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Abstract
Missile guidance systems using the Proportional Navigation (PN) guidance law is limited in performance in supporting wide
class of engagement scenarios with varying mission and target parameters. For surpassing this limitation, an Artificial Neural
Network (ANN) to substitute the PN guidance is proposed by the authors. The ANN based system enables learning, adaptation,
and faster throughput and thus equips the guidance system with capability akin to intelligent biological organisms. This im-
provement could remove the barrier of limitations with allowable mission scope. In this paper, a Multi-Layer Perceptron (MLP)
has been selected to implement the ANN based approach for replacing PN guidance. Attempts to replace PN guidance using
MLP are limited in the literature and warrant greater attention due to significant theoretical development with the MLP field
in recent times. It is shown in this paper, that the MLP based guidance law can effectively substitute PN for a wide range of
engagement scenarios with variations in initial conditions. A foundational argument to justify using an MLP for substituting PN
is provided. Besides this, the design, training and simulation based testing approach for an MLP to replace PN has been devised
and described. The potential for faster throughput is possible as the MLP nodes process information in parallel when generating
PN like guidance commands. The results clearly demonstrate the potential of MLP in future applications to effectively replace
and thus upgrade a wide spectrum of modern missile guidance laws.
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1 Introduction

A staple missile guidance law that has remained robust for
most homing missile engagements is Proportional Naviga-
tion (PN).[1] However, this robustness could decrease due to
a higher level of challenge being forced on homing missiles
in the modern mission environment. The challenges can be
attributed to needing to engage targets that are improved in
their ability to maneuver in complex fashion, provide for
better concealment against threats and being capable of dup-
ing attacking homing missiles.[2, 3] Guidance systems mak-

ing use of laws such as PN thus require upgrades to over-
come this significant problem. To compound the difficulty,
any upgrade proposed, needs to be cost effective in order to
become practically useful.

One approach to achieve these upgrades is to enable the mis-
sile guidance system to perform automatic learning, adapta-
tion, and improve throughput when generating guidance law
commands. This has led to research and design effort being
directed towards the discipline of Intelligent Systems tech-
niques.[4] This discipline has been advancing in order to up-
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grade a system’s agility at low cost. Therefore, the authors
have identified it as a correct direction for investigations for
upgrading PN. The Intelligent systems discipline is actually
a collection of a number of fields, which includes Artificial
Neural Networks, Bayesian estimation, and Game theory to
name a few.

For this study, an Artificial neural network (ANN) based
approach was selected for substituting and upgrading PN.
This is because it appeared to be the best fit for enabling
automatic learning, adaptation, as well as faster through-
put.[4, 5] In particular, the authors selected one variety of
ANN, namely the Multi-Layer-Perceptron (MLP). The se-
lection of MLP can be justified through the following argu-
ment: Missile guidance laws such are PN and many others
make use of mathematical formulae to represent the guid-
ance law.[6] A generalized equation is shown as an example
in Equation 1. This equation describes acceleration output
of a guidance law as a continuous function of inputs.

Accndemanded = F (Guidance law inputs) (1)

MLP theory is well developed[4] and has been widely ap-
plied for approximation of continuous mathematical func-
tions to high accuracy. Furthermore, MLP ANNs have been
proven mathematically as universal function approximators,
able to achieve an arbitrary level of accuracy in matching a
given continuous differentiable function.[7, 8] Therefore, the
choice to use MLP for substituting PN was justified.

A number of research and design questions were posed
when considering replacing PN with an MLP. The main
questions raised and answered through this study are pro-
vided below. The starting point was to determine the test
scenario that was required to compare the performance of
PN against an MLP based guidance approach. It is well
known that PN can be applied for a broad range of terminal
engagements.[1] A terminal engagement scenario focusses
on the last portion of flight where the missile is usually
tracking the target within its own on-board sensor and hom-
ing onto it. This usually requires the proximity to the target
to be small relative to the rest of the missile’s flight. The
small proximity in turn constraints the time to take correct
action by the homing system in response to changes in tar-
get behavior. So far, PN has been applied successfully in
many such engagement scenarios.[1, 6] This is especially the
case with many types of air-to-ground engagements where a
guidance system using PN has been applied to successfully
intercept a relatively slow moving ground target. For this
scenario, PN has been found to cope with any variation in
initial conditions such as heading and range and still inter-
cept the target with small miss distances.[1] However, when
expanding mission scope beyond air-to-ground to air-to-air
and so on, PN has limitations in being able to achieve inter-
cept with small miss distances. Therefore, as a first step, an
MLP design that purports to replace and upgrade PN would
need to perform just as well as PN for the type of mission

scenario where PN is adequate. Consequently, the air-to-
ground scenario was a selected for the test-bed to compare
degree of match between PN and an MLP based guidance
law. Furthermore, the authors have devised the test-bed as
well as mission scenario to be scalable to support other types
of engagements, which would be useful for future studies
such as air-to-air and so on.

The next question was to determine a suitable MLP network
design. This involved taking into consideration a number of
factors. This included selection of suitable inputs and out-
puts, selecting number of hidden layers and number of neu-
rons per hidden layer and selecting the activation function
for these neurons. To answer this question, a closer look at
classical PN’s inputs and outputs as well as the nature of re-
lationship (linear/non-linear) between input and output vari-
ables needed consideration. This needed to be associated
with mathematical proofs that enabled an MLP to be a uni-
versal approximator for continuous differentiable functions.
Besides this, the training of the designed MLP was also a
major focus for the investigation. Training has the objective
of closely matching the behavior of the mathematical func-
tion being mapped via the MLP and needs to achieve this
outcome efficiently in terms of computation time. There
is already a lot of criteria available in literature which de-
scribes various types of MLP training algorithms.[4, 5] Using
this and relating it to the PN replacement problem, the first
major decision was to select between applying either a su-
pervised or an unsupervised training paradigm.[4, 5, 9] Within
these paradigms, there are a larger number of classes of al-
gorithms, so there needed to be further selection for choos-
ing the particular class of either supervised or unsupervised
training algorithm. This needed to take into account train-
ing speed and under or over-fitting trade-offs[10, 11] which
impacted correct generalization (prediction) potential.[4, 5, 12]

Since there was input-output data available via running clas-
sical PN over a set of air-to-ground engagements, it was easy
to choose the supervised training approach, however choos-
ing the particular type of supervised training algorithm was
not a trivial process and is explored in this study.

