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Abstract
Ordinal decision problems are very common in real-life. As a result, ordinal classification models have drawn much attention
in recent years. Many ordinal problem domains assume that the output is monotonously related to the input, and some ordinal
data mining models ensure this property while classifying. However, no one has ever reported how accurate these models are
in presence of varying levels of non-monotone noise. In order to do that researchers need an easy-to-use tool for generating
artificial ordinal datasets which contain both an arbitrary monotone pattern as well as user-specified levels of non-monotone
noise. An algorithm that generates such datasets is presented here in detail for the first time. Two versions of the algorithm
are discussed. The first is more time consuming. It generates purely monotone datasets as the base of the computation. Later,
non-monotone noise is incrementally inserted to the dataset. The second version is basically similar, but it is significantly faster.
It begins with the generation of almost monotone datasets before introducing the noise. Theoretical and empirical studies of the
two versions are provided, showing that the second, faster, algorithm is sufficient for almost all practical applications. Some
useful information about the two algorithms and suggestions for further research are also discussed.
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1 Introduction
Decision making problems in which the dependent variable
values are ordinal (i.e., ordered) are very common. This is
due to the fact that we, human beings, often tend to think in
symbolic ordinal terms. In bond rating, for instance, even
the most reputable agencies grade the risk of nonpayment in
ordinal symbols such as AAA, AA, A, A- and so on. Gener-
ally speaking, we call any problem in which the dependent
variable (which is later referred to as "the class" values are
expressed in ordinal terms - an ordinal problem. We as-
sume that there is only one dependent variable. Numerical
attributes, if present, are usually converted to ordinal scales.
Such a conversion is desirable, for instance, when one con-
siders granting a credit card limit to an applicant. Usually
it does not make any difference whether the applicant’s net
assets are worth 99,000 USD or 102,000 USD. Instead, we
tend to think about such a feature in ordinal terms such as
’low’, ’high’, etc. Otherwise, the decision maker will be
overloaded with useless information. What we do know
is that all other things being equal, an applicant with net
worth of 102,000 USD should be granted at least the same

credit limit as the one granted to a customer with net worth
of 99,000 USD. Otherwise, his/her decisions will contradict
each other. This very common type of problem domains is
called monotone ordinal problems. Monotone ordinal prob-
lems should satisfy a monotonicity constraint: the class is
expected to be a monotone function of the attribute values.
To further clarify what a monotone ordinal problem means
in the context of this work consider an assessment of a
course given by students. The students are typically re-
quested by the end of each semester to fill some kind of form
in which they are presented with several attributes, such as
"significance of the material to your future career", "inter-
esting presentation of the material", and so on. The depen-
dent variable may be "a general evaluation of the course".
Usually a student selects a single ordinal value for each at-
tribute out of a predefined possible ordinal set of values.
Later he/she selects one ordinal value which best describes
the dependent variable. In the terminology of this paper,
the student has selected a specific class value. Note that the
problem has a single class which may take one out of sev-
eral possible ordinal values, and that all the attribute possi-
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ble values are ordinal too. It is expected that the "higher"
the selected attribute values are, the "higher" the general
score will be. In other words, we expect the dependent vari-
able (or class) values to be some non-decreasing function of
the attribute (ordinal) values. Examples of monotone ordi-
nal problems include credit loan approval, bankruptcy pre-
diction, insurance underwriting, and various other selection
and preference problems. So far, an impressive number of
data mining models have been developed for these mono-
tone problems.

It is expected that any classification model for an ordi-
nal monotone problem will be accurate and also will pro-
vide purely monotone classifications. However, real-life
datasets, upon which learning is done, usually include noise.
For example, a life insurance dataset may include cases
where younger and healthier people were asked to pay
higher life insurance premium relative to older and sicker
applicants. If such a pair exists in the dataset we call it a
clash-pair or a non-monotone pair. Another common ex-
ample of a clash-pair arises when a pair of examples that
have the same attribute values belong to different classes.
The existence of such clash-pairs in datasets that should
ideally be purely monotone is called non-monotone noise.
Non-monotone noise is a fact of life in virtually all real-life
datasets which result of human decision-making. This is due
to the fact that a group of decision-makers may have differ-
ent preferences. Even if a dataset is the result of decisions
that were made by a single decision-maker over some period
of time one should expect it to include non-monotone noise
due to inconsistencies in subsequent decision, fatigue, over-
loading, etc.[1, 2] These and many other studies of human
decision-making show that decision-makers tend to simplify
complex decisions. For example, we do not usually take
more than 7 plus or minus two attributes into account simul-
taneously (also known as "Miller’s Magical Numbers"). In
this research we follow this guideline and concentrate on de-
cision making problems which are manageable by humans
in terms of problem space size. To be more specific, we are
not interested here in problems that have 100 or 1000 at-
tributes, since most of them are ignored by decision-makers
anyway. Rather we are focused on problems which we nick-
name "real world" ordinal decision problems. Such prob-
lems typically have one class and less than ten attributes.
Each attribute may have 2 to 10 possible ordinal values, and
so is the class. We refer to "real world" problems later on
while analyzing the proposed algorithm in Section 4.

