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Abstract
This paper presents a matrix projection method for matching a pair of shapes, and estimating the affine transformation that
aligns the two shapes. First, shapes are considered as 2D disordered point sets, and their normalized forms are given. Then, we
prove that only a rotational transform exists between the normalized forms of the two shapes under affine distortions. Second,
correspondences are found by minimizing the inner product between one matrix and projection of the other. Finally, the affine
transformation for shape registration is estimated by the correspondences. Experimental results show that our approach compares
favorably to other methods under affine distortions.
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1 Introduction

Shape matching, to find a transformation aligning two
shapes, is a crucial problem in computer vision, where
images of different views of an object need to be recog-
nized, compared, and registered. The alignment has exten-
sive use in recognition, indexing and retrieval, and track-
ing. However, the images of an object taken from differ-
ent viewpoints suffer from perspective distortions, which
make shape matching a difficult task. In general, a good
shape matching algorithm needs to be invariant to rotation,
translation, scaling and shearing. Under the assumption of
weak perspective, which means two images are taken from
a distance that is an order of magnitude or more greater
than the maximum object diameter along the direction of
the view, two planar views of the same object are related
through an affine transformation.[1, 2] This explains why
there are a large number of methodologies developed to

compare shapes under affine distortions. Shape registra-
tion algorithms can be classified into two main categories:
contour-based methods and region-based methods.

Contour-based methods try to establish correspondences be-
tween points on contours of two shapes. A large number of
contour-based methods are based on affine-invariant Fourier
descriptor (FD),[3, 4] due to the simplicity and computational
efficiency of the Fast Fourier Transform (FFT). These meth-
ods use a set of Fourier coefficients to represent contours
to compute affine invariants. However, a descriptor with a
small number of coefficients may not be sufficient to rep-
resent the shape, while one with a large number of coeffi-
cients may be sensitive to noise given the involvement of
high frequency Fourier coefficients; which makes the selec-
tion a suitable set of coefficients a crucial issue. Another
affine invariant descriptors for contour-based shape match-
ing is wavelet descriptors (WD),[5–7] which analyzes shapes
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in the spectral domain as FD. Most wavelet descriptors are
highly sensitive to noise and changes to the wavelet basis
because they are constructed by the detail-based representa-
tion of the shapes. Therefore, an affine invariant shape rep-
resentation is proposed by applying two different wavelet
transforms with two different wavelet basis functions based
on approximation principles.

Region-based methods treat the matching problem with-
out detecting contours of objects. They consider both the
boundary of a shape and the pixels within a shape region to
obtain the shape information. In this category, moments are
commonly used. An affine invariant descriptor[8, 9] based on
the second and higher order moments of image points was
proposed, it is affine invariant but sensitive to observation
noise. Recently, a novel moment based method[10] was pro-
posed. For this method, a polynomial system of equations
is generated by image moments, and its solution is obtained
as the transformation parameter for registration. Noise in
the image coordinates may make the alignment precision
less satisfactory in some cases, or even make it hard for
the method to find a solution for the polynomial system.
Region-based methods need to store and handle much more
data than contour-based ones, which adds a burden on stor-
age and computation time.

Unlike previously mentioned approaches, three state-of-art
methods are proposed. Independent component analysis
(ICA) is used to construct affine-invariant descriptors,[11–13]

where an observed curve is represented by two variables.
If a pair of observed curves is related by an affine trans-
formation, their independent components are related only
by a reflection. However, this kind of method is restricted
by independency assumption. The other two methods
are the “shape context” method[14] and the subspace-based
method,[15] which treat curves as 2D signals. The “shape
context” method is used as a vector-valued attribute in a bi-
partite graph matching framework, and can be regarded as
a graph-based method. The solution to graph matching can
provide the correspondences for registration. The method
is robust to deformation and noise, but it is time consum-
ing due to an iterative minimization process for establishing
point correspondences. In the subspace-based method,[15]

one shape is projected onto the subspace spanned by the
other, and the affine transformation is estimated by mini-
mizing the projection error in this subspace. It is easy to
implement, but has problems dealing with occlusions.