To assist with selections, a number of variations in scenar-
ios[1, 6] under the theme of air-to-ground terminal engage-
ment needed to be devised and tested with both PN and
MLP based guidance. The approach to systematically test
was critical in order to yield the best choice for MLP design
that was compact and efficient to execute and could replace
PN with high accuracy across all of the scenarios tested.
For all of these tests, it was important to keep referring to
a relevant set of metrics in order to compare PN and MLP
performance. Selecting relevant metrics was an investiga-
tion in itself as there are already many metrics for evaluat-
ing MLP in the literature.[4, 5] This was useful to serve as
reference but needed to be filtered to select the appropriate
ones that made sense in context of missile guidance system
performance analysis. Finally, it was important to carefully
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select the training data for all the scenarios tested because
some choices would result in the MLP guidance only being
able to substitute PN for data in the neighborhood of training
data collected, rather than match correctly across the entire
set of input-output patterns that processing using PN allows
for. This was briefly investigated with some limited solu-
tions described by referring to literature such as.[13]

The consequence of an MLP successfully substituting for
PN can open the doorway to guidance law design that is
much more flexible and robust for support demanding mis-
sions or an expanded mission scope. To consider the the ma-
jor impacts, the assessment can be divided into three areas
which can be stated as impact of enabling learning, impact
of enabling adaptation and impact of faster throughput re-
spectively. The ability to cater for learning[4, 5, 9] provides for
a whole range of different and complex continuous guidance
law functions to be effectively copied by an MLP. Since the
MLP can be further tuned and can generalize depending on
choice of training algorithm, this allows for increased flex-
ibility. It means that a single network can effectively be
used to represent a wide range of guidance laws. For mis-
sions, this can be useful as the mission stages change or for
situation where custom requirements for terminal phase in-
volving some modification to PN etc becomes mandatory.
The ability to provide for adaption is because an MLP can
be tuned in real-time[4, 5] as well within allowable limitations
to cope with some degree of novel environmental conditions
not encountered during training. This allows the mission
to progress without failing in such circumstances. Using
classical guidance laws such as PN here would otherwise
limit mission scope. Finally, the ability to support faster
throughput via MLP can mean that guidance commands are
computed faster. This allows for trajectory correction in a
timely manner against highly agile targets. Since modern
targets are becoming equipped with better maneuvering ca-
pability,[2, 6] an MLP based guidance can allow for robust-
ness under these conditions.

The current paper is organized as follows: Section 2 de-
scribes a survey of recent work where an ANN substitute
has been used in place of a classical PN missile guidance
law. Apart from gaining an understanding of how other au-
thors have applied ANN for purpose of missile guidance,
the authors of this paper have also identified some gaps in
approaches used by others. These gaps are described and
are mostly addressed in this paper. Section 3 provides a de-
scription of a guidance test-bed framework for testing and
comparing the ANN based guidance system against clas-
sical guidance approaches. Comparison simulations were
conducted for a variety of mission scenarios via the test-bed.
Section 4 provides relevant ANN theory, which is suitable
for application for substituting missile guidance laws via re-
ferring to work done by others as well as understanding level
of development with MLP and missile guidance fields. Sec-
tion 5 discusses all of the critical simulation tests conducted

to design, refine, and benchmark the ANN guidance law.
Finally, Section 6 provides conclusions, and discusses the
significance of the current work. A summary of future re-
search directions is also given.

2 Backgroundd for ANN based missile
guidance

In the open literature, only a limited number of articles are
available describing missile guidance using ANN. The au-
thors of this paper have reported on some of the relevant and
significant works by others in order to discover the strate-
gies, suggestions for progression and gaps in applying neu-
ral network techniques in place of classical missile guidance
laws. All of the research questions described in the introduc-
tion section were used to guide this analysis.

The most notable paper surveyed on ANN based missile
guidance was Ref.[14] Here, an MLP was used to replace
a classical game theoretic pursuit-evasion guidance law,
which is a generalized version of PN. The argument made to
introduce an MLP substitute was that the classical pursuit-
evasion guidance law was unsuitable for real-time imple-
mentation. To overcome this problem, an MLP substitute
was deemed a suitable replacement. However, this justifica-
tion was not addressed in detail. This has provided the moti-
vation for authors of the current paper to provide systematic
investigation into the arguments for introducing ANN based
guidance techniques as appropriate substitutes in place of
"difficult-to-implement" classical guidance laws. The inputs
applied for the ANN substitute in Ref.[14] were range, range
rate, line-of-sight rate, and heading error. For the current
paper, this set of inputs was seen to be excessive and was
reduced to simply consist of line-of-sight rates in azimuth
and elevation with range-rate (also expressed as closing ve-
locity) becoming an optional input because of low varia-
tion over mission scenario. Heading error and range infor-
mation was determined to secondary to critical information
captured by the line of sight rate inputs, hence they were
omitted or designated as optional. The outputs were the ac-
celeration demands in azimuth and elevation required to be
achieved by the missile to home in to the target. The same
set of outputs was selected in this paper, as it was the ob-
vious choice. However, with the current paper, the authors
used inertial axis as well as made use of direction cosines
transformation to convert acceleration demands to missile
body axis and vice-versa as required.[1] The network used
in[14] was an MLP with a single hidden layer. Sigmoid acti-
vation functions were used by the neurons the hidden layer
and linear neurons in the output layer. Such an approach is
also used in this paper, as it is the typical approach when
making use of MLP for function substitution problems.

The training algorithm reported in Ref.[14] was Levenberg
Marquardt (LM). Once again, this selection was not justified
in detail. For this paper, the MATLAB neural network tool-
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box[15] was used and does provide the Levenberg Marquardt
(LM) training algorithm as one choice for performing su-
pervised training. However, selection of training algorithm
was performed used a systematic approach by authors of the
current paper. Table 1[14] provides a means to compare the
flight times between using classical PN and Neural network
configurations. There is some information in the prose about
miss distance comparison, but this is not reported in tabular
form and so is difficult to follow. The manner of reporting
will be improved in the current paper, so it is easier to follow
for the reader. Both miss distance and flight time are critical
metrics to evaluate any guidance law so they will continue to
be used for this paper. Besides this, Ref.[14] states in section
4.1 that the maximum difference in miss between the PN
and NN cases is 0.2 m and the difference in flight times was
2 ms. This is a small difference and shows evidence of high
degree of match between PN and ANN approaches. How-
ever, the training time required to build up the ANN is not
reported. This will be reported in the current paper, as it is
important to take note of when designing training scenarios.
Some scenarios may lead to long and prohibitive training
times and thus can restrict complexity of the network archi-
tecture as well as degree of testing to match against PN. The
suggestion made by the researchers at the end of the paper
is to consider 3-D engagements. This has been performed in
the current paper, which means that the current paper some-
what extends the work.[14]

Table 1: Simulations per choice of hidden layer neurons
 

 

Test Description 
Average RMS Error 
over flight (m) 