Some data mining algorithms for monotone decision-
making problems expect the training set to be purely mono-
tone. Other ordinal data mining models can cope with non-
monotone noise and even provide monotone classifications.
Others can learn from non-monotone datasets but do not
guarantee monotone classifications. We refer to these issues
in detail in the Related Work section.

Some very innovative and diversified approaches to ordinal
data mining have evolved in recent years. However, some

key issues were not addressed yet. A solution to one of
these open issues is proposed in this research, namely how
to generate artificial ordinal datasets that have both mono-
tone patterns as well as specified levels of non-monotone
noise. The proposed algorithm can be used by any re-
searcher who wishes to test how sensitive his/her ordinal
classification model is to varying levels of non-monotone
noise. Clearly, one does expect the models’ performance
to deteriorate when this type of noise increases, but surpris-
ingly, no one has ever reported how fast this deterioration is
for any monotone ordinal model.
In the next section we give an overview of related work.
Section 3 deals with indices of non-monotonicity and in-
troduces the notations used throughout the paper. Section
4 presents and discusses the proposed algorithm in detail.
Section 5 includes conclusions and offers some future re-
search topics.

2 Related work
Ordinal datasets are quite common in human decision mak-
ing. For this reason they drew the attention of researchers
from various fields for decades. Perhaps the most famous
statistical ordinal model is McCullagh’s Ordinal Regres-
sion.[3] It does not require datasets to be purely mono-
tone, but it does not guarantee monotone classifications af-
terwards. The Ordinal Learning Model is an early, simple,
ordinal classification model.[4] It also can work with non-
monotone datasets, but unlike Ordinal Regression, it does
ensure monotone classifications.
Monotone decision tree models have been introduced by
Makino et al.[5] and later by Potharst and Bioch,[6] Cao-
Van and De Baets,[7] Feelders and Pardoel[8] and others.
They all require purely monotone datasets to begin with,
and they assure the monotonicity of subsequent classifica-
tions. Lievens et al.’s probabilistic OSDL[9] can work with
noisy ordinal datasets and also provides monotone classifi-
cations. Monotone neural network models were described
by Daniels and Velikova.[10] Their algorithms can cope
with noisy data but do not guarantee monotone classifica-
tions. Other approaches include, but are not limited to, Ben
David’s hybrid approach,[11] Frank and Hall’s Ordinal Class
Classifier meta-model,[12] and Popova and Bioch classifica-
tion by function decomposition.[13] The last three models
can cope with non-monotone noisy data but do not guaran-
tee subsequent monotone classifications. This is unlike the
rule ensembles proposed by Dembczynski et al.[14] that can
work with noisy data and do provide monotone classifica-
tions.
Two papers have been published so far on the generation
of monotone artificial datasets. The paper by De Loof
et al. is about generating completely random monotone
datasets.[15] It uses the computationally intensive Markov
Chain Monte Carlo method. The datasets which are gen-
erated by this method have no underlying pattern, while in
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our approach the user can embed any monotone function of
his/her choice. The paper by Potharst et al. makes use of
much simpler computation, and proposes a method to in-
corporate an underlying structure into the artificial mono-
tone dataset.[16] Our algorithm begins with the genera-
tion of either purely monotone or almost purely mono-
tone dataset (depending on the version to be shortly ex-
plained). In other words, only the first phase of our algo-
rithm has a similar goal as defined in De Loof et al.[15] and
Potharst et al.[16] Similar to Potharst et al.,[16] our algo-
rithm does generate a monotone pattern as the base of the
computation. However, our algorithm significantly differs
from these two approaches by: (a) The resulting dataset in
our approach contains user-defined level of noise, and (b)
Our algorithms do not use class relabeling. Daniels and
Velikova[10] briefly mention an algorithm which generates
noisy monotone datasets. Similar to their approach, we con-
vert a purely monotone dataset into a non-monotone one.
However, since they have not presented a detailed descrip-
tion or a pseudo code of their algorithm, nor an analysis of
its complexity, it is not possible to compare it with our algo-
rithm.

