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Ordinal classifiers have become quite popular in recent years. However, no one has systematically tested yet how sensitive they
are to noise. This research investigates for the first time the effect of non-monotone noise on the accuracy related rankings of ten
classifiers in a controlled manner. The findings of this experiment are reported here. They clearly show that some models are
more sensitive than others to non-monotone noise. Some classifiers which ranked higher in absence of noise performed poorly
when the noise level increased even modestly. Others, which ranked relatively low in noiseless datasets, ranked much better
when the noise levels increased. Two classifiers which assure monotone classifications became practically useless at relatively
low levels of noise, while other classifiers’ accuracies deteriorated at a much slower pace. Three alternative accuracy-related
measures were used: Accuracy, Kappa and the Gini Index, and all were subjected to statistical tests. The lesson to be learned
from this experiment is that it is very important to measure and report, among other things, the levels of noise which are present

in datasets used for the evaluation of classification models.
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1 Introduction

Monotone decision-making is very common in human daily
life. This type of problems is typified by the fact that the
output (i.e., the decision to be made) is expected to be either
a non-decreasing or a non-increasing function of the input.
For example, all other things being equal, a company with
a better liquidity ratio should score at least a similar bond
rating as one with a worse ratio. On a similar line of reason-
ing, a healthier applicant for life insurance is expected not to
pay a higher premium than one with worse health condition.
A candidate for a certain type of job is expected to get at
least a similar fitness score as another who has made worse
impression during an interview if all their other characteris-
tics of the two applicants are identical. The list of domains

where this monotonicity assumption makes sense is virtu-
ally endless. It includes bankruptcy predictions, consumer
preferences, various health related decisions, investment de-
cisions and so on.

The abundance of ordinal problem domains in which mono-
tone decisions are expected has not gone unnoticed by data
mining researchers and various classification models were
proposed over the years. Other ordinal classifiers do not
make this assumption, since there are problem domains
which are ordinal in nature, but in which the monotonic-
ity assumption does not make sense. These models are dis-
cussed in the next section. Virtually all ordinal models (i.e.,
those with the monotonicity assumption and those without)
need to accommodate non-monotone examples while learn-
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ing, since real-world data is typically not pure monotone.
Ordinal datasets usually include examples that violate the
monotonicity assumption. Such examples are in fact non-
monotone noise which should be dealt with somehow during
the learning phase. We refer to this common phenomenon
as non-monotone noise. Researchers have noticed this fact,
and took various measures to deal with it. Surprisingly,
however, there is not a single research report that system-
atically checks how sensitive these classifiers are to various
levels of non-monotone noise.

We report here the results of an experiment which measures
the accuracy of some known classifiers in presence of vari-
ous levels of non-monotone noise. Some of the results are
very interesting. We have found that some classifiers, which
provide excellent learning performance for noiseless or al-
most noiseless datasets, have deteriorated very rapidly as the
non-monotone noise level increases; while others seemed to
be less sensitive.

In this experiment we were mainly interested in checking
how sensitive classifiers are to non-monotone noise. In other
words, we have not tried to find the most accurate classifier,
but rather to test each classifier’s sensitivity to increasing
levels of non-monotone noise given a predefined (not nec-
essarily the optimal) set of parameters.

The experiment was limited to ordinal monotone datasets,
in which there is a single dependent variable and several at-
tributes. It was also assumed that all the attributes as well as
the dependent variable are expressed in ordinal terms. This
assumption is very often reasonable in the context of human
decision-making, since as human beings we tend to think in
symbolic ordinal terms. When granting a credit line, for in-
stance, it usually does not make any difference whether the
applicant’s net assets are worth 868,000 USD or 866,000
USD. Instead, we tend to think about this feature in ordi-
nal terms such as “low”, “average”, “high”, efc. Otherwise,
the decision maker will be overloaded with useless informa-
tion. Also, it is assumed here that an example with certain
attribute values can have only one class value (i.e., it cannot
take several class values, each with some probability).

The experiment was also restricted to what we nickname
“real-world” human decision-making problems that are
problems which human beings can solve while taking all the
attributes into account simultaneously. Various researchers
in human decision-making such as Miller!!! and Ganzach!?!
have shown that even experienced decision-makers do not
take more than 7 plus or minus two attributes into account si-
multaneously (also known as “Miller’s Magical Numbers”™).
In other words, this research does not deal with datasets
which have 100 or 1000 attributes. Rather it is focused on
problems which have one dependent variable and seven or
less attributes. Each attribute has 2 to 7 possible ordinal val-
ues, and so does the dependent (i.e., the class) variable.