Maximum Error 
over flight (m) 

3 HL Neurons Run 1  0.2438 1.079 

3 HL Neurons Run 2 0.1924 0.5299 

3 HL Neurons Run 3 0.4224 15.83 

5 HL Neurons Run 1 0.331 5.599 

5 HL Neurons Run 2 0.1872 1.202 

5 HL Neurons Run 3 0.4419 1.752 

7 HL Neurons Run 1 0.7165 1.888 

7 HL Neurons Run 2 2.11 53.31 

7 HL Neurons Run 3 0.3642 1.683 

9 HL Neurons Run 1 0.4837 3.972 

9 HL Neurons Run 2 0.5564 2.08 

9 HL Neurons Run 3 0.4323 1.933 

 

Another notable paper reviewed was Ref.[16] In this paper,
the authors employed an ANN based controller for the guid-
ance law using a design strategy known as adaptive-critic.
This strategy falls into the domain of following an approxi-
mate dynamic programming approach.[17] It is an advanced
approach where two separate networks are used, namely, the
action network and critic network. The role of the action
network is to generate a guidance law, which is used to up-
date the missile plant model, which in turn produces an out-
put that is then evaluated using a critic network. The critic
network’s function is to approximate a value related func-
tion, which, in this case will affect estimated miss distance

and energy available at the end of the missile flight. The ac-
tion’s network can be tuned to best match the guidance law
that will result in some base cost. The critic network can be
tuned to turn this base cost and drive it down a minimal cost
and in doing so will provide an updated set of parameters
such as change to navigation ratio to optimize the guidance
law. The optimized guidance law is then encoded via further
tuning of the action network. This cycle is repeated over and
over to meet some strict error tolerance criteria set. For the
current paper, the authors have stuck with the approach of
Ref.[14] rather than Ref.[16] This is because approximate
dynamic programming is required only when dealing with
more advanced non-linear guidance laws such as the Opti-
mal Guidance Law (OGL).[18] The focus for this paper is
PN, which does not require this sophistication. However,
the remaining sections[16] was useful for discovering the ap-
proaches taken when considering the other questions con-
sidered in the introduction of this paper.

The inputs chosen for the action network[16] were 4 inputs,
which were associated with 4 guidance gains required to be
calculated in order to work out acceleration demands via
OGL. For the current paper, since PN is being used, there is
no need to make use of such gains. The outputs chosen in
Ref.[16] were two outputs, which denoted acceleration val-
ues in down and cross range respectively. This is same as
Ref.[14] and will be used in the current paper. The type of
network used in Ref.[16] was an MLP with two hidden layers
with 6 hidden layer neurons per hidden layer. Each of the
hidden layer neurons used sigmoid activation functions. The
reasoning for this configuration was not provided. Choosing
number of hidden layer neurons and number of hidden lay-
ers will be subject of systematic investigation in the current
paper.

The training algorithm used by in Ref.[16] was back-
propagation, which was selected because the authors stated
that it was simple, and in widespread use. Just like
Ref.,[16] there was not much discussion on selection of back-
propagation besides these comments. In the current paper,
the justification for training algorithm is being addressed.
The metrics used in Ref.[16] to compare performance be-
tween MLP and OGL was by calculating the impact on miss
distance, optimal cost function performance index and flight
time. Figure 2 in Ref.[16] describes the difference in trajec-
tory between classical OGL and when making using of the
adaptive critic. It is evident that for most of the flight, there
is some difference between the trajectories but towards the
end of the flight, the trajectories begin to converge. It was
concerning to see that the trajectories in between were de-
viating from the classical case. This may or may not be
acceptable when factoring in real mission conditions. In the
current paper, the attempt is made to match the whole tra-
jectory of PN as closely as possible. The result reported was
that the adaptive critic outperformed by the OGL by produc-
ing on average a miss that was 5 m smaller. For the current
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paper, the manner of comparing the trajectories will be same
i.e. to compare trajectory and miss. However since there is
a 3-D engagement, the trajectory comparison will take place
in all three axes and the miss as impact on flight time will be
compared. Ref.[16] also provides some information on num-
ber of training trials but it not at all obvious how much time
was actually taken for training and execution of the ANN
based guidance law. This will be clearly reported for the
current paper. The suggestion for future research by Ref.[16]

was to make use of unsupervised training algorithms by al-
lowing the critic network to learn online. Such a suggestion
does not link with the research effort in this paper but may
be useful for advanced work in later studies.

The other papers found in the survey were less relevant
and detailed but have been mentioned briefly. In Ref.,[19]

Radial-Basis Function (RBF) neural network architecture
with fuzzy logic was applied to classical substitute PN guid-
ance. Fuzzy logic[20] is another subfield of Intelligent sys-
tems but is outside scope of study for this paper. Scanning
through the remainder of Ref.[19] it was highly similar to the
work done in Ref.[14] except that it was bit more limited and
brief. Once again, the reasoning for specific choice of neu-
ral network architecture was not discussed. Other authors
such as Ref.[14, 21, 22] have discussed approaches to substi-
tute advanced classical guidance laws (OGL) using ANN.
Just like has been mentioned when evaluating[16] attempt-
ing to use neural networks to represent advanced classical
guidance laws has been left for the future.

3 Test-bed framework
A test-bed framework was developed for benchmarking
novel guidance law formulations against classical guidance
laws. The benchmarking was completed for a variety of
mission scenarios simulations, which are likely to occur in
real-world settings. The test-bed framework is depicted in
Figure 1. It shows that the measurements of target informa-
tion can be transmitted and processed via the ANN based
guidance law and the PN guidance law separately so that
two sets of acceleration demands, one for ANN and PN re-
spectively can be produced. These outputs can be used inde-
pendently to direct the missile to home in onto the target in
separate simulations. Mission data was collected and stored
to compare the two approaches when running the simula-
tions. The comparison was performed by considering the
following:

• The trajectories for the missile when applying PN and
ANN guidance respectively were compared by taking
the difference between them over the flight time of the
missile and calculating an RMS error throughout that
period.

• The closest point of approach to the target (referred
to as "miss-distance"[6]) and the time at which this
occurred was noted and compared to determine the

degree of closeness of results.

Figure 1: Test-Bed Framework for testing ANN and PN
Guidance Laws

These two aspects were deemed sufficient for comparing the
two guidance approaches. Other tests such as generating a
kinematic boundary[23] and stability analysis[24] have been
deferred to future studies as they were deemed more useful
when considering substitution for more advanced guidance
laws such as OGL where non-linearity and complex trajec-
tory means that studying the impact on these aspects is nec-
essary.

