bilevel programming problems,
firstly we transform them into the usual single level program-
ming problem, then adopt the smoothing function given in
Proposition 2.1 to smooth the complementary conditions,
and obtain the smoothed problem similar to problem (3).
Following the above (4), (6) and (8), we can obtain the
corresponding neural network model for the linear bilevel
programming problem, that’s, LBLPNN (8).

To solve the corresponding ordinary differential equations,
i.e., LBLPNN (8), we adopt the fourth order Runge-Kutta
approach. We make C++ programs and employ a PC(Central
Processing Unit: Intel Pentium 2.26 GHz, Random Access
Memory: 1G) to execute the programs.

Following the result in Theorem 2.1, we can get the optimal
solution to the LBLP (1) as ε→ 0. Then we consider taking
the different parameters ε, and Table 1 presents the different
optimal solutions of the three examples over different param-
eter ε. The initial point is that the variables x, y are identity
and the rest is zero. What’s more, Figures 1 and 2 show the
changing procession of the variables in the first two examples
with time corresponding to the parameter ε = 0.001.
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Table 1. The equilibrium point to different ε
 

 

Example in this 
paper 

Equilibrium point * *( , )x y corresponding over different  Optimal solution in the 
references ε= 0.01 ε= 0.001 ε= 0.0001

Example 1 (3.99,4.00) (4.00,4.00) (4.00,4.00) (4.00,4.00) 
Example 2 (1.834,0.892,0.004) (1.833,0.891,0) (1.833,0.891,0) (17/9,8/9,0) 
Example 3 (0.499,0.798,0,0.197,0.798) (0.499,0.8,0,0.198,0.8) (0.499,0.8,0,0.198,0.8) (0.5,0.8,0,0.2,0.8) 

 

Figure 1. The changing procession of the variables in
Example 1

Figure 2. The changing procession of the variables in
Example 2

To illustrate that the new neural network model is more ef-
ficient in the computation aspect than the neural network

presented in Ref.13, we compare the iterations of the two
kinds of neural network models in solving the same threes
examples, the detailed comparisons are presented in Table 2.

Table 2. Simulation results in this paper comparing with
that in Ref.[13] over ε = 0.001

 

 

Examples 
in this 
paper 

Network model in this paper Network model in Ref. [13]

Optimal 
solution 

Iterations 
Optimal 
solution 

Iterations 

Example 1 (4.00,4.00) 10895 (4.00,4.00) 11986 

Example 2 (1.833,0.891,0) 16789 (1.833,0.891,0) 18878 

Example 3 
(0.499,0.8,0,0.1
98,0.8) 

26467 
(0.499,0.8,0,0.1
98,0.8) 

30678 

 

From the above two tables and two figures, we can draw
the following conclusions. (1) The trajectory of the network
model does converge to the equilibrium point, which is an
optimal solution to the LBLP considered with the decreasing
of the parameter ε. (2) Compared with the neural network
presented in Ref.13, the new network model proposed here
needs lesser iterations to get the optimal solutions because
of containing fewer neurons.

5. REMARKS
In this paper, we propose a new neural network model for
the LBLP based on the smoothing method. The main contri-
bution of the paper is that through adopting the max operator
approach, we needn’t introduce the slackness variables for
the inequality constraints. That means that the new neural
network model contains fewer neurons. The numerical result
illustrate that the new network model has fewer iterations
over the existing approach in Ref.13.
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