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ABSTRACT

The universal representation language T proposed in the article is the set of linguistic items employed in the manner of a natural
language with the purpose of information exchange between various communicators. The language is not confined to any
particular representation domain, implementation, communicator or discourse type. Assuming there is sufficient vocabulary, each
text composed in any of the human languages can be adequately translated to T in the same way as it can be translated to another
human language. The semantics transmitted by T code consist of conventional knowledge regarding objects, actions, properties,
states and so on.

T allows the explicit expression of kinds of information traditionally considered as inexpressible, like tacit knowledge or even
non-human knowledge.
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1. INTRODUCTION

The discipline of knowledge representation (KR) studies
the formalization of knowledge and its processing within
machines.[1] It was established as a separate branch of AI
during the 1970s when the first tasks related to intellectual
reasoning came to the agenda. The methods of KR include
production rules (if ...then ... statements), semantic networks,
frames, first order logic. Of all these methods, only rule-
based knowledge representation was ever used for practically
relevant developments. During the eighties, it was applied
in a number of large-scale projects, and found its way into
many industrial enterprises and government applications.[2]

None of the other KR methods was ever used for industrial
programming, also because the mainstream programming
languages (C/C++, Java etc.) were essentially better in re-
spective implementations. At this time, the development of
intellectually loaded applications did not differ from pro-

gramming of complex “non-intelligent” systems, as both
areas require building millions of lines of code running on
complex hardware systems.

Actually, we need to speak about two completely different
KRs – one grounded in scientifically proven principles but
failing in practical developments and another one based on
the concepts of mainstream programming and demonstrating
efficiency unachievable by the former, both completely dis-
tinct from each other. The only concept shared by both KRs
is object-orientation.

The universal representation language T introduced in this
paper is based on ideas developed in mainstream program-
ming. Its conceptual system uses the C++[3] notational sys-
tem extended by non-executable representations. T is not a
programming language; it is the set of linguistic items em-
ployed in the manner of a natural language with the purpose
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of information exchange between various communicators.
The language is not confined to any particular representation
domain, implementation, communicator or discourse type.

Assuming there is sufficient vocabulary, each text composed
in any of the human languages can be adequately translated
to T in the same way as it can be translated to another human
language. Furthermore, it allows the explicit expression of
kinds of information traditionally considered as inexpress-
ible, like tacit knowledge or even non-human knowledge.

The semantics transmitted by T code consists of conventional
knowledge regarding objects, actions, properties, states and
so on. The language does not employ common formal mod-
els and approaches like first order calculus, semantic nets,
conceptual graphs and frames traditionally used in the realm
of KR. It is assumed that common knowledge notions consti-
tute the basis of all philosophical and scientific conceptual
systems allowing the representation of all these systems in
the form of class hierarchies.

The conceptual basis of T is created by the Theory of Mean-
ingful Information (TMI).[4] More on this topic can be found
in Ref.[5] The view of the world defined on the basis of this
theory actually enables the conceptualization of arbitrary real
or imaginable things in terms of T concepts. This allows to
eliminate, probably the most salient problem of contempo-
rary AI consisting in the lack of sustainable and effective
methods of knowledge representation. According to TMI,
this problem results from the one-sided concentration of the
AI scientific community on methods based on mathematics
and logic, while completely ignoring the idea of building a
commonsense knowledge representation language.

The TMI notion of knowledge used in this work doesn’t
adhere to Plato’s understanding of knowledge, which he de-
fined in his Dialogues as “justified, true belief ”.[6] The work
follows the approach of Kant, who believed that “the body
stays as a condition of knowledge”,[7] see more in Ref.[5]

Chapter 3.

This article explains the basics of T as well as the specifics of
the TMI approach concerned with uniform representation of
all information types. The next section contains the problem
statement, followed by the general language model, a short
specification of T, the ontologies of event and time and the
conclusions.

2. THE PROBLEM STATEMENT

2.1 The semantic gap between KR and mainstream pro-
gramming

Taking into account more than 40 years of intensive research
and the diversity of developed solutions, the only plausible

explanation for the failure of KR science in developing truly
efficient KR tools is that the proposed ways simply do not
lead to an effective solution. It is not hard to find the crux of
the failure.

The obvious mistake is the total disregard for the quite ob-
vious circumstance that the effective KR can be built exclu-
sively on the basis of a universal knowledge representation
language. Most of the knowledge we have is represented
in namely such a language. Each natural language is an
ultimate KR tool, which can be used by everyone from in-
fants learning their first words to scientists discussing the
most complex theories. The only (however grave) problem
is that modern computers have difficulty understanding texts
composed in a natural language because these texts suffer
from ambiguity and a vast amount of implicit background
information.

This problem can however be solved with the help of an
unambiguous language. Curiously, such a solution has never
been seriously discussed in the scientific community. The
reason is the widespread belief that the universality (ex-
pressive power) and unambiguousness are supposedly non-
combinable characteristics. See, for example Sowa: “The
expressive power of natural languages, which is their great-
est strength, is also one of the greatest obstacles to efficient
computable operations”.[8]

A search for any kind of explicit proof supporting this neg-
ative stance however doesn’t turn up anything except for
a few banalities about the primitiveness of computers and
the complexity of human knowledge in general and human
languages in particular. Contrary to general belief, this opin-
ion is not based on the particular results of any thorough
language study, but from the lack thereof.