In this paper a novel matrix projection method for affine
shape registration is proposed, which aims to handle some
of the existing problems in shape matching. Given a pair
of curves to be aligned, the idea is to use the matrix pro-
jection space to find correspondences between their canon-
ical forms with different size, and the affine transformation
is estimated by minimizing the inner product between one
matrix and a projection of the other. The proposed approach
is easy to implement, and can be clearly defined in terms of

mathematical and physical interpretation. Furthermore, it is
more robust to noise compared to other state-of-art methods.
The organization of the paper is as follows. The problem of
affine invariant shape registration is formulated in Section
2 and details of the proposed method are presented in Sec-
tion 3. Experimental results are described in Section 4 and
concluding remarks are given in Section 5.

2 Problem formulation
We are given a pair of 2D shapes, which are images of the
same object, the template and the target. Assuming that
perspective transformation between a pair of shapes can be
approximated by an affine transformation, the goal of this
work is to estimate the affine transformation aligning them.
Each shape in the image is originally represented by a set of
unlabelled edge points, which are image pixels belonging to
its contour. The center of the curve is set as the origin of the
coordinate system describing the position of the points.

Let the two given 2D shapes, template and target, be
represented by X = (x1, x2, · · · , xnx

) and Y =
(y1, y2, · · · , yny

), where xi = (x1i, x2i)T and yi =
(y1i, y2i)T are points belonging to the contours of the
shapes. Normally, estimating the affine transformation
aligning the two shapes through the two given matrices leads
to two problems: (1) the number of points nx = ny = n or
nx 6= ny; (2) the i-th point in X does not correspond to
the i-th point in Y or for points in X there do not exist cor-
responding points in Y . In the following sections, we will
describe the two problems in detail and show relevant solu-
tions for each.

In the ideal case when there is no measurement noise, two
shapes are related exactly by an affine transformation, nx =
ny = n, and the i-th point inX corresponds to the i-th point
in Y , then the following equation is satisfied:

Y = AX (1)

where A is a nonsingular matrix representing the affine
transformation. However, the equality in (1) does not hold
exactly in real applications due to contour detection er-
ror, transformations which are not exactly affine, and non-
uniqueness of the sequence of points. Therefore, for a given
pair of shapes represented by X and Y , the aim is to find a
permutation matrix P and estimate the affine transformation
A such that the registration error is minimized as follows:

min
A,P
‖Y −AXP‖F (2)

such that template X lies on the target Y , where ‖•‖F de-
notes the Frobenius norm.

For the minimization problem in (2), the objective function
should be minimized over A and P under the constraint that
template X lies on the target Y . However, in a real applica-
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tion,X and Y are not precisely specified but only consists of
unlabelled points as features extracted from shape images,
and usually have different sizes. In the following sections,
we will show how to make the minimization problem (2)
equivalent to two optimization problems with single opti-
mized parameters, and find out the correspondence between
X and Y by P , and estimate the affine transformation A.

3 Matrix projection approach to affine in-
variant shape registration

The proposed method consists of two main steps. First,
contours are normalized by singular value decomposition
(SVD). Second, a matrix projection method is applied to
solve the minimization problem (2). In the following
phases, the proposed method will be described in detail.

3.1 Normalization of shape contour

Generally, an affine transformation consists of shearing,
scaling, rotation and translation, in which shearing and scal-
ing are the most influential negative components for an ap-
plication. This paper will weaken or remove the shearing
and scaling effects by normalizing the curve into its canon-
ical form, which is the whitened version of the curve.[8] A
curve is in a canonical form if the covariance matrix of the
set of points that belong to the curve is an identity matrix. If
the covariance matrix has a factorization C = FFT , the
whitening transform is expressed by T = F−1S, where
S̄ = S−E{S}, T is in the canonical form with the identity
matrix as its covariance matrix.

Mathematically, for a given X , normalization can be
achieved by SVD as follows:[16]

X = Ux
∑
x

Vx (3)

Where X = (x1, x2, · · · , xn), Ux is a 2× 2 unitary matrix,∑
x is a 2 × 2 diagonal matrix, and Vx is a 2 × n matrix.

From (3) we have Vx =
∑−1
x UTx X , which is the canoni-

cal form of curve X satisfying VxV Tx = I , where I is the
identity matrix, and Vx is the whitened version of the curve
X .