3.1 Simulation scenario

The engagement geometry applied to the test-bed is de-
picted in Figure 2. This figure shows the geometrical re-
lationship between a missile and target. It shows the im-
portant quantities (angles/vectors) to take into consideration
when devising a guidance method. The engagement geom-
etry shown is the case of a generalized 3-D intercept where
the missile or target can be on the ground, in the air, or in
the ocean. In the current paper, this geometry was modified
to the case of a missile directed to strike a relatively slow
moving ground target. The target was placed some distance
in both down-range and cross-range from the missile as an
initial condition. This made the geometry, a 3-D engage-
ment scenario. In addition, this kind of initial condition
represents the beginning of the terminal phase of engage-
ment. Terminal phase refers to the final stage of intercept
where the missile has exhausted its rocket fuel and is rely-
ing completely on built up kinetic energy and maneuvering
capability (via fins, for example) to home in to the target via
gliding.[6] The engagement geometry was selected with the
following attributes:

The terminal phase of an engagement has the goal of inter-
cepting the designated target.

• Time to achieve intercept is only in the order of a few
seconds due to the close proximity to the target.

• The missile has to cope with constraints during this
phase such as heading error with respect to the calcu-
lated collision course at the beginning of the terminal
phase. This forces the requirement of rapid and ac-
curate adjustments in missile motion when homing in
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onto the target. With the earlier stages of flight, i.e.
the bestlaunch and mid-course guidance phases, the
demands, on the missile to guide precisely under high
level of time constraints is not serious a concern, as
it is with the terminal phase.[6] Hence, the focus has
been placed on terminal phase engagement only.

Figure 2: Engagement Geometry between ANN and PN

3.2 PN guidance

PN was chosen as the classical guidance law to compare
with the ANN guidance approach. The following motivated
the selection:

• PN is widely applied and well understood and is avail-
able in analytical form.[1]

• It is valid to apply it in the test-bed framework sce-
nario for an air-to-ground engagement.[1, 6]

• The analytical expression is non-linear but limited in
complexity compared to advanced classical Guidance
Laws such as the Optimal Guidance Law (OGL).

Therefore, PN forms an appropriate starting point prior to
attempting to substitute more advanced guidance laws us-
ing ANN. The form of the PN guidance law is as follows:

ab
id

= (N × ŵsji
) (2)

In (2), ab
i is the inertial acceleration demanded by the missile

defined in missile body axis (b). N is the navigation con-
stant and ŵsji is the estimated line of sight (LOS) rate from
missile to the target (sij) in inertial/missile-body axis.[6]

3.3 Validation of test-bed

Classical PN was run on the test-bed for the simulation sce-
nario. The results generated were then compared against
published results for the same scenario from Ref.[1] This
approach taken to validate the test-bed. The graph in Fig-
ure 3 shows the result for normalized miss distance vs nor-
malized flight time for variety of heading errors for classical
PN. This response agreed with published results from Ref.[1]

The figure also shows that there is limited variation in the

graph when heading error was varied. This level of varia-
tion was deemed to be within tolerable limits (less than 1m,
set conservatively) in order to not affect successful inter-
cept goals. Following successful validation of the test-bed,
it was possible to use it to evaluate the performance of an
ANN guidance law substitute for PN.

Figure 3: Sensitivity of Miss to missile heading error

4 ANN based missile guidance
4.1 Classical PN function

The form of the PN guidance function to be substituted via
ANN is displayed graphically in Figure 4 and Figure 5.

Figure 4: PN Guidance in Azimuth Plane

It can be observed, that for all cases, apart from extremi-
ties in the x-axes (line-of-sight), the relationship between
inputs and outputs for PN is linear. The inconsistency at the
extremity in can be attributed to rapid line of sight variation
near interception the target as the target crosses the missile’s
path from one side to the other in short time span. The com-
bined speed of missile and target is large and contributes to
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this. This feature should not pose a problem with the substi-
tution via ANN. This is because of its capability to be able
to substitute for non-linearity, as well as coping with some
degree of discontinuity without suffering loss of accuracy
when substituting a function.[25] Therefore, it is acceptable
to view PN guidance law function as square-integrable and
hence it falls with the class of L2 functions.[26] This fact is
noteworthy because it means that the universal approxima-
tion theorem in Ref.[7, 27] can now be applied to enable sub-
stitution of the classical PN guidance function. This can be
accomplished using a multi-layer perceptron (MLP) ANN
architecture.[8]

Figure 5: PN Guidance in Elevation Plane

For the current paper, MLP architecture has been selected
for the guidance law substitution. This is because of re-
ported issues with extrapolation for the other potential ANN
candidate, namely, the RBF. This issue is described in
Ref.[28] Extrapolation would be necessary for supporting
generalization, a desirable feature for any trained neural
network to cope with correctly mapping inputs to outputs,
which were not provided during training. The next section
describes a summary of the design process used to construct
a suitable MLP ANN.

4.2 Benchmarking against classical regression

The general form of the multi-variate linear regression
(MvLR) as well the specific way it was applied for this prob-
lem is given in equation (3) and equation (4) respectively.

General Form : [Y] = [X] ∗ [β] + ε (3)

(4)

The MLP ANN based substitution needs to be a compared
against applying a classical regression technique to perform
the substation for PN. This is required in order to evaluate
whether a classical regression is adequate as well as deter-
mining whether the MLP ANN approach offers a superior
solution.

A MvLR was chosen as the classical regression technique
to substitute PN because

• There are multiple predictor and multiple dependent
variables

• The relationship between predictor and dependent
variables is linear as can been seen in Figures 4 and 5.

The regression was performed by collecting the data when
applying PN for line of sight rates as well as associated ac-
celerated demands and using this to calculate the regression
coefficients (β) via ordinary least squares minimization.

4.3 MLP Guidance solution design approach

The approach used for designing the MLP ANN is summa-
rized schematically in Figure 6. Each of the steps outlined
in the figure is elaborated in the following section.

Figure 6: MLP design approach

Detailed explanation of MLP ANN design approach

Step 1: To begin with, the number of inputs and outputs for
the network needed to be selected. The line of sight rates
in azimuth and elevation between missile and target were
chosen as the inputs for the network. Closing velocity was
not included as an input. This was because it does not vary
greatly over the course of the terminal phase. In addition,
the effects of gravity, wind resistance etc. was not included
in the modelling. The acceleration demand produced by the
PN guidance law was the obvious choice for the network
output. Since the engagement scenario was in 3-D, the de-
mands needed to be applied in x, y and z axes. In summary,
two inputs (LOS rates) and three outputs (planar Accelera-
tion demands) were used for the MLP ANN.