The coming section discusses related work (Section 2) fol-
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lowed by a description of the experiment in Section 3, which
includes: The datasets and their characteristics (3.1), the
classifiers which were used in the experiment (3.2), the set-
tings of the experiment and the three measures for assessing
the accuracy of the models (3.3). The results are presented
and discussed in Section 4. Conclusions and suggestions for
further research are given in Section 5.

2 Related work

Ordinal classifiers have become increasing popular in recent
years. McCullagh’s Ordinal Regression (OR) is perhaps the
most well known among them.*! OR does not require that
the datasets to be learned from are purely monotone. On
the other hand, OR does not guarantee monotone classifica-
tions afterwards. OR is an example of an ordinal classifier
in which the monotonicity assumption does not apply. It
is, therefore, particularly suited for application domains in
which this assumption does not hold. In contrast, the Ordi-
nal Learning Model (OLM) is an early and simple ordinal
classier that makes this assumption.¥ Similar to OR, it can
work with non-monotone datasets, but unlike OR, the OLM
assures monotone classifications.

Monotone decision tree models have been introduced by
Makino et al.'® and later by Potharst and Bioch,®! Cao-
Van and De Baets,[’! Feelders and Pardoel,’®! and others.
They all require purely monotone datasets to learn from, and
they assure the monotonicity of subsequent classifications.
Lievens et al.’s probabilistic Ordinal Stochastic Dominance
Learner (OSDL) can learn from noisy ordinal datasets and
also provides monotone classifications thereafter.l”’ Mono-
tone neural network classifiers were introduced by Daniels
and Velikova.l'”! Their algorithms can learn from non-
monotone datasets, but they do not guarantee monotone
classifications. Other approaches towards ordinal classi-
fications include, but are not limited to, Ben-David’s hy-
brid approach,!'!! Frank and Hall’s Ordinal Class Classifier
(OCC) meta-model,!"?! and Popova and Bioch classification
by function decomposition.!'3! The last three models can
cope with non-monotone noisy data but do not guarantee
subsequent monotone classifications. This is unlike the rule
ensembles proposed by Dembczynski et al.,'*! which can
work with noisy data, and provide monotone classifications.
While a detailed discussion of each individual model is be-
yond the scope of this paper, the interested reader can find
a reference to them all in the Bibliography. Some of these
models are used in the experiment to be described in the
coming section.

As has been mentioned above, some classifiers, such as
those which were proposed by Makino et al.,”) Potharst
and Bioch,® Cao-Van and De Baets,!”! and Feelders and
Pardoel® can only learn from datasets which are purely
monotone. Since most real-world datasets include non-
monotone noise, the first phase of these classifiers typically
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aims at eliminating all non-monotone occurrences from the
datasets. Three papers have been published so far on the
generation of monotone artificial datasets. The paper by
De Loof et al. is about generating completely random
monotone datasets.!'>! It uses the computationally intensive
Markov Chain Monte Carlo method. The paper by Potharst
et al. made use of a simpler computation, and proposed a
method to incorporate an underlying structure into the arti-
ficial monotone datasets.!'%! The third paper by Milstein et
al. proposed a new algorithm for generating purely mono-
tone as well as noisy ordinal datasets.'”l The user of this
algorithm can control the levels of non-monotone noise in
the resulting datasets. This algorithm was used for gener-
ating the datasets in the experiment to be reported in the
coming section.

There have been several proposals in the literature suggest-
ing how to define and measure non-monotone noise in ordi-
nal datasets. In order to describe these proposals one needs
to re-introduce some formal definition:

Let D be a dataset with k ordinal attributes Aq,--- , Ay and
class variable Y which has C possible ordinal values. The
dataset consists of n examples x. A partial ordering < on D
is defined as

=1 e Aj(x) <Aj@@)forj=1,-- k (D

Thus, two examples x and z’ in space D are comparable,
if either x < 2’ or 2’ < z, otherwise = and z’ are incom-
parable. Identical examples denoted as x = z’, and non-
identical as © # x'.