The real reason for the lack of discussion and, as a conse-
quence, the non-development of a universal representation
language is the penchant for the scientific pureness charac-
teristic of KR science. While several decades were spent
on the intensive study of scientifically proven even if practi-
cally inapplicable methods, the KR-relevant characteristics
of mainstream programming languages were stubbornly ig-
nored because the methods of these languages are supposedly
“unscientific”.

Since the unscientific methods are not discussed in the scien-
tific literature, no references can be provided. However, it is
exactly this characteristic of the mainstream programming
languages that I receive as a reply every time when ques-
tioning specialists regarding why they don’t study the KR
features of these languages. It is clear that formal languages
with such expressive power and effectiveness cannot be char-

56 ISSN 1927-6974 E-ISSN 1927-6982



http://air.sciedupress.com Artificial Intelligence Research 2018, Vol. 7, No. 2

acterized in this way, unless it is an excuse for suppressing
undesirable discussions.

In fact, such a discussion is merely impossible, because the
conceptual world of KR simply lacks the necessary concepts.
The KR science was created and developed as a branch of a
theoretical computer science. Its means of choice are meth-
ods and models developed in the framework of the latter,
but the notion “programming language” used by computer
science has nothing to do with programming languages ac-
tually used. The branch of computer science responsible
for the content of these notions and known as “the theory
of programming language” never studied the programming
languages actually used, even though the name of this theory
suggests otherwise. Its subject was the mathematical and
logical basis of programming, which is something that does
not exist in reality.

Real programming is a pure construction activity that has
nothing in common with mathematics. A programmer cre-
ates a program using FORTRAN, C++, PHP or any other
programming language in the same way a bricklayer builds
a house using a trowel, bricks and mortar. Surely there are
cases when mathematical knowledge is necessary like opera-
tions with graphics whose transformations are represented
by mathematical means. Generally-speaking, a programmer
does not need any more mathematics than a good ninth grade
student.

The fact that theoreticians of programming see it differently
is very well demonstrated by the article “Programming Lan-
guage Theory” in Wikipedia. The article enumerates 27
of the most important works in the area, none of which is
devoted to mainstream programming languages which are
merely mentioned as a rather outsider phenomenon. Of the
four people who have made the biggest contributions to pro-
gramming: John Backus – the developer of Fortran and BNF,
Nicklaus Wirth – the creator of Pascal, Dennis Ritchie - the
creator of C and Bjarne Stroustrup - the creator of C++, only
Backus is mentioned. The reason is a class of function-level
programming languages[9] which he proposed in 1977. This
work was highly valued by the scientific community but
produced zero impact in actual programming.

The reasons for this development are rooted in early com-
puter history. The first computers were created during the
Second World War with the purpose of mathematical calcu-
lations for military needs. This development was intensified
after the start of the Cold War, so it is not astounding that
many programmers of that time were mathematicians and
logicians who viewed programming as a branch of mathe-
matics.

Their theoretical preferences, however, played no role in
the first decade of programming. Direct programming in
machine code was a very exhausting and slow process, so
the programmers had to ponder about alternatives, which
consisted in the development of programming languages.
The turning point was the development of the first high level
programming language FORTRAN (Formula Translator) in
1956, which for the first time allowed programs to be writ-
ten oriented on its logic and not on the implementation of
machine code. Other high-level programming languages fol-
lowed soon after and the creation of the theory came to the
agenda.

During the following years, the practitioners became theoreti-
cians and produced a rigorous mathematized theory, which
basically ignored all non-mathematical approaches suppos-
edly as non-scientific. Often the same person contributed
to both areas, as did John Backus who designed BNF and
led the team that created FORTRAN – two decisive devel-
opments, which created the modern programming we know
today. He also defined a new class of functional program-
ming languages, which was completely in accordance with
all the rigorous requirements of programming theory, but
useless from a practical viewpoint.

The fact that the theory does not cover the characteristics
of the practically usable programming languages was then
seen as a negligible problem, because these languages were
viewed as a temporary solution needed for bridging the time
until the maturing of the theoretically correct programming
tools. Neglecting mainstream programming went so far that
the theoreticians failed to even produce a generally accepted
definition of a programming language because such a defi-
nition could not be made in the conceptual coordinates of
recognized theories.

The lack of the adequate definition of a programming lan-
guage was thoroughly described by Jean Sammet as early
as 1968 in her famous book “Programming Languages: His-
tory and Fundamentals”.[10] The described status quo has
not changed since that time. Most modern books about pro-
gramming languages simply avoid programming language
definitions directly appealing to the implicit meaning of these
notions e.g.[11] Others, obviously guided by reasons of sci-
entific politeness, again produce non-informative definitions
like “any notation of algorithms and data-structures”.[12]

A science unable to provide an adequate definition of its
own subject hardly has any chance of surviving and program-
ming language theory was no exception. Its ultimate failure
coincided with the end of the Cold War.