Step 2: The inputs and outputs chosen required modifica-
tion via a normalization pre and post processor. Normal-
ization scales the inputs and outputs into the range 0 to 1.
This step was introduced in order to provide for best choice
of weights end the end of training. Min-max normalization
has been applied to the network inputs and outputs Ref.[12]
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Step 3: The MLP ANN was configured with one hidden
layer and one output layer as this was determined to be ad-
equate for the guidance function being substituted. This is
because one hidden layer is considered sufficient for repre-
senting data that may not be linearly-separable.[29] Guid-
ance functions requiring substitution can fall into this cat-
egory, because they need not be Boolean in nature.[30] The
number of neurons in the hidden layer was decided upon via
trial and error by making an initial guess at number of neu-
rons required and then pruning or growing neurons as nec-
essary depending on observing the values of weights con-
necting to the particular neuron at the end of training. If the
weights were close to zero, the neuron could be removed
because it had insignificant impact on the mapping. If the
Mean squared error (MSE) between actual and network out-
puts at the end of training was not sufficiently small, an-
other neuron could be added and training repeated, until the
MSE was brought within tolerable margin. This strategy
was adopted following consultation of the "Optimal Brain
Damage" approach.[31] An output layer was also used in or-
der to serve as a scaling layer in addition to normalization
treatment on inputs and outputs.[32] A diagram of the MLP
ANN network architecture with these layers is depicted in
Figure 7.

Figure 7: Multi-Layer Perceptron (MLP) network
architecture

Step 4: Following selection of network architecture, the de-
sign of the internals of neurons (activation functions) for the
hidden as well as output layer was chosen. For the hidden
layer, a tan-sigmoid function was chosen as the activation
function in order to be able to account for non-linear re-
gions of guidance function being substituted.[8] For the out-
put layer a linear function was chosen as activation function
in order to provide for scaling of the signals from hidden
layer to the relevant magnitudes beyond range of 0 to 1 when
transmitting to network outputs.[32]

Step 5: The training algorithm to tune the MLP ANN was
chosen initially to be back-propagation, the simplest and

appropriate training algorithm. One detailed walkthrough
of back-propagation is provided in Ref.[33] Within MAT-
LAB’s Neural Network Toolbox,[15] the tool used for this
study, the Levenberg–Marquardt supervised training algo-
rithm was selected. This algorithm was reported to be fast
and stable for small and medium sized non-linear regres-
sion problems Ref.[34, 35] It was also reported to yield a bet-
ter match to the guidance law being substituted compared
to other back-propagation algorithms. Some tests were con-
ducted to confirm this for this application. Most other au-
thors surveyed did not delve into selection of training algo-
rithm and suitable training data. From the papers surveyed,
only Ref.[14] has gone on to state that the (LM) algorithm
was put to use for training the networks because it is ro-
bust popular for minimization purposes, the same reason for
which in this study it has been selected. However, in our
study, we have gone further to make use of extra features
such as Bayesian regularization,[36] and early stopping via
cross validation to minimize the changes of over-fitting tak-
ing place. This has not been covered by Ref.[14] or any of the
other authors surveyed. In Ref.,[14] however, there is some
treatment given to describe how to select the training data
to be representative in detail. In this paper, the principles
for improved selection of training data are mentioned with-
out delving into detailed exploration. This has been left as a
future research pathway.

Step 6: The comparison between classical PN and MLP
ANN substitute was performed as follows:

(1) Use classical PN as guidance and collect LOS and
missile acceleration data as inputs and outputs to be
stored for training the network.

(2) Initialize an MLP ANN and train the network using
training data available until MSE is within tolerable
level.

(3) Substitute the classical PN with trained MLP ANN
and run the engagement simulation again.

(4) Compare match between classical PN and MLP ANN
results.

(5) Repeat all of these steps for variations in engagement
geometry in order to refine the MLP ANN design.

5 Simulations
This section describes the simulations conducted to test the
performance of the ANN based Guidance Law against the
conventional PN for the scenarios described in Section 3.

5.1 General simulation settings

In all of these simulations, the following assumptions hold:

• Both missile and target are treated as point masses.
The missile’s airframe response is a first-order lag
when homing in to the target.

• Only single missile vs single target scenario was used
for the tests.
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• The target was constrained to be non-accelerating, but
was allowed to have motion at constant velocity.

• The missile was constrained to allow lateral accelera-
tion only (i.e. in azimuth and elevation direction w.r.t
to the missile body axis).

• The missile has lateral acceleration-limits applied in
order to make the scenario more realistic.

• Gravity and drag forces were not taken into consider-
ation.

All of these settings were applied in order to setup the sim-
plest but adequate configuration to be able to carry out a
sensible comparison.

5.2 Performance criteria for comparison

The performance criterion to evaluate the performance of
the MLP relative to classical PN has been conducted via
considering the following factors. The labels for the factor
as well as its type are provided for reader benefit:

• Effect on Miss Distance (R+ in metres)
• Effect on Flight Time (R+ in seconds)
• RMS error for difference in trajectory between PN

and MLP or other regression scheme over whole flight
(R+, time series in metres)

• Time to train MLP or determine coefficients for clas-
sical regression. (R++ in seconds)

• Time to execute MLP or classical regression scheme
in comparison with PN (R+ in seconds)

• Network Complexity Metric: VC dimension.[37]

• Training data similarity metric: matrix norm,[38] Dy-
namic Time Warping (DTW) distance.[39]

5.3 Simulation results & observations

5.3.1 Simulation 1: Simple collision test

A. Description

In this test, the missile was placed on collision course with
slow moving ground target. This is depicted via the pla-
nar engagement geometry shown in Figure 8. This figure
does show the provision for heading error, which was set to
zero for the current test, which is what makes it a collision
course.

For collision condition in Figure 8 to be satisfied, the move-
ment, normal to the line of sight should be same for both
missile and target within a given time duration. The fol-
lowing equations describe the collision course calculation
as well its relationship to missile heading.

VM sin(θs − θMcc) = VT sin(θs − θT ) (5)

→ θMcc = θS − sin−1(VT /VM sin(θs − θT )) (6)

From Geometry : θM = θMcc − θHE (7)

In (5), (6) and (7), VM is the velocity of the missile, VT is
the velocity of the target, θS is the initial line of sight an-
gle, θMCC is the collision course, θM is the missile heading
error, θHE is the missile heading error.