3 Indices of non-monotonicity
Before presenting the algorithm in the coming section, let us
review here some notation and clarify some important def-
initions. Let D be a dataset with k ordinal attributes A1,
. . . , Ak and class variable Y which has C possible ordinal
values. The dataset consists of n examples x. A partial or-
dering � on D is defined as

x � x′ ⇔ Aj(x) ≤ Aj(x′), forj = 1, ..., k (1)

Thus, two examples x and x′ in space D are comparable,
if either x � x′ or x′ � x, otherwise x and x′ are
incomparable. Identical examples denoted as x = x′,
and non− identical as x 6= x′.
Having this notation in mind, we call a pair of comparable
examples (x, x′) monotone if

x � x′ ∧ x 6= x′ ∧ Y (x) ≤ Y (x′) (2)

or

x = x′ ∧ Y (x) = Y (x′) (3)

A dataset consisting of n examples is monotone if all possi-
ble pairs of examples are either monotone or incomparable.
Example x from Dclashes with example x′ from D if

x � x′ ∧ x 6= x′ ∧ Y (x) > Y (x′) (4)

or

x = x′ ∧ Y (x) 6= Y (x′) (5)

Furthermore, we use the following notation: if x is an ex-
ample from dataset D, then NClash(x) is the number of
examples from D that clash with x. Clash(x) = 1 if
x clashes with some examples in D, and 0 otherwise. If
Clash(x) = 1, x is called a non-monotone example.
Following Daniels and Velikova,[10] we call the first, and
most obvious, index of non-monotonicity to be introduced
here NMI1, the number of clash-pairs divided by the total
number of pairs of examples in the dataset. So,

NMI1 = 1
n(n− 1)

∑
xεD

NClash(x) (6)

Horvath et al.[17] suggested to divide by the number of all
comparable pairs in the dataset.
The second index is called here NMI2, the number of non-
monotone examples divided by the total number of exam-
ples. So,

NMI2 = 1
n

∑
xεD

Clash(x) (7)

We call the third index here NMI3, the minimum number of
class label changes needed to make a dataset monotone, di-
vided by the total number of examples. The lowest value of
all three indices is 0, when the dataset is purely monotone.
The highest value of the first two indices is 1, when every
possible pair in the dataset clashes, which means also that
all examples are non-monotone with respect to each other.
The third index is always less than 1 since there is at least
one label that does not needed to be relabeled.
NMI1 has been chosen by us due to its intuitiveness rather
than its simplicity. Unlike NMI2 and NMI3, NMI1 reflects
the fact that non-monotonicity occurs in pairs of examples.
It counts all the clashing pairs in the dataset.
Before trying to actually generate artificial ordinal datasets
it was of interest to us to check what values of NMI1 are
expected in real world ordinal datasets in which the mono-
tonicity constraint does make sense. Daniels and Velikova
who have checked two datasets found that they were almost
monotone.[10] On the other hand, Horvath et al. found only
5 purely monotone datasets out of 40.[17] We also expected
that the values of NMI1 will be rather low since high val-
ues of noise may imply that a pattern if exists in the data
may be corrupted by noise. We have chosen four real world
ordinal datasets: ESL, ERA, LEV, and SWD. They all can
be found and freely downloaded from the Weka web site
(http://www.cs.waikato.ac.nz/ml/). Table 1 presents a short
description of the datasets and the values of NMI1.

32 ISSN 1927-6974 E-ISSN 1927-6982



www.sciedu.ca/air Artificial Intelligence Research 2014, Vol. 3, No. 1

Table 1: The values of NMI1 in real-world datasets.
 

 

Name Description 
Number of 
examples, n 

Number of 
attributes, k 

Value of 

NMI1 

ERA  Degree of acceptance of applicants to a job. 1000 4 0.039
ESL Profiles of applicants for a certain type of industrial jobs. 488 8 0.009
LEV Evaluation of MBA courses.  1000 4 0.013
SWD Assessments of qualified social workers. 1000 10 0.009

 

The results presented in Table 1 are confirmatory to our hy-
pothesis and the values of NMI1 in real-world datasets are
rather low (vary between 1 percent and 4 percent in Table
1). For the sake of simplicity we refer to NMI1 (which we
use throughout this paper) in the coming sections as the
non-monotonicity index. The following section describes
the algorithm that generates a monotone ordinal dataset of
size n (examples) with a user-specified value of the non-
monotonicity index (i.e., NMI1).