Having this notation in mind, we call a pair of comparable
examples (x, z') monotone if

x=2'Nx#2' NY(z) <Y(2) ()

or

r=a2 ANY(z) =Y () 3)

A dataset consisting of n examples is monotone if all possi-
ble pairs of examples are either monotone or incomparable.

Example x from D clashes with example x’ from D if

x =2 ANx#2 ANY(z)>Y () 4

or
r=2 NY(z) #£Y(2) (5)

Furthermore, we use the following notation: if x is an exam-
ple from dataset D, then NClash(z) is the number of ex-
amples from D that clash with z. Clash(x) = 1 if = clashes
with some examples in D, and 0 otherwise. If Clash(z) =
1, z is called a non-monotone example.

Following Daniels and Velikova,['9 we call the first, and
most obvious, index of non-monotonicity to be introduced
here NMI1, the number of clash-pairs divided by the total
number of pairs of examples in the dataset. So,
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NMI1 = Y NClash(x) (6)

1
n(n —1) =

Horvath ef al. suggested dividing by the number of all com-
parable pairs in the dataset.!8]

The second index is called here NMI2, the number of non-
monotone examples divided by the total number of exam-
ples. So,

1
NMI2 =~ > Clash(x) (7)

zeD

The third index, NMI3, is the minimum number of class la-
bel changes needed to make a dataset monotone, divided
by the total number of examples.'>!’! The lowest value
of all these three indices is 0, when the dataset is purely
monotone. The highest value of the first two indices is 1,
when every example in the dataset clashes with all the oth-
ers (i.e., all the examples are non-monotone with respect to
each other).

NMI1 has been chosen for this experiment due to its intu-
itiveness rather than its simplicity. Unlike NMI2 and NMI3,
NMI1 reflects the fact that non-monotonicity occurs in pairs
of examples, since it counts all the clashing pairs in the
dataset relative to the total number of pairs.

3 The experiment

The purpose of the experiment was to check the sensitivity
of various classifiers to non-monotone noise. Of particular
interest was to answer questions such as: Are classifiers’
rankings changed when the noise level increases? Are some
classifiers more sensitive to non-monotone noise than oth-
ers?

A description of the datasets which were used in the exper-
iment is given in the coming section, followed by a list of
the classifiers which were used. The experiment settings are
discussed later on.

3.1 The datasets

All the datasets which were used in this experiment were
generated using an algorithm which is described by Mil-
stein et al.'"7! Since the algorithm was presented and dis-
cussed there, it will not be re-iterated here in detail. It should
only be mentioned that the algorithm artificially generates
datasets with user-specified monotone patterns as well as
user-defined NMI1 non-monotone noise index levels.

Ten distinct datasets, each containing 1000 examples, were
generated for the experiment. Their key characteristics are
shown in Table 1. The number of attributes, k£, in each
dataset is shown in the second leftmost column. The num-
ber of attributes’ possible ordinal values, V;, is shown in
the middle column. To simplify the experiment the values
of V; were identical for all the attributes in the respective
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dataset (i.e., V; = V). The attribute values were randomly
selected by the algorithm from Uniform distributions. The
number of possible ordinal values of the dependent variable
(i.e., the number of ordinal class values), C, is shown in
second rightmost column. As has been mentioned in the In-
troduction section, the selected values of k,V, and C are

Table 1: The major characteristics of the datasets

not trivial on one hand, yet they are still comprehensible
by decision-makers (i.e., each is in the range 2 to 7). The
monotone functions which were used for generating the de-
pendent (i.e., the class) values are shown in the rightmost

column, were A; denotes the value of the j th attribute.

Number of

Dataset number .
attributes, k

values, V

Number of attribute

Function for class
numerical value

Number of class
values, C
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Y2+ (4)]
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Yed
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NEN

x24

[1(4; + 1)?
X(4)!
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Since our major purpose in this experiment was to check
how sensitive classifiers are to non-monotone noise, seven
versions of each dataset were generated. Each dataset was
initially generated without any non-monotone noise (i.e.,
purely monotone). Later the algorithm incrementally gener-
ated noisy examples up to the following NMI1 noise index
levels: 1%, 2%, 5%, 10%, 15% and 20%. These values were
selected based on our and others’ observations of real ordi-
nal datasets, in which the monotonicity assumption made
sense. Milstein ef al.!'”! have measured the NMI1 values of
four real world ordinal datasets: ESL, ERA, LEV, and SWD
which can be found at the Weka project web site.[?" It was
found that the NMI1 values ranged from about 1% to 4%.
Daniels and Velikova who have checked two datasets found
that they were almost monotone.['%  On the other hand,
Horvath et al. found only 5 purely monotone datasets out

Table 2: The classifiers and their major characteristics

of 40.1'81 Based on these observations we have chosen the
values of NMI1 within a similar range, but also allowed it
higher values in order to check how the classifiers perform
when encountering nosier datasets.