Figure 8: Collision course diagram

The geometry shows a missile and target at the beginning of
the terminal phase of an engagement. Accompanying equa-
tions to calculate the collision course trajectory are provided
in (4), (5), and (6). The target is shown as moving along the
ground with constant velocity and the missile is aimed to-
wards the target. The line of sight between missile and target
is displayed in Figure 8. The actual heading for the missile
is also displayed via the missile velocity vector Figure 8.
The direction for this vector may not be coincident with the
angle that describes the "zero-miss collision course".[6] The
collision course is shown in Figure 8 via the line joining the
missile and a point ahead of the target on the ground where
the missile is expected to hit the target in the case of zero
heading error being applied at the beginning of the terminal
phase. The missile was configured to commence the termi-
nal engagement with a velocity of 250 m/s. The target was
configured to move along the ground at constant velocity of
50 m/s away from the missile. This is an example of a typ-
ical terminal phase engagement for guided missiles against
moving land targets.[1]

B. Guidance system performance results and discussion

In Figure 9, two plots are displayed. The plot at the top
shows the decrease in separation range over the flight time
for the missile as it homes in on the target. There are three
graphs present in this plot, each corresponding to a differ-
ent initial value for separation range between missile and
target. There are in fact six lines in the top plot of Figure
9. This can be seen via the accompanying legend. Three
of these lines are associated with applying classical PN and
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the other three are associated with application of the MLP
ANN substitute for PN. The bottom plot of Figure 9 shows
the Root Mean Square error (RMS)[40] when comparing the
PN against ANN results. This was computed by taking the
difference between the range-to-go values produced via ap-
plication of PN against the range-to-go value produced via
application of the ANN substitute over the whole flight time,
followed by taking the RMS of this difference.

Figure 9: Planar view for collision course

The legends show the initial conditions in terms of head-
ing error that was applied to the missile as well serving as
means to identify the associated graph. In this case, zero
heading error was applied in azimuth and elevation direc-
tions respectively at the beginning of the terminal phase.
This is indicated in Table 2. The table also shows the com-
parison between final miss values and miss times between

PN and ANN. In Figure 10, a 3-dimensional view of the
same scenario is displayed, once again with two plots. The
plot at the top displays the paths of the missile and target
over the flight time. The plot at the bottom shows the RMS
error that describes the difference between the classical PN
vs ANN paths. Once again, there are three simulation runs,
consistent with Figure 9. This pattern of presenting results is
repeated through the rest of the simulations. From Figure 9
and Figure 10, it can be observed that the RMS error is small
(of the order of tens of micrometers). This level of preci-
sion in match was deemed close enough match between PN
and ANN. Table 2 serves to reinforce this via close agree-
ment between PN and ANN minimum miss distance and
miss times.

Figure 10: Engagement Trajectory for collision course

Table 2: Collision Course Settings and Results
 

 

Flt No 
Initial Range 
To Go (m) 

Azimuth 
HE (deg) 

Elevation 
HE (deg) 

PN Miss 
Time (s) 

PN Miss (m) 
ANN Miss 
Time (s) 

ANN Miss 
(m) 

1 3464 0.0 0.0 14.87 0.03018 14.87 0.03018 
2 6928 0.0 0.0 29.74 0.05613 29.74 0.05613 
3 13860 0.0 0.0 59.48 0.004233 59.48 0.004291 

 

5.3.2 Simulation 2: Simulation repeatability test

A. Description

This simulation was conducted in order to verify that it is
possible to repeat Simulation 1.

B. Results and observations

Figure 11 shows two plots. The top plot provides a descrip-
tion of range-to-go versus time and the bottom plot provides
the RMS error between PN and MLP ANN range-to-go plot
lines. The results in the top plot show that results can be re-
peated because the running of two consecutive simulations

with the same settings results in identical plots. Via this
observation, it was deemed that the ability to repeat results
when running the same simulation was successful and the
simulation program was now ready for rigorous testing of
MLP ANN vas classical PN performance comparison stud-
ies.

5.3.3 Simulation 3: Comparison with regression test

A. Description

In order to benchmark the MLP based substitution, a MvLR
based approximation to PN was produced. A comparison
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between the trajectories using PN, MvLR and MLP are pro-
vided as well RMS error differences in comparison with PN.
A summary of execution times for MLP and MvLR schemes
has been collected and used for the performance analysis.

Figure 11: Repetition of Collision course simulation

B. Results and observations

In Figure 12, the multi-variate linear regression performed
well for the collision course case which is the scenario
where there was no heading error applied during missile
launch. In this case, the MLP ANN also performed just as
well in matching results with using classical PN. When a
heading error of 10 degrees in elevation was applied how-
ever, the performance of the MvLR became worse in com-
parison with PN. This is depicted in both Figure 12 and Fig-
ure 13. This is because an ordinary least squares approach
was used when estimating parameters for the MvLR and it
has a limitation in being able to estimate the coefficients for
the regression.[41] Meanwhile, the ANN with 5 neurons in
hidden layer, performed much better in matching the PN tra-
jectory. It has been deferred to a future study to investigate
improving the classical regression.

In Table 3, the execution times recorded for each of the
regimes used to calculate the PN guidance laws is provided.
The table shows that MvLR executes 10 times faster than
PN while the ANN guidance law executes 10 times slower
than PN. This is attributed to the computation involved. The
MvLR has a simpler regression estimation function to com-
pute when doing prediction compared to PN, hence it is
faster as expected. Meanwhile, while the ANN guidance
law is supposed to be faster than both on account of paral-
lel processing via network nodes computing in parallel; it is
actually 10 times slower! This is attributed to the fact that
the operating system is converting the parallel computing
order into a serial order because of absence of support for
true parallelism. This needs to be changed in order for the

network to harness its inherent potential for fast execution.
The network used had 5 neurons in the hidden layer and 3
neurons in the output layer.

Figure 12: RMS error comparing regression types with PN

Figure 13: RMS error comparing PN and regression
varietiess

Table 3: Execution times recorded for executing PN,
MvLR, and MLP ANN respectively

 

 

 

PN Guidance Law Type 
Guidance Law Execution Time per 
iteration (seconds) 

PN  1.4463e-05 

Multi-Variate Linear 
Regression (MvLR) 

4.1252e-06 

MLP ANN 0.00013943 
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5.3.4 Simulation 4: Selection of neurons and hidden lay-
ers

A. Description

Researchers such as Ref.[14] have suggested to use of ana-
lytical formulas for selecting number of hidden layers and
neurons per hidden layer. For this paper, the authors have
instead resorted to discover the best combination of hidden
layers and nodes via trial and error.

B. Results and observations

Figure 14 shows two plots. The top plot appears to show
that there is no difference brought about by varying number
of hidden layer neurons. However, the bottom plot with its
finer y-axis scale does show that RMS of the difference be-
tween PN and ANN does change as the number of hidden
layer neurons is varied. One hidden layer neuron produces a
large error considering the scale of millimeters used by the
bottom plot y-axis.