Scientific research, intensively supported in times of scarce
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computer resources and sumptuous financing of the Cold
War, lost any appeal after the latter’s end. The state support
was finished and most of the previously unsolvable software
problems were solved with the help of Moore’s Law or were
on the way to that in the foreseeable future. As a result, the
programming community quietly distanced itself from the
obsolete theories, completely concentrating on pragmatic
solutions.

While the lack of a relevant theory did not hinder the develop-
ment of mainstream programming languages, it disallowed
their understanding. The high knowledge potentially behind
these complex systems degraded into acquired skills like
driving a car. Now, the only way in which a programming
language can be acquired is learning by doing. While ad-
mitting that this is a highly effective method for learning
skills, the concepts formed in the heads of specialists in this
inductive way are based on tacit knowledge and do not allow
deep scientific conceptualization.

2.2 Voiding the semantic gap - The adequate definition
of a programming language

The ineptness of the programming language theory in defin-
ing its subject however does not mean that such a definition
was never created. Actually, it was! Moreover, it is one of
the oldest definitions of a programming language ever. How-
ever, it was never officially recognized by computer science
because of its non-mathematical background.

Here is the oldest formulation of an adequate definition to
be found in the ACM library: This definition was made by
Saul Gorn in the short article in the year 1959,[13] “The point
of view expressed in this paper makes more tangible two
principles accepted intuitively by many programmers and
logical designers. They are: a) the equivalence of formal
languages and machines, b) the equivalence of programming
and hardware.”

The same idea was detailed in 1978 by Yaohan Chu[14] “To
each programming language, there is associated an ideal
computer architecture which executes the program written
in this language. This ideal architecture images the control
constructs and the data primitives of the programming lan-
guage. It is a virtual architecture, because it may not be
possible to be fully implemented by real hardware architec-
ture. If the programming language is a high-level, the virtual
architecture is a high-level architecture.”

Because I was not aware of the definitions above at the time
of writing this paper,[15] I used my own definition, which is
basically the same: “A programming language is essentially
the machine code of the processor implicitly introduced by
the definition of this language.”

The common point of these definitions is the interpretation
of a programming language as a combination of two things
differing by their nature: a genuine language, which is a
system of linguistic signs used in some communication and
a processing unit executing programs composed in this lan-
guage.

A processing unit is a pure logical construct that is not pur-
posed for whatever physical implementation. Instead, a
source program is either directly executed by a software
interpreter running on a physical low-level processor, or is
translated to the machine code of a physical processor with
the help of a compiler.

A genuine language is a linguistic tool of limited usage. Its
purpose consists of instructing a processor and its repre-
sentation world is restricted to the depicting bit sequences
allocated in the computer memory and the sequentially orga-
nized manipulations with these bits.

In this paper, a logical processor implicitly given in the lan-
guage definition is designated as an innate processor and a
computer powered by this processor as an innate computer.
The functionality of an innate processor can be completely
emulated by a plain non-optimized language interpreter run-
ning on the top of a real low-level processor. An innate
computer can be simulated with a real computer executing
source programs with the intermediary of such an interpreter.

For the purpose of this article, the difference between a
real and an innate computer can be reduced to the differ-
ences in the executable files. Assuming that both computers
have an identical application HelloWord, in order to run
this program on a real computer, a user has to compile the
file HelloWorld.cpp into the object file HelloWorld.obj,
link the latter getting the executable file HelloWord.exe
and start running the executable. Because the processor of an
innate computer understands C++ code, a user of such a com-
puter simply starts HelloWorld.cpp without any additional
preparation.

3. THE LANGUAGE THEORY

The complete theory of language can be found in TMI[5]

Chapter 6. The theory describes the general language
paradigm, which is the pattern of language definition and
use. The paradigm represents the real life of a language —
the way it is created, used, extended and substituted. The
paradigm also shows the general way to formal representa-
tion of semantics, which consists of formal representation of
communicators.
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3.1 The definition of language
The approach of TMI is based on the commonsense un-
derstanding of language, which, in slightly different forms,
is replicated by every dictionary. For example, Britannica
defines language as “a system of conventional spoken or writ-
ten symbols by means of which human beings, as members
of a social group and participants in its culture, communi-
cate” (the article “Language”, in: Ref.[16]). The categories
normally associated with a language are primarily those in-
volving the process of language study and use, as syntax,
semantics, vocabulary, the level of language control and so
on.

This work uses the generalized notion of the above defini-
tion, which is not restricted to whatever particular language
type and can be applied to any computer, human or even
non-human language. A Language is a system of admissible
values of some mediating object (variable) used for coor-
dination between communicating entities. Communicating
entities can be human beings, animals, computer algorithms
and any other entity with the ability to produce and assess the
value of a mediating object. A value of a mediating variable
is a communicated message.

3.2 The basic model
The following examples in C/C++ demonstrate features of
the simplest languages detailing the understanding of lan-
guage used in this work.