3.2 The classifiers

Ten data mining classifiers which are included in Weka were
chosen for the experiment: Three non-ordinal (i.e., classi-
fiers which do not take the ordinal order into account), and
seven ordinal. The first category included: (a) An imple-
mentation of the well-known C4.5,*! nicknamed J48 in
Weka, (b) Logistic Regression (LOGISTIC) which is also
widely used in data mining,*?! and (c) Sequential Minimal
Optimization (SMO),[?¥! a famous fast version of Support
Vector Machines.

Classifier Ordinal Monotone classification
1 C4.5 (348) no no
2 Logistic Regression (LOGISTIC) no no
3 Ordinal Class Classifier / J48 (OCC/J48) yes no
4 Ordinal Class Classifier / LOGISTIC (OCC/LOGISTIC) yes no
5 Ordinal Class Classifier / OLM (OCC/OLM) yes no
6 Ordinal Class Classifier / OSDL (OCC/OSDL) yes no
7 Ordinal Class Classifier / SMO (OCC/SMO) yes no
8 Ordinal Learning Model (OLM) yes yes
9 Ordinal Stochastic Dominance Learner (OSDL) yes yes
10 Sequential Minimal Optimization (SMO) no no
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Many ordinal classifiers were mentioned in the related work
section, several of which were used in this experiment: Two
ordinal classifiers which assure monotone classifications,
the OSDL and the OLM, and five versions of the OCC. Be-
ing a meta-model the OCC was operated above the three
non-ordinal classifiers (J48, LOGISTIC, and SMO) and the
two ordinal classifiers (OSDL and OLM) as the base mod-
els. The ordinal classifiers which were used in the experi-
ment were all mentioned with their respective references in
the Related Work section earlier. The non-ordinal classi-
fiers are all well described in the literature and will not be
re-iterated here.

Table 2 shows the classifiers which were used in the exper-
iment, their short nicknames, whether they are ordinal (i.e.,
use the ordinal order within the data while learning), and
whether or not they assure monotone classification there-
after.

3.3 Experiment settings

The experiment was conducted using Weka 3.7.10 with the
default values of the classifiers’ parameters. The default
values of the parameters rather than their optimal values
were chosen to make the computation manageable. As has
previously been mentioned, the aim of the experiment was
not finding a “winner” (as most publications do) among the
tested classifiers, but rather to check how sensitive each clas-
sifier is to increasing levels of non-monotone noise, given a
set of (not necessarily optimal) parameters.

Ten fold cross validation was used throughout. The re-
sults of each fold were recorded using Weka’s Experimenter
module. For each fold the following data was collected: The
accuracy (i.e., the “hit ratio”, nicknamed ACC here), Co-
hen’s Kappa (KAPPA), and the Area Under the ROC Curve
(AUC). These three accuracy-related indices were recorded
since there is still no consensus among researchers which
is the “best” one, and all three are used in data mining re-
search.[?4]

While assessing the performance of a classifier, one is usu-
ally interested in measuring its added value relative to a ran-
dom one. Both AUC and Kappa measure this added value
(each in its own way), but on different scales: When the
class values are evenly distributed (as is the case of our
experiment), a random classifier results zero KAPPA and
0.5 AUC. The accuracy (ACC) of a random classifier de-
pends on the number of class values, C'. A perfect classi-
fier scores 1 for ACC, KAPPA and the AUC. In order to
use identical scales, the ACC and the KAPPA results were
recorded as is directly from Weka’s Experimenter. This has
been done since KAPPA compensates for ACC’s random
successes anyway. However, the AUC was converted to
the well known Gini index (GINI) by the known formula:
GINI = 2(AUC — 0.5). This way all three accuracy-
related indices, i.e. ACC, KAPPA, and GINI, ranged from 0
to 1.