Figure 14: Effect when hidden layer neurons varied

Increasing the number of hidden layer neurons from 1 to 3 to
5 to 7 does decrease the RMS error compared to just using 1
hidden layer neuron. However, when looking at the bottom
plot of Figure 14, it was still unclear as to how many addi-
tional neurons sufficed as adequate to produce a sufficiently
small RMS error. In order to resolve this, it was decided to
repeat the simulation for the cases of 3, 5, and 7 hidden layer
neurons 3 times each. For each of the three runs, the sample
being used of training was varied via collecting a different
set of training data by changing the random sampler config-
uration. The results collected in this manner for the case of
running 3 times, the scenario with 3 hidden layer neurons is
shown below in Figure 15. This was done for all choices of
hidden layer neurons, i.e. 5 and 7. The results are displayed
in Table 4.

The observation from these results was that three neurons in

the hidden layer were the adequate. This was because; in-
creasing the number of neurons in the hidden layer beyond
three neurons did not cause the average RMS error to de-
crease significantly. Also, increasing the number of hidden
layer neurons led to longer computation time for training
which needed to be avoided as much as possible.

The reason why, a small number of neurons was adequate
was because, the classical PN guidance law being substi-
tuted had a linear relationship between line of sight rate and
commanded acceleration. The number of hidden layer neu-
rons did not need to be altered when varying heading er-
ror. This was because the linear relationship for classical PN
would not be violated even if heading error were changed.
However, this needed to be verified.

Figure 15: Selecting number of hidden layer neurons

Table 4: Comparing MLP training algorithm performance
for small heading error

 

 

10 degrees Heading Error  

Training 
Algorithm 

Training 
Time (s) 

Execution 
Time (s) 

Flight 
Time (s) 

Max RMS error 
deviation comp-
ared to PN (m) 

Trainrp 2.3331 0.0001384 1092.63 >10 
Trainlm 127.5842 0.00013813 1046.38 0.3 
Trainbr 244.302 0.00013861 1048.35 0.4 
PN N/A 0.000015 1048.09 0.0 

 

5.3.5 Simulation 5: Selecting training algorithm

A. Description

This test was conducted to discover the most appropriate
training algorithm for the MLP to use out of a large bucket
of supervised training algorithm available from literature
and within the Neural network toolbox.[15] This was not
addressed sufficiently in other papers and forms part of the
new contribution.

B. Results and observations

LM and BR appear superior compared to RP in matching
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closely with PN. This is seen in Figure 16 and Figure 17.
However, execution time for LM and BR are much longer
compared to RP as shown in Table 4. The accuracy is match-
ing PN is critical, hence LM and BR are better candidates
for choice of training algorithm compared to RP.

Figure 16: RMS error comparison between approximation
approaches

Figure 17: Comparison of MLP training algorithms

Further selection between BR and LM needed to be per-
formed. In order to this, a large heading error was applied
to PN and then BR and LM were used for substation. As
Table 4 and Figure 17 show, LM was outperformed sig-
nificantly by BR in terms of lower RMS error even if it
took slighty longer to complete. For a smaller heading eror,
LM did outperform BR as shown in Figure 17. However,
it was only marginally better whereas with heading error
BR outperformed LM by a very large difference. For this
reason, BR was selected as training algorithm. The reason
was attributed to the better generalization performance of
BR compared to LM. When the trained network is applied,
the data it sees is effectively new data as the differences be-
tween the MLP outputs and PN outputs drift apart slightly
as iterations progress. So the MLP based guidance system
has to generalize correctly in the presence of new data which
means that generalization performance becomes important.
Hence the BR algorithm with its superior generalization per-
formance works better than LM. For this reason BR was fi-
nally selected as choice of MLP training algorithm.

5.3.6 Simulation 6: Varying heading error

A. Description

In order to determine the degree of sensitivity to changes
in initial conditions, the missile heading error with respect
to the computed collision course was varied in azimuth and
elevation between -30 and 30 degrees. This is depicted in
Figure 18.

Figure 18: Sensitivity analysis testing plan

B. Results and observations

For each of the heading errors applied, PN and ANN re-
sults follow closely as shown in Figure 19. This is because
the ANN and PN trajectories match closely in the diagrams
shown. This result demonstrates that ANN guidance is in-
sensitive to change in heading error within the ranges tested.
The ranges tested are typical of missile heading errors that
are possible during real-life air-to-ground engagements.

Figure 19: Impact of heading error variation

5.3.7 Simulation 7: Applying large heading error

A. Description

This test was devised in order to assess whether MLP ANN
results could still match closely with classical PN for the
rare scenario where a large heading error was applied. In
this case, the heading error was increased to 40 degrees in
both azimuth and elevation.

72 ISSN 1927-6974 E-ISSN 1927-6982



www.sciedu.ca/air Artificial Intelligence Research 2015, Vol. 4, No. 1

B. Results and observations

The bottom plot in Figure 20 shows that the match between
classical PN and MLP ANN remains close with only small
RMS error throughout the flight. This observation was used
to conclude that the MLP ANN devised, robustly substituted
classical PN.

5.3.8 Simulation 8: Performance of ANN outside train-
ing scenarios

A. Description

The test was performed to see if an MLP ANN trained
for one choice of initial separation range (3,464 m) would
suffice even when applied to situation of larger separation
range. Three initial separation ranges were trialed.

Figure 20: Impact of 40 degrees heading error

Figure 21: Generalization test applying symmetric range
scaling

B. Results and observations

As the top plot in Figure 21 shows, an MLP ANN trained
with data collected for just one choice of separation range

(3,464 m) was still able to closely match the classical PN
results for different separation ranges. It can be observed,
however that, there is an increase in error when the network
is applied for engagements where it has not been trained.
In this case, the increase in error increases to a maximum
of around 5 m sometime during the middle of the flight, as
seen in the bottom plot of Figure 21. This may be still ac-
ceptable as it is not a large increase in error. The results
provided in Table 3 associated with the figure, further con-
firm this since PN and ANN miss times and miss values
closely match. Thus, it was concluded that robustness of
the ANN was maintained in substituting classical PN. The
implication of being able to only needing training for one
separation range was that it provides for savings in training
time for multiple scenarios. When designing an ANN guid-
ance substitute for classical guidance law for a wide range
of scenarios, the time savings for training may be substantial
and lead to significant cost savings.

5.3.9 Simulation 9: Further generalization testing

A. Description

This test was used to determine sensitivity of a trained neu-
ral network’s performance when the initial conditions were
varied in the close neighbourhood of the conditions for
which training was applied.