1) The following simplest imperative language allows only
two commands, which are the values 1 and 2 of the variable
action. A part of algorithm, which sets the value of action
communicates with the part of algorithm presented with a
switch statement. Command 1 causes the execution of the
procedure a1(), command 2 invokes the procedure a2().

i n t a c t i o n = 0 ;
. . .

a c t i o n = 1 ;
. . .

sw i t ch ( a c t i o n )
{

case 1 :
a1 ( ) ;
break ;

case 2 :
a2 ( ) ;
break ;

d e f a u l t :
}

2) The following language extends the previous example by
separating communicating algorithms. The only difference
from the example above is the way of commanding, which

involves the function doAction actually invoking a switch
statement. The language consists of a value of the parameter
action, while the function name “doAction” belongs to
the outside context of the communication environment.

//file1.cpp the IDE part

void doAct ion ( i n t a c t i o n )
{

sw i t ch ( a c t i o n )
{

case 1 :
a1 ( ) ;
break ;

case 2 :
a2 ( ) ;
break ;

d e f a u l t :
}

}

//file2.cpp, the ISE part

e x t er n void doAct ion ( i n t a c t i o n ) ;
doAc t ion ( 1 ) ; / / t h e command 1 i s e x e c u t e d

The specific of this example is information transmission with
the help of two consecutively processed mediating variables:
the actual parameter with which doAction is invoked and
its copy on the call stack actually used in the function body
under the name action.

Sets of mutually convertible values are fundamental in any
communication. Thus, a C++ letter ‘a’ has multiple alterna-
tive embodiments actually involved in the communication
process:

• a written letter, which is a picture drawn on some hard
surface (paper);

• a representation of this picture in the programmer’s
brain;

• a binary structure representing this picture in the bi-
nary computer storage (a char literal ‘a’);

• a structure of pixel states projecting the same picture
on the display screen;

• a representation in the external data carrier like a hard
disk of a flash memory; every data carrier can have its
own coding system;

3) The following example demonstrates the simplest non-
executable language. The language, represented by the type
bool, has only the two sentences true and false. The
variable bVar is an information carrier containing a text
composed in bool.
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i n t num1 , num2 ;
bool i s E q u a l ( i n t , i n t ) ;
. . .
bool bVar = i s E q u a l ( num1 , num2 )
. . .
i f ( bVar == t rue ) foo ( ) ;

The output value produced by the function isEqual desig-
nates a meaning.

The sentence “true” means “num1 and num2 are equal”, the
sentence “false” means “num1 and num2 are not equal”.

A text in bVar is a copy of the original value produced by
isEqual. While the original sentence is an assertion proving
the fact of equality, a copy is an assumption prone to possible
distortions, because it can also receive a value as a result of
a simple assignment “bVar=true” without any invocations
of isEqual.

A message in bVar contains indicative information, which is
assessed by the algorithm represented by the sentence if.

Meaning is a value of some type produced by a comparison
procedure. A comparison procedure is the simplest observer.
It compares an arbitrary number of entities, returning the
designation of the comparison. The complex meaning is the
collection of simple and complex meanings. Complex mean-
ing requires complex observers including many comparison
procedures.

The semantics associated with a language code includes sev-
eral components; Thus the complete semantics of the value
‘1’ in the variable action (examples 1, 2) include the seman-
tics of the referred procedure a1() as well as the semantics
of the code containing the switch sentence.

The semantics of the text in bVar (example 3) includes the
semantics of the code writer (isEqual) but can also include
the semantics of the complete algorithm, if isEqual is log-
ically connected to other code parts. Additionally, it can
include the semantics of a code reader in case the compari-
son procedure isEqual used by the latter is different from
isEqual from the code writer.

The differences between indicative and imperative semantics
can be seen in the statement “Pete puts the cup on the table”.
Below is the meaning of the indicative variant:

• The sentence describes putting a particular cup on a
particular table.

• The process can occur everywhere, anytime or even
be imaginable.

• The process is not confined to the producer or a reader
of this sentence.

• It is implied that anyone reading this sentence has to
understand its meaning (semantics).

The semantics of the imperative sentence “Pete, put the cup
on the table” is as follows:

• The sentence is a command, which its producer gives
to its reader Pete.

• The designated process can only occur if its reader is
able to take the required cup and put it on the required
table.

• The designated process will only occur when its reader
actually executes the command.

• A code reader may also execute the command with-
out understanding the semantics of the sentence, e.g.,
when the code reader is a robot and this command is
one it can carry out.

To summarize, a reader of an indicative code has to be able
to understand the meaning of the message, but does not need
to have a physical connection to the action’s environment.
On the other hand, a code reader of an imperative command
may act without understanding the command’s meaning, but
is able to actually produce the required actions.

3.3 A universal representation language
The reason why creators of programming languages never
showed any interest in their KR capabilities, lays in the self-
sustainability of programming whose informational structure
has remained the same since the time of first computers. The
main participant in the programming process is a programmer
who gains knowledge with the help of natural languages, in
the form of various images or as tacit knowledge. A program-
mer uses the knowledge acquired for issuing unambiguous
instructions to an innate processor.