Published by Sciedu Press

As has been mentioned in Section 3.1, ten distinct purely
monotone artificially generated datasets were available in
this experiment, each having seven versions (0%, 1%, 2%,
5%, 10%, 15%, and 20% of NMI1 noise). Since the experi-
ment tested the performance of ten classifiers using ten-fold
cross validation, the total number of learning-classification
cycles was 7,000.

4 Results

The average values of ACC, KAPPA and GINI for each
classifier over all the ten datasets are shown graphically
in Figure 1. The horizontal axes indicate the NMI1 non-
monotone noise indices. Figure 1 shows that some classi-
fiers are more sensitive indeed to non-monotone noise than
others. It can be seen in Figure 1, for instance, that by
all three accuracy-related measures, the performance of the
OLM and the OSDL deteriorated at a faster pace than that
of J48 and LOGISTIC regression. This is particularly noted
at the lower range (0% to 5%) of the NMI1 noise.

When the noise level increased modestly from 0% (i.e.,
purely monotone datasets) to 1%, the OLM’s KAPPA, for
example, decreased from 0.895 to 0.515 (a loss of 42.5%),
and that of the OSDL from 0.904 to 0.341 (a loss of 62.3%).
For comparison, LOGISTIC Regession’s KAPPA was re-
duced from 0.912 to 0.787 (a loss of only 13.7%). A look at
the comparable results of the GINI index reveals very sim-
ilar picture: OLM’s GINI was reduced from 0.896 to 0.514
(a loss of 42.6%), OSDL’s GINI — from 0.904 to 0.341 (a
loss of 62.3%), and LOGISTIC Regression’s GINI — from
0.978 to 0.891 (a loss of only 8.9%). While looking at the
wider range of the NMI1 noise index, it is worthwhile to
mention that the negative KAPPA and GINI values indicate
worse than random classifier performance. A look at the av-
erage performance of the classifiers at 5% noise level reveals
that four out of the ten classifiers (OCC/OLM, OCC/OSDL,
OSDL, and OLM) became virtually useless for any practical
application, since both their KAPPA and GINI values dete-
riorated below 0.2. Virtually all the classifiers performed as
poorly as random classifiers (or very close to that) when the
level of noise reached 10% and above.

Figures 2-4 present the classifiers’ rankings by ACC,
KAPPA and GINI respectively for the different values of
the NMI1 noise indices. These rankings are based upon the
average ranks of the classifiers across the ten datasets. The
noise levels are shown on the horizontal axes, and the rank-
ings on the vertical, where 1 indicates the best performing
classifier, 2 - the second best, and so on. Perhaps one of the
most interesting observations here is the fact that not a sin-
gle classifier ranked the best across all the NMI1 noise index
range. LOGISTIC regression, for instance, which ranked
second in noiseless datasets according to KAPPA, was only
the fourth when the noise level increased to 1%. It was sur-
passed by SMO, for instance, which ranked in the seventh
position in purely monotone datasets by KAPPA.
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Figure 2: Ranking by ACC as a function of a noise index

Despite of the expected differences in some rankings ac-
cording the different accuracy-related measures, there are
some notable similarities between them. Generally speak-
ing, the OLM and the OSDL (i.e., those classifiers which as-
sure monotone classifications) got above-average rankings
in noiseless datasets according to the three measures. How-
ever, their rankings deteriorated quite rapidly in presence of
even low levels of noise. On the other hand, the non-ordinal

88

10%% 15% 20%

classifiers, such as J48 and SMO were the most successful
at the higher end of the NMI1 noise scale.

It worth mentioning some other key observations as well:
Figures 2-4 show that the rank of J48 has improved signifi-
cantly when the noise in the datasets increases: By ACC, for
instance, from the 9" position for the monotone datasets to
the 34 for 1% noisy datasets, and then to the 2"¢ for 2%
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noisy datasets. Furthermore, J48 ranked the first for 5% to
20% noisy datasets by both ACC and KAPPA. The rank of
SMO by both ACC and KAPPA also improved as the noise
level increased: From the 7" position by ACC in the mono-
tone datasets to the first for the datasets with 1% and 2% of
noise, and then it concedes to J48. These results are quite
similar according to Kappa. According to GINI, SMO was
at a fairly competitive and quite a stable position throughout
the entire noise range.