The relationship between canonical forms of shapes related
by affine transformation has a succinct formulation.[15, 17]

However, the drawback is that the order of points is not
involved. In this paper, we improved the theories in those
methods through a permutation matrix P . Based on the for-
mulation in (3), points on curves X and Y can be projected
into new coordinate spaces which are eigen-spaces ofX and
Y , and for shapes related by affine transformation we only
need a rotation for matching in the new coordinate space
with their canonical forms. This means that the shearing
and scaling effects between template shape and target shape
can be removed during the normalizing process, based on

the following theorem.

Theorem 1: Given point sets X = (x1, x2, · · · , xn) and
Y = (y1, y2, · · · , yn), there exists a rotation matrix R such
that Vy = RVxP if there exists an invertible matrix A and a
permutation matrix P such that Y = AXP , where Vx and
Vy are the canonical forms of X and Y .

Proof: According to Eq. (3), X and Y can be normal-
ized into their canonical forms as X = Ux

∑
x Vx and

Y = Uy
∑
y Vx. Using the equation Y = AXP , we get

the following terms:

Uy
∑
y Vy = AUx

∑
x VxP ⇒ Vy

=
∑−1
y UTy AUx

∑
x VxP ⇒ Vy = RVxP

where R =
∑−1
y UTy AUx

∑
x which means R is the an-

gle between two basis of the same space spanned by Ux
or Uy , and RRT = VyP

TV Tx VxPV
T
y = VyV

T
y = I ,

RRT = VyP
TV Tx VxPV

T
y = VyV

T
y = I .

Theorem 1 shows that if two disordered unlabeled point sets
can be matched under an affine transformation, their canon-
ical forms are related only by rotation. Figure 1 shows
an example illustrating Theorem 1, where (left) and (right)
are a pair of camel images and (right) is obtained from an
affine transform applied on (left). The detected unlabeled
points on contours are represented by X(nx = 1360) and
Y (ny = 1390), which are marked on the original images.
The canonical form of X and Y are shown in the middle,
which are only related by a rotational transform.

Figure 1: Affine related camel images. Top: the original
shape images marked by the unlabeled edge points; middle:
the canonical forms of those unlabeled points; bottom: the
aligned sample points of curves for the camel, 28 of 1360
pairs of matched sample points are shown with circles.
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Minimization by matrix projection

In this section, the minimization problem[2] will be con-
verted to two optimization problems with a single optimiza-
tion parameter, and permutation matrix P will be found by
canonical forms of X and Y , which are only related by ro-
tation, and an affine transformation A will be estimated by
correspondence.

For a given curve X , SVD is applied to X to obtain its
canonical form Vx:

Vx =
∑−1
x UTx X

Let Vx = (v1, v2, · · · , vn), where vi = (v1i, v2i)T is the
i th point of X in the new coordinate system. We define a
n × n similarity matrix W with entry Wi,j = d(v•i, v•j)
being the distance between the i-th point and the j-th point
of Vx, i, j = 1, 2, · · · , n. We use the Gaussian distance
metric d(v•i, v•j) = exp(‖v•i−v•j‖

2σ2 ). Based on Theorem 1,
the minimization problem (2) can be rewritten as:

{
P ∗ = minP,PTP=I

∥∥Wy − PTWxP
∥∥
F

A∗ = minA ‖Y −AXP ∗‖F
(4)

using the following theorem.

Theorem 2: Let Wx and Wy be similarity matrices of Vx
and Vy , respectively, then: Wy = PTWxP if there ex-
ists a rotation matrix and a permutation matrix P , such that
Vy = RVxP , where Vx and Vy are canonical forms of X
and Y .

Proof: Define < v•i, v•j >= d(v•i, v•j), then Wy =
V Ty Vy = PTV Tx R

TRVxP = PTV Tx VxP = PTWxP .

Furthermore, according to the following equations:∥∥Wy − PTWxP
∥∥
F

=< Wy−PTWxP,Wy−PTWxP >

=< Wy,Wy > −2 < Wy, P
TWxP > + < Wx,Wx >

the minimization problem given in (4) can be rewritten as:

{
P ∗ = argP maxPTP=I < Wy, P

TWxP >
A∗ = minA ‖Y −AXP ∗‖F

(5)

This problem can be solved exactly, and the optimal value is
obtained by performing spectral decompositions of Wx and
Wy . Let us suppose that the orthogonal diagonalizations
of Wx and Wy are Wx = UxDxU