In the circumstances where all complex knowledge-related
activities are effectively performed by humans there is ab-
solutely no stimulus for extending a programming language
to the tasks laying outside of its original purpose. One of
consequences of this approach is the paradoxical situation in
which a language used for producing formal representations
can only be described with the help of informal categories.
Concretely, while the meaning of the character literal ‘a’
is unambiguously defined in the language’s definition, the
meaning of the letter ‘a’ in the language alphabet is com-
pletely undefined and hence misunderstood.

The adequate definition of a programming language solves
this paradox by revealing the missing links between the real
world and the binary entities represented by the language
code.
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The communication in a programming language occurs be-
tween a programmer and an innate computer. A programmer
studies a language by reading the definition of this language
(let us assume the definition is given in a readable format)
and applies it by composing a program, which he sends to
an innate computer, in turn executing the commands. In OO
terms Figure 1, this communication environment includes an
object Programmer generating a Program; an object PLCom-
puter, executing the Program; an object Book, from which a
Programmer studies the language; a class Language, which
is the multilevel structure based on alphabetical characters
used in the communication exchange between a Programmer
and a PLComputer.

Figure 1. The communication environment

Even though the system of programming language signs
is dedicated to the representation of a tiny fragment of the
real world, similar to any other jargon it is unrestrictedly
extensible. Taking into account that all currently existing
full-fledged natural languages were built from the primitive
jargons used by ancient societies, every programming lan-
guage can be considered as the embryo of the respective
universal representation language.

A system of signs of a programming language is dedicated
to the representation of a tiny fragment of the real world.
So it is essentially equivalent to a jargon, which is a subset
of a natural language restricted to particular communicators
and a topic. The fundamental characteristic of jargons is
their unrestricted extensibility. Taking into account that all
currently existing full-fledged natural languages were built
from the primitive jargons used by ancient societies, every
programming language can be considered as the embryo of
the respective universal representation language.

The latter is not restricted by whatever predefined commu-
nicators or communicated themes and can be used for ex-

pressing any information ever formulated in any human or
computer language. Such a language can be built by ex-
tending the linguistic signs of a programing language by
expression abilities needed to represent entities exceeding
the representation world of this programming language.

Theoretically, the world of universal representation lan-
guages can include many of them, but in reality, such plural-
ity is rather disadvantageous, because all these languages will
ultimately possess exactly the same expression power. The
programming languages are very different in their expansive
abilities. Some programming languages are more extensi-
ble than others with the best match being the maximally
extensible of them - C++.

4. THE UNIVERSAL REPRESENTATION LAN-
GUAGE T

4.1 General characteristics
T is a formal system of C++-like signs purposed for infor-
mation exchange between various communicators. The lan-
guage allows the representation of both executable (impera-
tive) and non-executable (indicative) semantics. Its default
code form is indicative.

The communicators are either physical objects (human being,
devices, computer programs) or logical entities, which are (or
considered to be) able to read and/or write code composed
in T and execute designated actions. A human being is the
ultimate communicator possessing all the functionality of
the language, but other communicators could possess limited
abilities.

The language exploits the TMI view of the world, according
to which, every real or imaginary entity can be viewed as
an object whose behavior can be expressed in the manner
of programming algorithms. For example, the algorithm of
the Earth consists of the cyclical movement around the Sun
and the rotation around its axis each day. In the same way
the structure of the Sun, Earth and their algorithms can be
described in English they can also be described in T.

The expression means of T contains practically all C++ con-
cepts including real, abstract and virtual classes, instances,
procedures, multiple inheritance, templates, control state-
ments (called sentences) etc. It has also several new concepts,
which are necessary for non-executable representations.

The language formalizes all parts of speech, nouns are repre-
sented as classes and instances, verbs are procedures, rules
for other parts of speech are described in the following sub-
sections.

Because of new concepts and irregularities of C++ syntax,
the syntax of T is only somewhat similar to that of C++.
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T allows multiple implementations. An implementation of
T is its application in some communication environment
where the whole language or some subset of it is used for the
information exchange.

The ability of a language to specify its own grammar and
semantics (meta-representation) is essentially similar to that
of natural languages (English, Russian, Chinese etc.). The
language is its own meta-language using the same expres-
sion means for both the specification of a communication
environment and for composing discourses exchanged in this
environment.

The method for meta-description is detailed in Ref.[17] The
formality in T is understood as the compliance between the
formal and actual parameters of the respective procedures.
The check for the compliance between the formal and actual
parameters is the only action generally defined for the pro-
cessing of T code. This is completely sufficient providing all
entities referred with the help of this language are described
in the terms of OO categories.

The following specification is restricted to the description of
features used in this article. The complete specification can
be found in Ref.[5] Chapter 6.

4.2 Expression power
The expression power of T can be shown using the following
C++ example:

i n t i 1 = 5 . 0 ;
Complex c l ( 3 . 0 , 4 . 0 ) ; / / a complex number
c o n s i s t i n g o f two r e a l numbers

The C++ meaning of this code sums up the semantics origi-
nating from four different sources.