Generally speaking, the rankings of the various classifiers
by both ACC and KAPPA were quite similar, with some

minor exceptions: In particular, at the high end of the noise
levels, where all the classifiers performed quite poorly in
absolute terms. The rankings according to the GINI in-
dex are somehow different from those of ACC and KAPPA.
For example, the improvement in the rank of J48 is not
so pertinent when the ranking is based on GINI. This is
since it ranked relatively higher, the sixth instead of the
ninth, for the monotone datasets in the first place. Similar
to ACC and KAPPA rankings, according to GINI, LOGIS-
TIC and OCC/LOGISTIC also ranked high, whereas OSDL,
OCC/OSDL, OLM and OCC/OLM ranked relatively low.

0]
(0]
(0]

10

=8=J48

~8=-LOGISTIC

== 0CC/J48

== 0CC/LOGISTIC

=¥=0CC/OLM

=&=0CC/OSDL
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===0SDL

==SMO

0% 1% 204

Figure 3: Ranking by KAPPA as a function of a noise index
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Figure 4: Ranking by GINI as a function of a noise index
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Table 3 presents two statistics, Friedman and its correction
suggested by Iman and Davenport,'>*! for the different levels
of noise. The Friedman test checks whether the measured
average ranks are significantly different from the mean rank,
as expected under null-hypothesis. With 10 classifiers and

Table 3: Friedman statistic, X%, and its correction, '

10 datasets, the critical value for F(9, 81) at a = 0.05 is
1.998. That is, the null-hypothesis (i.e., that all the algo-
rithms are equivalent) is rejected for any noise level and for
all the accuracy-related measures.

NMI1 noise level

Statistic
0% 1% 2% 5% 10% 15% 20%
ACC X2 49.05 46.37 56.38 60.75 61.50 60.85 59.34
Fr 10.78 9.57 15.10 18.69 19.42 18.79 17.42
X2 43.18 46.37 56.32 60.57 63.11 65.46 63.19
KAPPA
Fr 8.30 9.57 15.05 18.53 21.13 24.01 21.21
GINI xE 34.06 61.71 62.06 62.80 64.19 67.78 66.10
Fr 5.48 19.63 19.99 20.78 22.38 27.46 24.90

Friedman test with Iman and Davenport correction does not
make pairwise comparison among pairs of classifiers. Ta-
bles 4 and 5 present the average pairwise ranking differ-
ences by Kappa for purely monotone datasets and for 5%
noise level, respectively. The results of Nemenyi post-hoc
test for all three metrics at the different levels of noise are

available from the authors upon request. With 10 classi-
fiers, the critical value at oo = 0.05 is 3.164 (at o = 0.10 it is
2.920).241 Therefore, the critical differences are 4.284 for o
=0.05 (3.954 for o = 0.10). Significant differences for o =
0.05 are underlined and highlighted in gray background.

Table 4: Average pairwise ranking differences by KAPPA for 0% NMI1 noise index

occ/ OcCc/ OocCc/ OocCc/ OocCc/
LOGISTIC LoglsTIC OSbL OSDL oLM OLM SMO SMO 748 J48
OCC/LOGISTIC -
LOGISTIC 0.2 -
OSDL 1.4 1.2 -
0CC/OSDL 1.45 1.25 0.05 -
OCC/OLM 2.75 2.55 1.35 1.3 -
OLM 2.75 255 1.35 13 0 -
SMO 3.1 2.9 1.7 1.65 0.35 0.35 -
OCC/SMO 3.3 31 1.9 1.85 0.55 0.55 0.2 -
J48 5.75 5.55 4.35 4.3 3 3 2.65 2.45 -
0CC/i48 6.3 6.1 4.9 4.85 3.55 3.55 3.2 3 0.55 -
Table 5: Average pairwise ranking differences by KAPPA for 5% NMI1 noise index
OCC oOcc/ OcCcC/ OCC/ occ/
J48 SMO /348  LOGISTIC LOGISTIC SMO OLM OLM  OSDL OSbL
J48 -
SMO 0.5 -
0OCC/48 1.3 0.8 -
OCC/LOGISTIC 1.6 11 0.3 -
LOGISTIC 2.1 1.6 0.8 0.5 -
OCC/sMO 2.7 2.2 1.4 11 0.6 -
oLM 5.7 5.2 4.4 4.1 3.6 3 -
OCC/OLM 5.9 5.4 4.6 4.3 3.8 3.2 0.2 -
OCC/OSDL 6.05 555 475 445 3.95 3.35 0.35 0.15 -
OSDL 6.15  5.65 485 4.55 4.05 3.45 0.45 0.25 0.1 -
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5 Conclusions and further research