4 The algorithm
Our goal while generating a non-monotone ordinal dataset
is to artificially create a set of n examples which has both
some pre-defined monotone pattern as well as a specific
(also user-defined) non-monotonicity index. There are sev-
eral ways to approach this problem. For example, one can
begin the process with the generation of a monotone dataset
with n examples and later exchange some of them with
noisy examples incrementally. Another approach is to gen-

erate the examples with the monotone pattern and the non-
monotone noise simultaneously. We have chosen the first
approach since generating monotone datasets is a problem
that has already been studied, so the results can be used here.

4.1 Version A

The proposed algorithm works in two phases. The first
phase generates a purely monotone dataset with n examples.
Several ways of how purely monotone datasets can be gen-
erated were discussed earlier in the Related Work section.
For this algorithm, we have chosen another, simpler, method
which is described in steps A to E of Figure 1. The second
phase, step F of Figure 1, changes the existing examples in
the dataset till the desired level of non-monotonicity index is
reached. This phase may be incrementally repeated for the
different (increasing) levels of the non-monotonicity index,
such that several datasets (each with the same number of ex-
amples and similar pattern, but with different non-monotone
indices) will be generated in a single run.

Figure 1: Version A algorithm
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In step A.1 of Figure 1 the attribute values, Aj , of n exam-
ples are generated, each having Oj possible integer values
ranging from zero to Oj-1 (i.e. Aj ∈ 0, 1, ..., Oj − 1), j =
1, ..., k. These values can be randomly chosen from any sta-
tistical distribution, but in the current version a Uniform dis-
tribution has been used for simplicity. Once the integer val-
ues of the attributes are assigned to all k attributes of an ex-
ample, the class numerical value is calculated using a mono-
tonically increasing function. We have used several of those
in our experiments such as Y =

∑
j Aj , Y =

∑
j jAj , Y =∑

j jAj
j , Y =

∑
j(A3

j + jAj
j), and more.

The monotone examples are later sorted in increasing order
of (still numeric) class values. This is shown in step B of
Figure 1. Step C maps these class values to (approximately)
equally balanced integer class values ranging from zero to
C-1. This is done in the following manner: Suppose that
there are 700 examples and 7 possible ordinal class values,
the first 100 examples (after sorting in increasing order of
class values) are assigned the value 0, the next 100 examples
– the value 1, . . . , and the last 100 examples are assigned
the value 6. This is shown in step C of Figure 1.
However, the dataset which is generated in steps A-C is not
guaranteed to be monotone. If two examples, say x and x’,
have similar attribute values – they surly will have similar
values of Y by the end of step A. On the other hand, x and
x’ may be assigned different class values in step C. In the
above example, if the 100th and the 101th example have
similar attribute values, the first will be assigned with class
0 and the second will be assigned the value 1. According
to our definition of non-monotonicity (see Section 3), these
two examples clash with one another. Step D resolves this
kind of non-monotone conflicts, and once this step is done
– the generated dataset is monotone.
Step E arranges the examples in random order (unlike step
B). It is easy to show that the proposed algorithm for gener-
ating a monotone dataset is admissible, complete and unbi-
ased.[16]

At the second phase the generated purely monotone dataset
is modified according to the desired non-monotonicity in-
dex. This phase is described in step F of Figure 1. In step F.1
some example, say x, is randomly selected from the dataset,
and then in step F.2 a new example, x′, which is provided
to clash with example x, is generated. This is done by ran-
domly selecting attribute values for x′, Aj(x′), that are ’≤’
(or ’≥’) relative to those of x, Aj(x), and a class value,
Y (x′), that is ’>’ (or ’<’) to Y (x). In step F.3 another ex-
ample, say x′′, is randomly selected from the dataset. This
example has to be replaced later by a new example, x′. In
step F.4 the current value of the non-monotonicity index is
updated by the difference between the number of examples
that clash with x′ and the number of examples that clash
with x′′. If the updated value of the non-monotonicity in-
dex is less than the desired value, then x′ replaces x′′ in step
F.5. Note that the current value of the non-monotonicity in-
dex may decrease. In the general case it may happen that

the randomly selected example which is deleted from the
dataset (to give way to x′) has been in many non-monotone
conflicts with the rest of the examples. However, this oc-
curs very rarely since the dataset is initially monotone or al-
most monotone and we usually are interested in generating
datasets with low non-monotonicity indices.