(1) Language documentation. The object i1 is an instance
of a fundamental type int whose description can be
found in the definition of C++, composed in a natural
language, normally English.

(2) C++ code. The object c1 is an instance of a user-
defined type Complex whose complete definition is
made in C++.

(3) Foreign knowledge. While the names int and Com-
plex designate binary objects, their semantics are es-
sentially extended by the associations with the mathe-
matical theory defining integer and complex numbers.
Similar to the C++ documentation, the description
of the mathematical theory is also made in a natural
language.

(4) Comments. The text after “//” gives additional infor-
mation in English.

The code above can also be interpreted as a T code com-
pletely emulating C++. Such a reinterpretation is semanti-
cally indifferent but it radically changes the associated lexical
environment, because all notions, which in the case of C++
are made in a natural language, can now be made in T. In
contrast to C++, T allows all aforementioned specifications
including the complete specification of the C++ innate pro-
cessor, the mathematical content and comments.

In actual fact T allows creation of a monolingual communi-
cation environment in which it could be used for expressing
miscellaneous programs and narratives.

4.3 The semantics
The code semantics are basically defined by the features of
communicators. The semantics of imperative code are those
of a code reader (execution unit). The indicative semantics
represent the features of an observer, who is a coder writer.

The ultimate observer is a human being. It collects informa-
tion with the help of its senses and exchanges this information
with other human beings in a human language. The model
describing the information capabilities of a human as Homo
Informaticus (HI) can be found in Ref.[4] The main points of
this model are as follows:

• The model of an HI perceives a human being as a self-
programming system commanded by the controlling
computer (brain). The body of an HI is seen as the
complex set of moving parts, each consisting of a mus-
cle attached to a bone or an organ. A muscle executes
one of two commands contract or relax, which, in turn,
causes a movement of a bone or organ. Another im-
portant part of this system is the senses, which consist
of multiple receptors interpreted as volatile variables
functionally similar to the input ports of conventional
computers.

• Human knowledge is represented by the programming
code and data (perceptions) of an HI. The model pro-
vides the method for representing complete human
knowledge starting from low-level perceptions that hu-
mans acquire during their lives and continuing until
encompassing high-level knowledge. Various kinds
of knowledge are interpreted as programs of distinct
levels. The built-in algorithms of the lowest level are
unconditional reflexes and basic skills, the low-level
soft programs designate skills, and the algorithms of
the high-level stand for beliefs, concepts, etc.

• The intellectual operations performed by the HI’s brain
are interpreted as manipulations with the code of these
programs, and a natural language is considered as the
system enabling programs’ exchange between various
individuals. Only programs of a high level can be
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exchanged in a natural language. Other programs con-
stitute tacit knowledge, which can only be transmitted
with the help of immediate learning if at all when one
acquires new skills by copying the behavior of another
HI.

4.4 Communications
An application can include many modules. A module is a text
composed in T, which includes a sequence of declarations,
definitions, labels and commands devoted to a particular sub-
ject. A module can be a paper book, a book’s part; a file in
the computer storage, a file’s part.

A module can include narrative and executive information.
Narrative information (info) is essentially a value or a collec-
tion of values describing something. Executive information
(rule) requires execution of actions of some form from a
module’s reader.

Communicators can be referred to in T code with the help
of predefined names reader and writer. Events of reading
and writing are designated as respectively read, write. The
features of communicators can be completely described in
code and such description, if present, constitute the basis of
code semantics. The differences between C++ and T can be
shown using the famous “Hello World” example:

void main ( )
{

p r i n t f ( " H e l l o World " ) ;
}

A T-application with the same semantics includes the same
code extended by the specification of communication envi-
ronment. In this case only a reader of this text has to be
provided:

_ r e a d e r := _ c p l u s p l u s / / t h e d e f i n i t i o n
o f t h e code r e a d e r
p roc main ( )
{

p r i n t f ( " H e l l o World " ) ;
}

Similar code can be used in completely different com-
munications. Assume there is a logical processor called
cplusplus_logger, which registers operations performed
by an innate processor of C++ and writes a log file. A log
produced during execution of the aforementioned example
can be grammatically similar to the latter but it is a narrative
enumeration of already executed functions.

_ w r i t e r := c p l u s p l u s _ l o g g e r
main ( )

{
p r i n t f ( " H e l l o World " ) ;

}

The differences between imperative and indicative code can
be demonstrated in the example of the procedure foo defined
as

p roc foo ( )
{

foo1 ( ) ;
foo2 ( ) ;

}

In T, the text “foo()” means not the invocation of foo as it
normally is in the case of programming languages, but the
declaration of an occurrence (event) of foo. An event is an
instance of a procedure and can also be declared in the same
way as an instance of a class. The following code shows a
sequence of two foo events.

{
foo f f ( ) ; / / an e v e n t o f foo named f f
foo ( ) ; / / an unnamed e v e n t o f foo

}

If an occurrence of foo1() in foo() was named as f1 it
could be referenced as ff.f1.

The command requiring execution of foo has to be written
as.