In general, with the exception of OCC/LOGISTIC, the non-
ordinal classifiers are found to have high rank than the ordi-
nal ones. This result may be regarded as counter intuitive,
since one can expect classifiers which exploit the ordinal or-
der to do better than those which do not. These seemingly
odd findings are quite consistent with an earlier work,>!
where the performance of several ordinal and non-ordinal
classifiers was assessed on real-world ordinal datasets with-
out measuring or controlling their noise levels, as we have
done in this experiment. These findings, however, should be
taken with a grain of salt, since better rankings do not neces-
sarily mean “more accurate”. As can be seen, for instance,
in Table 4, OCC/LOGISTIC which ranked first while learn-
ing purely monotone datasets, was more accurate, accord-
ing to KAPPA, than J48 and OCC/J48 with 95% level of
confidence. It was, however, statistically indistinguishable
from all the other classifiers. When the noise level increased
to 5%, J48 ranked the first, but it was statistically indis-
tinguishable from OCC/LOGISTIC (and also from SMO,
0OCC/J48, LOGISTIC, and OCC/SMO).

Another interesting observation which emerges from this
experiment relates to those classifiers which assure mono-
tone classifications, the OSDL and the OLM. According
to KAPPA, they were statistically indistinguishable from
OCC/LOGISTIC and LOGISTIC, which ranked the first
and the second respectively in noiseless datasets (see Ta-
ble 4). However, both the OSDL and the OLM were
found to be (statistically) worse than J48 and SMO, which
ranked first and second when the noise level increased to
5% (see Table 5). A similar, though not identical, re-
sult is obtained when pairs of classifiers are compared by
GINI. Both OSDL and OLM are statistically indistinguish-
able from LOGISTIC and OCC/LOGISTIC while learning
from purely monotone datasets, but (statistically) inferior
to J48, SMO, OCC/LOGISTIC, and LOGISTIC when the
noise level was 5%. By all three accuracy related measures,
both the OSDL and the OLM were not as accurate as their
counterparts (which do not assure monotone classification)

as the noise level increased. This phenomenon can be ex-
plained by the OSDL and OLM’s unique (and frequently im-
portant) feature, the generation of monotone classifications.
This feature imposes extra constraints on their learning pro-
cess. An immediate practical conclusion one can draw from
this experiment is that both the OSDL and the OLM be-
come quite useless in terms of accuracy while learning from
datasets which have NMI1 noise level of 5% and above.

It has been shown here that classifiers rankings are de-
pendent, among other things, upon the noise levels in the
datasets. More work has to be done in the future to fully
understand how non-monotone noise affects the accuracy
of the various classifiers. Adding more classifiers to ex-
periments such as the one which has been reported here,
where the noise levels are controlled, is one way to go. An-
other open question is whether the assignment of optimal
values to each classifier at each noise level will affect the
findings of this work. We see no reason to suspect that the
general picture will change (i.e., the rankings will remain
stable when the optimal parameter values will be used), but
this hypothesis is to be tested as well. Using real-world data
instead of artificial data, while maintaining controlled lev-
els of non-monotone noise, is another challenge. It is also
of interest to study the effects of the number of examples
which are used for learning on accuracy (while controlling
the noise levels), and how the selection of monotone func-
tions (see Table 1) affects the various classifiers when the
datasets become noisier.

Currently most publications do not report the noise levels
in the datasets which were used in the experiments. This
omission may lead the reader to wrong conclusions, since,
as this work demonstrates for the first time, classifiers’ rank-
ings are dependent, among other things, on non-monotone
noise levels. We therefore hope that this paper will en-
courage researchers to measure and report the noise levels
in the datasets they use while comparing the accuracies of
classifiers in scientific publications. As this paper demon-
strates, non-monotone noise does affect classifiers’ perfor-
mance and rankings.
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