T
x and Wy = UyDyU

T
x

respectively, where the eigenvalues in Dx and Dy are or-
dered in a non-decreasing fashion to guarantee unique-
ness. The optimal value of P ∗ = argP maxPTP=I <
Wy, P

TWxP > is tr(DxDy), and the optimal solution is
obtained by using the orthogonal matrices that yield the di-
agonalizations, i.e. P ∗ = UxU

T
y . The affine transformation

minimization A∗ = minA ‖Y −AXP ∗‖F can be obtained

by the standard least square technique as:

A∗ = Y (XP ∗)T ((XP ∗)(XP ∗)T )−1

= Y (XP ∗)T (XXT )−1 (6)

The previous analysis in this subsection is under the con-
dition nx = ny = n for curves X and Y . The following
subsection will describe the problem (2) under nx 6= ny
and also when the i-th point in X does not correspond to
the i-th point in Y , or when for points in X there do not
exist corresponding points in Y .

3.2 Minimization by matrix projection for the gen-
eral situation

Even if two shapes are related by an affine transformation,
it is common that there are different number of pixels along
their contours, i.e., nx 6= ny for X,Y and Vx, Vy in the pre-
vious subsection. Without loss of generality, let nx > ny , in
the previous subsection. Without loss of generality, let A∗

can be obtained by the standard least squares technique ac-
cording to the first ny correspondences between Vy and VxP
if there exists a nx × nx matrix P such that the following
formula:[
Wy 0
0 0

]
=
[
Eny

0
0 0

]
PTWxP

[
Eny

0
0 0

]
is satisfied, where Eny is a ny × ny identity matrix, P is a
nx × nx permutation matrix, Wx and Wy are nx × nx and
ny×ny matrices respectively, which are similarity matrices
for Vx and Vy .

If we denote
[
Wy 0
0 0

]
as Wy , the affine transformation A∗

to make template X lie on the target Y , can be obtained by
solving the following maximization and minimization prob-
lems:

{
P ∗ = argP maxPTP=I < Wy, P

TWxP >
A∗ = minA

∥∥Y −AX[Eny
, Ony×(nx−ny)]P ∗

∥∥
F

(7)

where Ony×(nx−ny) is a ny × (nx − ny) zero matrix. Fig-
ure 1, bottom, shows an example of the alignment result
for the camel shapes given in Figure 1. The contours X
and Y have 1360 and 1390 points respectively, and 1360
correspondences are obtained by solving the optimization
problem (7). In this figure, 28 pairs of matched points are
plotted with an interval of 50 points for each set according
to the recorded sequence. The corresponding sample points
are shown with circles.

4 Experimental results
To demonstrate the performance of the proposed ap-
proach, we compare our algorithm with the “shape con-
text” method[14] and the “area based” method,[10] which
are contour based and region based respectively, for image
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shape registration. The three methods are all implemented
in MATLAB, and are tested on both synthetic and real im-
ages considering the following items: registration accuracy
for synthetic images, robustness against noise, and registra-
tion accuracy on real images. The parameters for “shape
context” method are consistent with those in Ref.[14] to
make the algorithm perform the best, where the regulariza-
tion parameter is 500, the iteration number is 40 and other
parameters remain as their default values. The results show
that the proposed method compares favorably with the other
methods, both by visual inspection and quantitative mea-
surements.

4.1 Measurements for registration error

We use the error measurement defined in Ref.[10, 15] For two
given shapes, X∗ for template and Y ∗ for target; Equa-
tion (1) shows the affine relationship between them. The
registered shape Y ∗R is the shape contour transformed from
the template X∗ by the estimated affine transformation A∗,
which is the solution of problem (4) or (7), as follows:

Y ∗R = A∗X∗ (8)

Therefore, the error measurement can be defined as the dif-
ference between the target shape and the registered shape
in terms of the percentage of non-overlapping area between
Y ∗ and Y ∗R , which can be expressed as:

δ = |T ⊕ S|
|T |+ |S| (9)

where T denotes the set of pixels belonging to the target
shape, including the pixels on and inside the shape contour
Y ∗, S denotes the set of pixels belonging to the registered
shape, including the pixels on and inside the shape contour
Y ∗R , and ⊕ is the exclusive disjunction operation.