\ # foo ( ) ;
/ / \ # d e s i g n a t e s a command , T has no
p r e p r o c e s s o r i n t h e C s t y l e

A command’s executer will read the command body, inter-
pret each procedure occurrence as a command and execute
it. A name of an occurrence is interpreted as a command’s
name.

The object cplusplus executes code in exactly this way.
The procedure, which invokes a C++ innate processor,
finds the file HelloWorld.cpp and invokes an instance of
cplusplus with this file as a parameter. An instance of
cplusplus looks for the procedure main() and executes
the built-in command #main(), which starts reading the
function’s body and executing its content.

The details of non-executable code are given in the following
sections.

4.5 T Specifics
The type system of T utilizes the classical C++ concepts
as classes, structs, unions and enums, employing several
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new constructs. The complete list of concepts can be found
in Ref.[17] The extensions of the traditional C++ concepts
described below are relevant for the current article.

1) T uses the concept of a heap, which is an unorganized
plurality of entities. The following is the declaration of the
heap hp of int binary numbers

i n t . . hp ; / /
heap hp i n t ; / / a l t e r n a t i v e d e c l a r a t i o n

Heaps are the simplest pluralities. Thus the phrase “the flow-
ers blossomed” describes a heap of flowers that blossom.
Heaps allow a specification of relations between pluralities.
The phrase “several village inhabitants” designates a small
sub-plurality of the complete village population. See Subsec-
tion 4.7 for examples.

2) The concept of enum is a generalized, relatively respective
C/C++ construct. In T enum is a restriction of the base type
to a list of admissible values. Thus, the C++ enum

enum c u r r e n c y { d o l l a r , f r a n k , eu ro } ;

is interpreted in T as a restriction of the type int, which is
named currency whose only admissible values are values
0,1,2 named respectively as dollar, jen and euro. In T
this enum has to be represented as

enum c u r r e n c y i n t { d o l l a r , f r a n c , eu ro } ;

A definition written in the way of the above C++ enum as

enum c u r r e n c y { d o l l a r , f r a n c , eu ro } ;

defines the set of regular words, which could be associated
with a particular meaning somewhere after the definition
point. See examples in the following sections.

3) Universal Declaration Syntax

All objects including procedures and arrays have explicit
types. Thus, the “C” function declared as “intfoo(inti)”
in T has to be expressed as

c f u n c foo ( i n t i , o u t i n t ) ;

The type cfunc is the class of C++ functions. A decla-
ration of the “C” array e.g., “intii[3]” can be made as
“carrayiiint[3]” where carray is the class of “C” ar-
rays.

4) The dot operator “.” allows referencing parts of arbitrary
containers. Thus, the expression ‘a.b’ is a correct reference
for the following components:

• Procedure parameter: proca(intb);

• Template parameter: proca<typenameb>(bc); //a
template parameter b is just additional parameter

• Class component: classa{classb;};
• Namespace entity: namespacea{intb;};
• Component of complex enumerations. See Ref.[5]

Chapter 7 for examples.

4.6 Information statements
The basis construct used for representation of narratives is
a literal structure called information statement (abbr. info
statement). An info statement represents the complete infor-
mation associated with the execution of a comparison routine.
Its syntax is similar to a function call extended by the result
of a comparison as its first parameter. Thus the function
isEqual allows two info statements

i n t num1 , num2 ;
p roc i s E q u a l ( o u t bool , i n t , i n t ) ;

i s E q u a l ( true , num1 , num2 ) ; / / t h i s i n f o
s e n t e n c e means num1 i s e q u a l t o num2
i s E q u a l ( f a l s e , num1 , num2 ) ; / / t h i s i n f o
s e n t e n c e means num1 i s n o t e q u a l t o num2

If the comparison routine produces a unique value, the pro-
cedure name can be replaced by the name of this value.

enum e q u i l i t y i n t { equa l , n e q u a l } ;
p roc i s E q u a l ( o u t e q u i l i t y e , i n t , i n t ) ;
n e q u a l ( num1 , num2 ) ; / / t h i s i n d i c a t i v e s e n t e n c e
means t h a t "num1 i s n o t e q u a l t o num2"

4.7 Representation of parts of speech
4.7.1 Adjectives, adverbs
These parts of speech are represented by a special form of a
comparison routine returning a lexical word. Its syntax is

i n f o < r e t u r n e d enum>( < param1 > [ , param2 ,
. . . paramn ] )

This kind of info statement can be written in the function-like
notation for every number of parameters, as a binary opera-
tor in case of two parameters and as a unary operator for a
single parameter. The function isEqual() can be redefined
as follows:

i n f o { equa l , n e q u a l } ( i n t , i n t ) ;
/ / equa l , u n e q u a l a r e n o t names o f i n t b u t
l e g a l T words
num1 e q u a l num2 ;
/ / t h e i n d i c a t i v e s e n t e n c e means "num1 i s
e q u a l t o num2" b i n a r y o p e r a t o r
num1 n e q u a l num2 ;
/ / t h e i n d i c a t i v e s e n t e n c e means "num1 i s
n o t e q u a l t o num2" b i n a r y o p e r a t o r
e q u a l ( num1 , num2 ) ;
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/ / t h e i n d i c a t i v e s e n t e n c e means "num1 i s
e q u a l t o num2" f u n c t i o n a l n o t a t i o n
n e q u a l ( num1 , num2 ) ;
/ / t h e i n d i c a t i v e s e n t e n c e means "num1 i s
n o t e q u a l t o num2" f u n c t i o n a l n o t a t i o n