4.2 Discussion and empirical results
Let us evaluate the complexity of version A. The first phase
of generating a monotone dataset is implemented in O(n2),
due to step D that involves the checking of every pair of
examples in the dataset. The time complexity of the second
phase is O(n2·NMI), in the worst case, when all new exam-
ples clash with only one example in the dataset. Since step
D is more time consuming, the time complexity of version
A is O(n2). One way to reduce the complexity of step D is
to compare the class values for pairs of only adjacent exam-
ples. However, it seems that the non-monotonicity which
is resolved in step D is rather rare when we generate the
so-called "real world" ordinal datasets (i.e., with 2 to 10 at-
tributes, each attribute and the class having 2 to 10 possible
ordinal values) with a couple of hundreds of examples. If
this hypothesis is correct, step D may be omitted altogether
in most cases. The hypothesis was checked in the following
experiment.
We have first generated datasets as described in steps A-C
in Figure 1 and then calculated the non-monotonicity index.
The experiment was repeated 5 times for different numbers
of examples, n, attributes, k, ordinal values of each attribute,
Oj , and ordinal class values, C. We assume the following
initial values of the parameters: k = 5, Oj = 5, C = 4, and n
= 1000 and then we change the value of only one parameter
while the others remain constant. Tables 2 - 5 present the
results of the experiment. The number of attributes, k, and
the number of attribute values, Oj , are changed in Table 2
and Table 3, respectively, and equal to 3, 5, 7, and 10. The
number of class values, C, is changed in Table 4 and equals
to 2, 4, 6, and 8. Table 5 presents the results for n= 500,
1000, 1500 and 2000.
Tables 2 and 3 show that the value of the non-monotonicity
index is decreasing in an increasing rate with the number
of attributes, k, and the number of ordinal values of each
attribute, Oj . The intuition behind this result is based on
the fact that the initially generated dataset may be non-
monotone only if identical examples have the different class
values. Obviously, the probability of generating two identi-
cal examples in the dataset is decreasing when the number
of attributes and/or the number of ordinal values of each at-
tribute are increasing. On the other hand, the probability
of a clash with identical attribute values is increasing with
the number of ordinal class values, C, and/or with the size
of the dataset, n. This intuition is confirmed by the results
presented in Tables 4 and 5.
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Table 2: The values of NMI1 in initially generated datasets
for different values of k (Oj = 5, C = 4, and n = 1000).

 

 

Number of 
attributes, k 

Average number of 
clash-pairs 

Average value of 
NMI1  

3 167.4 3.35E-04 
5 2 4.00E-06 
7 0 0.00E+00 
10 0 0.00E+00 

 
Table 3: The values of NMI1 in initially generated datasets
for different values of Oj (k = 5, C = 4, and n = 1000).

 

 

Number of attribute 
values, Oj 

Average number 
of clash-pairs 

Average value of 
NMI1  

3 156.6 3.14E-04 
5 2 4.00E-06 
7 0.2 4.00E-07 
10 0 0.00E+00 

 
Table 4: The values of NMI1 in initially generated datasets
for different values of C (k = 5, Oj = 5, and n = 1000).

 

 

Number of class 
values, C 

Average number of 
clash-pairs 

Average value of 
NMI1  

2 0.8 1.60E-06 
4 2 4.00E-06 
6 3.4 6.81E-06 
8 9.4 1.88E-05 

 
The results of the above experiment show very low values of
non-monotonicity indices in the initially generated datasets.
Thus, step D is not essential, provided that a purely mono-
tone dataset is not required. For example, if the purpose of

an experiment is to generate dataset with some noise index,
then getting a purely monotone one on the way is not es-
sential at all. In this case, step D is not required. On the
other hand, if the purpose is to compare the performance
of models on both a purely monotone and noisy datasets,
we suggest that a decision whether step D is needed or not
will be based upon Tables 2-5. Usually, step D is not re-
quired when the number of attributes and/or attribute values
is large, and/or the number of class values is small. Since
most real-world monotone ordinal problems we have en-
countered so far do not require step D, a faster algorithm
is provided in the next section, where we also explain why
it skips step E of Figure 1.

Table 5: The values of NMI1 in initially generated datasets
for different values of n (k = 5, Oj = 5, and c = 4).