B. Results and observations

Figure 23 depicts the performance of a network trained just
once to cope with small changes in launch conditions. The
small changes applied with minor deviations in initial down-
range and cross range values. These changes are summa-
rized in Table 6. The training time for the network recorded
here was approximately 712 seconds. The execution time
following training was 0.0021 seconds. Since the network
could be successfully reused with small RMS in all cases
as depicted in Table 7, a saving of 4 × 712 = 2828 seconds
could be achieved. This is a large timesaving and suggests
that complete substitution of PN via the MLP ANN across a
range of scenarios is achievable at low computation cost. In
order to get more confidence about need for small amount
of training time required to substitute PN, some additional
simulations were performed as depicted in Figure 22.

Table 5: Comparing MLP training algorithm performance
for large heading error

 

 

30 degrees Heading Error 

Training 
Algorithm 

Training 
Time (s) 

Execution 
Time (s) 

Flight 
Time 
(s) 

Max RMS error 
deviation comp-
ared to PN (m) 

Trainlm 36.2644 0001426 1068.50 >10 
Trainbr 107.0161 0.00014647 1053.54 2  
PN N/A 0.000015 1047.02 0.0 

 

In Figure 22, the dashed lines represent the PN trajectories
and the unbroken lines, the attempts with equivalent MLP
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ANN substitutes. Apart from the scenario of carrying out
training, in all other cases there is significant deviation be-
tween the ANN and PN trajectories. So this means that gen-
eralization via avoiding retraining does not work well even
if there is match for some portion of the trajectory in each
case. The large RMS error difference between the PN and
MLP ANN shown in Table 6 further reinforce this. This
means that savings in training time is limited when attempt-
ing to substitute PN. In order to work-around this limita-
tion, it is necessary to understand how to compare training
data matrices for two separate trajectories via using con-
cepts such as norm[40] and/or using dynamic time warping
algorithms[43] in order to understand how to simply train for
the difference in data sets and thus reducing training time.
Apart from this, choosing the training data carefully to be
representative of range for the PN function can mean avoid-
ing need for further training. Such a procedure requires de-
tailed research in itself as can be seen with another example
in Ref.[44]

Table 6: Generalization when perturbing about case where
training was applied

 

 

Network training 
applied or reused 
without training? 
(Yes/No-reused with 
training) 

Initial range 
to target 
Down-range 
(m) 

Initial range 
to target  
Cross-range 
(m) 

Max RMS 
error 
deviation 
(m) 

Yes 2000 2150 0.0002 

No-reused 2040 1500 0.0004 

No-reused 2040 2490 0.0004 

No-reused 2150 1000 1.2 

No-reused 1700 3000 2.3 

 
Table 7: Results when launching missile from different
directions w.r.t. target

 

 

 

Network training 
applied or reused 
without training? 
(Yes/No-reused 
with training) 

Initial range 
to target 
Down-range 
(m) 

Initial range 
to target  
Cross-range 
(m) 

Max RMS 
error 
deviation 
approx. (m) 

Yes 2000 2000 0.0002 

No-reused 2000 0.0 200 

No-reused 0.0 2000 >200 

No-reused 2000 -2000 >200 

No-reused 0.0 -2000 >200 

No-reused -2000 -2000 >200 

No-reused -2000 0.0 >200 

No-reused -2000 2000 200 

Here the authors have pointed out that for a training dataset
to be effective in reducing training it needs to display prop-
erties such as:

• Being able to capture as much of the number of pat-
terns that subgroups of data can be associated with

• Being able to adequately represent statistical variation
of inputs and parameters

When training offline, PN and other guidance laws can be
scrutinized to help generate data that complies with the de-
sirable training data requirements stated. In some instances,
due to constraints, only a limited training data set may be
employable, such as for example when considering on-line
data collection and learning where very small time con-
straints to re-tune network during mission may in turn con-
strain correct mappings to guidance law demands in the con-
text of new data that network has not been trained with to
be presented to the MLP guidance law network. In sum-
mary, without extra intervention, the generalization achiev-
able when training for a single case is limited to scenario
where separation range is simply scaled or in nearby vicin-
ity of case for which training was applied.

Figure 22: Generalization test when varying approach
direction

Figure 23: Generalization test in neighborhood of training
scenario

6 Conclusion
The focus of this paper was to develop and evaluate a guid-
ance law using Artificial Neural Networks that is able to re-
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place classical PN. This has been demonstrated to be achiev-
able via a series of simulations applied to a scenario with
some minor variations where classical PN is usually applied
to guide an air-to-ground missile to intercept a slow moving
(constant velocity) ground target.

The simulation results demonstrate that ANN results fol-
low closely with PN for a wide range of initial conditions.
Any differences encountered were overcome via strategies
to change to number of hidden layer neurons, fine-tuning the
application of the training algorithm when generating the
simulation results. Refinements in selecting training data
have been withheld for this study because that requires de-
tailed treatment of spanning all data patterns encompassed
by PN or any other classical guidance laws being upgraded.
The considerations for such a treatment have been listed but
have been left for a future research project.

From a theoretical point of view, the authors here have
researched the foundations of whether ANN internal be-
haviour can be explained. This was discovered to be possi-
ble via the literature survey results provided in Ref.[27] The
visual proof of ANN as being able to substitute any con-
tinuous function with a single hidden layer and sufficient
hidden layer neurons to bring the accuracy up to prescribed
standard was discovered minimization of MSE could be es-
tablished as a mathematically sound non-linear regression
method via consulting the universal approximation theorem
Ref.[8, 45] Previously, this has been a limiting factor for many
researchers to adopt ANN for emulating missile guidance

laws because of the safety critical nature of application with
strict requirements to minimize collateral damage.

Finally, there was testing performed to investigate the gen-
eralization potential of MLP based missile guidance laws.
It was demonstrated that an MLP was able to substitute for
a subset of PN behaviour by just training once and with-
out requiring further retraining. However, without further
refinement of the methodology, many training runs are still
required to span PN as the launch conditions are varied. It
was identified that researchers would need to investigate the
similarity between two or more sets of training data via us-
ing concepts such as the norm or dynamic time warping al-
gorithms and so on in order to then understand how to mini-
mize training time for associated MLP that correctly provide
mappings for the training data. This is a research pathway
for the future.

While the result of classical PN being substituted success-
fully via an MLP ANN was shown as possible, the real pay-
off for making use of ANN in place of classical guidance
laws would come about only if it was able to be used in
circumstances where the analytical guidance law being em-
ulated in not suitable for real-time application. This is not
a limitation with classical PN whereas it could be the case
with advanced classical guidance laws such as OGL.[14] If
the ANN Guidance law approximation were to successfully
apply in such cases, it would pave way for genuine paradigm
expansion for applying advanced missile guidance laws into
the practical applications.
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