4.2 Registering shapes from binary image
databases

We consider two shapes to be “equivalent” if they are im-
ages of the same object and are related by an affine transfor-
mation. In order to test the proposed approach on binary im-
age databases where the shapes in the same class are related
by an affine transformation, two binary image databases are
created from the MPEG-7 database: one is an affine shape
database, denoted as D1, and the other is a sub-database of
MPEG-7, denoted as D2.

The database D1 is constructed from the 30 shape classes
chosen in MPEG-7. From each shape class, one shape is
randomly selected as a template and distorted by 15 affine
transformations. Each affine transformation is randomly
created according three items: (1) a rotation randomly cho-
sen between 0◦ and 360◦; (2) shearing parallel to both axes,
with shear factors randomly chosen between 0.1 and 1.2;

(3) scaling along both axes, with scale factors randomly
chosen between 0.3 and 1.2. Therefore, D1 has 480 im-
ages consisting of 30 different template shapes and their
450 different transformed versions. The contours are ex-
tracted by the contour calculation function in MATLAB.
Table 1 (top) shows a class example in D1, which con-
sists of template shape “personal car” (in the first row) and
its 15 random transformed versions (in the remaining three
rows). It is worth noting that all the 30 classes have different
transformed versions because of the randomly created affine
transformations.
Table 1: Top: Image of Car in D1; Bottom: Images of
Apple in D2.

 

 

 

 

 

 
 
 

 

 

 

 
 

The D2 database is created by 15 classes in MPEG-7, each
having 20 shapes, for a total of 300 images. For each class,
the first shape is chosen as the template and the other 19
as targets. Table 1 (bottom) shows a class example in D2,
which consists of the first shape of “apple” as template, and
the other 19 shapes as targets. Note that all 15 classes have
different shapes.

For the databases D1 and D2, the proposed method and the
reference approach are tested. Table 2 shows three image
pairs randomly chosen in each database, and the registra-

Published by Sciedu Press 49



www.sciedu.ca/air Artificial Intelligence Research 2015, Vol. 4, No. 1

tion results with registration error δ given below each image
for numerical evaluation. The performance comparisons are
given in Table 3 (top) and (bottom), respectively.

Table 2: Registration Results on Sample Image Pairs in D1
and D2.  

 

       Template      Target Shape context Area based Proposed 

 
 

 
Unsolved 

 

5.88  1.03 

    

9.13 1.24 0.49 

    
2.49 5.59 1.87 

    
15.68 3.60 2.57 

  

 
Unsolved 

 
0.75  0.52 

    
4.50 4.00 0.81 

 

Table 3: Top: Performance Comparison on D1; Bottom:
Performance Comparison on D2.

 

 

1D  
Method δ（%） Accuracy（%） Unsolved（%） 

Shape context 13.75 31.69 0 
Area based 13.19 75.00 18.75 
Proposed 5.68 90.28 0 

2D  
Method δ（%） Accuracy（%） Unsolved（%） 

Shape context 11.94 45.00 0 
Area based 15.62 43.16 10.53 
Proposed 2.58 100 0 

 

For D1, the affine transformations between shape templates
of each class and its 15 randomly transformed versions (as
targets) are computed. For D2, the corresponding affine
transformations between the first shape of each class (tem-
plate) and the other 19 images (targets) are calculated. The
items in the tables are registration error δ accuracy ratio, and
unsolved ratio. The registrations δ in Table 3 are computed
by averaging over all the 450 calculation results in D1 and
285 calculation results inD2. The accuracy ratio is the num-
ber of accurate cases over all cases, where a transformation
estimation is deemed to be accurate if the corresponding er-
ror satisfies δ ≤ 10%. The unsolved ratio is the percentage
of cases in which the algorithm finds no solution over all
transformation estimation cases.

The comparisons in Table 3 show that the proposed method
works better on binary image databases D1 and D2, than
the “shape context” and area based methods. The proposed
method gives lower average error and higher accuracy ratio
than the other methods. In Table 3 (bottom), the accuracy
of the proposed method is 100%, which does not mean that
the results are always perfect, but accurate for all the cases
in D2, because δ ≤ 10% for every case. It also shows that
only the area based method has unsolved cases for D1 and
D2, this is because it needs to solve a system of six equa-
tions with six unknown coefficients, which probably has no
solution in some cases.