 

 

Number of 
examples, n 

Average number of 
clash-pairs 

Average value of 
NMI1  

500 0.2 3.21E-06 
1000 2 4.00E-06 
1500 7.6 6.76E-06 
2000 7.6 3.8E-06 

 

4.3 Version B
It has been argued above that step D of Version A is usu-
ally not needed in practice. Furthermore step E may be also
skipped since the examples are chosen randomly in step F
anyway. The faster algorithm, called Version B, is presented
in Figure 2.

Figure 2: Version B algorithm
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The total time complexity of Version B of the algorithm is
defined by step D in Figure 2, that is O( n2 · NMI), in
the worst case, when all new examples clash with only one
example in the dataset. However, this happens very rarely.
The results of our experiments show that most often, the
value is close to the minimum, O( n2 ·NMI). In the latter
case, the most time consuming step may be step B, which is
O(n2 · lgn).
To test the algorithms in practice, a working prototype has
been written using VBA interpreter. The prototype creates
Excel spreadsheets as output, which can be read by most
data mining software. The prototype is rather slow. For ex-
ample, it takes about 32 seconds on the average to generate
a noisy file of 1000 examples with 5 attributes (5 possible
ordinal values for each attribute as well as for the output)
on a 3.2 GHz i5 processor with 4GB memory using Version
A of the algorithm. Version B runs about 44 percent faster.
Compiled versions, which are written now, are expected to
significantly improve the performance. However, even with
the current interpreted Versions A and B one can generate a
sequence of datasets with a user-defined monotone structure
and varying (also user-defined) levels of noise in a matter of
minutes on a common desktop computer.

5 Conclusions and further research
Ordinal datasets, in which the class is expressed in ordinal
terms are very common in human decision-making. This
explains the rapidly growing number of data mining models
that use the ordinal information within the datasets. Some
of these models assure monotone classifications, a property
which is desired in many problem domains. This work is
geared towards these algorithms as it proposes means to test
their capabilities under controlled levels of non-monotone
noise.
Most of the scientific work which has been done so far was
focused on developing algorithms which get rid of non-
monotone clashes. Surprisingly, we have not encountered
articles that do that by means other than relabeling. How-
ever, it is of interest to compare the complexities of these
algorithms to those that were presented here. Daniels and
Velikova[10] proposed a method which is polynomial in the
number of examples and class values, O(n3C). Rademaker
et al.[18] presented a method which is optimal in the sense
that it relabels as few examples as possible. Time com-

plexity of their algorithm is O(n3). In an as yet unpub-
lished paper, Pijls and Potharst[19] show that Rademaker
et al.’s method may be streamlined. They also show that
there are non-optimal methods that perform relabeling with
time complexity of O(n2). Again, all these algorithms aim
at cleaning noisy datasets from non-monotone clashes, and
they all are based on relabeling. Our algorithms work in
the opposite direction. They generate noisy datasets from
purely (or almost purely) monotone datasets, and they do
not use relabeling.
Two versions of an algorithm which generates artificial
monotone datasets with user-defined level of non-monotone
noise were proposed and analyzed. This is the first time
such algorithms are presented in detail. Based on empiri-
cal observations as well as on decision-making theory it has
been argued that the faster version (Version B) is sufficient
for most practical implementations. However, it has been
shown that even the slower version (Version A) can produce
useful datasets on a common desktop computer for most
real-world human decision-making problems in a matter of
minutes. This observation is based on the performance of a
rather slow VBA based interpreted prototype we have writ-
ten for both versions. This prototype is available to anyone
upon request from the authors. Currently we are working on
implementing a new, faster and more user friendly, version
which is written in Java.
This work has been focused on describing the algorithm it-
self. It has opened, however, many interesting questions
to future work. For example, exploring which of the cur-
rently known or newly proposed ordinal data mining models
is sensitive to non-monotone noise. Which model requires
almost purely monotone data sets to be relatively accurate?
At which non-monotone noise level(s) the accuracy deteri-
orates? At what pace this deterioration occurs with the rise
of noise levels? Another interesting question which has not
been addressed here is the study of the effect of the mono-
tone function chosen on step A.2 (see Figure 1 and Figure
2) on the generated data set. Will there be a significant dif-
ference (if any) on the generated dataset if one chooses lin-
ear versus non-linear (or highly non-linear) monotone func-
tion? We have also confined the experiments to what we
have called "real world" problems, and have not tried gen-
erating data sets with dozens or more attributes. We intend
to re-check this issue in the future using the compiled Java
version.
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