4.3 Robustness to geometric noise

In this section, Gaussian noise is added to the point coordi-
nates to test the robustness of the proposed method. The
480 images in D1, which consisted of 30 different tem-
plate shapes and their 450 different transformed versions,
are used as test data. Gaussian noise of different levels
are introduced independently to two coordinates of all the
points belonging to the curve of the target shape, and the
noise level changes as the standard deviation of Gaussian
ranges from 0 to 3.5 pixels in 0.5 pixel increments. On
each general level of noise, the proposed method and the
two reference methods are tested on 450 pairs of matching
cases, and the average registration error δ for each method is
shown in Figure 3, which is considered as the quality of the
three methods. It is clear that the proposed method has the
best performance in terms of robustness against geometric
noise.

Figure 2: Average registration error versus noise level.

4.4 Registration on real images

In this section, the proposed approach is evaluated on real
images. Table 4 shows three image pairs, "Balloon", "Green
block" and "Jar" that are selected from the Amsterdam Li-
brary of Object Images. The regions and the contours are
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extracted using parametric kernel graph cuts method[18] and
contour calculation function in MATLAB respectively. For
the extracted shapes, the first and third rows are non-planar,
and the second row is approximately planar. The match-
ing results and registration errors for the proposed and the
two reference methods are also shown in Table 4. It shows
that the proposed approach works well on real shape images
too, and the comparison results for real images are consis-
tent with those for binary image databases D1 and D2. This
shows that the proposed method has lower registration er-
ror than the reference methods. Furthermore, the proposed
methods can not only deal with planar shapes, but also non-
planar shapes.

Table 4: Registration Results on Real Images Pairs

 

Temp

 

plate Target 

 

 

 

Shape context

0.26 

10.83 

5.76 

 

Area b

1.4

9.3

16.6

based 

 

48 

 

0 

 

60 

Proposed 

0.20 

7.55 

3.70 

 

 

 

4.5 Experiments on remote sensing image pairs for
change detection

In this section, in order to test the matching ability of our
algorithm for practical application, two remote sensing im-
age pairs are used to detect change of Tangjiashan barrier
lake, which is one of the largest lakes that were created
by the Wenchuan earthquake on May 12, 2008.[19] Figure
3 (top) shows the geographic location of Tangjiashan and
the pre-earthquake image of ALOS AVNIR-2 and the post-
earthquake images of Radarsat-1 SAR. The pre-earthquake
image was acquired on March 31, 2007, and the post-
earthquake image was acquired on May 16, 2008. Because
of acquisition by different remote sensors, there are no ob-
vious common features, such as points or lines, which can
be used as features for registration. Our aim is to extract
the area of water from two images as template shape and
target shape, and match the water area by the proposed al-
gorithm to detect the change between the two water areas.
The Pyramid segmentation algorithm[20] is used to extract
the area of water from the images. Figure 3 (bottom) shows
the extracted areas of water for pre and post-earthquake and

the registration results between them. The red area is the
original river and the blue area is the submerged zone after
earthquake, the main flooded zone is marked with a green
ellipse, which is the barrier lake induced by the earthquake.
Figure 3 shows the changes between the original river and
the river after earthquake more clearly. By counting the pix-
els belonging to the main flooded zone, we can find that the
maximum width of the barrier lake increased from 93 m pre-
earthquake to 552 m post-earthquake, and the surface area
of the barrier lake increased from 0.955 km2 to 1.485 km2.

Figure 3: Top: The geographical location of Tangjiashan
area. Middle: pre-earthquake image of ALOS AVNIR-2
and the post-earthquake images of Radarsat-1 SAR.
Bottom: The extracted areas of water of pre (left) and
post-earthquake (middle) with marked curve; right: the
registration results between two areas of water.

5 Conclusion
In this paper, a matrix projection method to matching a pair
of shapes and estimating the affine transformation aligning
the shapes was proposed. The main innovation made by the
proposed method is the idea of matching a pair of shapes
by minimizing an inner product between one matrix and a
projection of the other. The proposed method is robust to ge-
ometric noise, easy to implement and has a clear mathemat-
ical and physical interpretation. It is capable of matching
two curves of a pair of shapes by finding correspondences
of points on those curves without re-sampling. The pro-
posed approach is compared with two state-of-the-art refer-
ence methods, and the performance comparisons show that
the proposed method compares favorably to the two refer-
ence ones in terms of registration errors, accuracy ratio, and
unsolved ratio.
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