The statement with one input parameter can be written in
a function-like notation or a unary operator in a postfix or
prefix form. The default form is prefix. The following info
routine has to be produced during the comparison between
the actual grass color and the predefined set of available
colors.

enum Colo r ( b lack , whi te , green , brown ,
ye l low , red , o r a ng e } ;
i n f o Colo r ( O b j e c t ) ;
i n t o Co lo r ( out , O b j e c t ) ; / / t h e same as b e f o r e
g r e e n g r a s s ;
g r e e n ( g r a s s ) ;

An unary postfix operator needs to be declared as:

i n f o Colo r ( Objec t , o u t ) ; / / s econd v a r i a n t
g r a s s g r e e n ;

All adjectives and adverbs can be defined in this way.

4.7.2 Quantifiers and prepositions
Info statements “all”, “some” are essentially relations be-
tween a heap and its subset:

i n f o { a l l , many , some , few , unde f }
<typename T>( heap <T> s u b s e t , heap <T>
p l u r a l i t y ) ;
S t u d e n t . . c a m p u s S t u d e n t s ;
S t u d e n t . . &d i s t i n g u i s h e d S t u d e n s ;
S t u d e n t . . &commonStudens ;

d i s t i n g u i s h e d S t u d e n t s few c a m p u s S t u d e n t s ;
commonSstudents many c a m p u s S t u d e n t s ;

The info statement “from” characterizes the relationship be-
tween an entity and a container

i n f o { from , none } ( O b j e c t p a r t , O b j e c t o b j ) ;
s t r u c t S{ i n t i1 , i 2 ; f l o a t f ; }
/ / t h e c o n t a i n e r S i n c l u d e s i1 , i 2 and f
f l o a t from S ; / / d e s i g n a t e s f from S
i n t . . from S ; / / d e s i g n a t e s i 1 and i 2
o b j e c t s from S

O b j e c t m y _ u n i v e r s i t y ; / / i n c l u d e s b u i l d i n g s
and p e r s o n s unnamed heap i n c l u d i n g
a l l s t u d e n t s from m y _ u n i v e r s i t y
S t u d e n t . . from m y _ u n i v e r s i t y ;
/ / unnamed heap i n c l u d i n g some s t u d e n t s from
m y _ u n i v e r s i t y

S t u d e n t . . some S t u d e n t . . from m y _ u n i v e r s i t y ;
/ / heap wi th a name s t d n t s , i n c l u d e s some
s t u d e n t s from m y _ u n i v e r s i t y
$ S t u d e n t . . $ s t d n t s some S t u d e n t . . from
m y _ u n i v e r s i t y ;
/ / t h e same as b e f o r e b u t w i t h o u t e x p l i c i t
d e s i g n a t i o n o f a t y p e
$ $ s t d n t s some S t u d e n t . . from m y _ u n i v e r s i t y ;

The info statement “on”. Assume there is a wall with some
picture hanging on it. So we can make several statements
relating to the things placed in vicinity of this picture.

S u r f a c e w a l l ;
P i c t u r e p i c ;
i n f o {on , u n r e l a t e d } ( O b j e c t obj , S u r f a c e
s u r f ) ; / / o b j i s on t h i s s u r f a c e e i t h e r
a t t a c h e d or f a s t e n e d p i c on w a l l ;

The statements regarding parts of the wall “above” and “be-
low” a picture can be made in the following form.

i n f o { above , below }{ O b j e c t p a r t , O b j e c t
r e l p o i n t , O b j e c t c o m p l e t e ) ;
S u r f a c e above ( p ic , w a l l ) ;
/ / t h e f r a g m e n t o f w a l l above p i c

The info statements “near”, “far”.

i n f o { near , f a r }{ O b j e c t ob1 , O b j e c t r e l p o i n t ) ;
Tree t r e e ;
Gate g a t e ;
t r e e n e a r g a t e ;

The following info statement describes time relationships
between events

i n f o { du r ing , b e f o r e , a f t e r }{ e v e n t ev1 ,
e v e n t ev2 ) ;
e v e n t I amEa t ing ;
e v e n t TVNews ;

I amEa t ing d u r i n g TVNews ;

Other relations between events including grammar tenses are
described in Section 5.1.

4.7.3 Verbs
Verbs are events (occurrences) of procedures. The basic
construct used for expression of procedures is an application.

An application is a block statement qualified by some entity,
components of which are visible in this block. The enti-
ties defined inside the block can be referred with an applied
object followed by the double colon “::”. The qualifying
object can be either type or instance. An application is not a
member of the applied type.
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c l a s s Obj { i n t a ; } ;
O b j e c t o b j ;
O b j e c t : : { a = 0 ; } ;
/ / an a p p l i c a t i o n o f an O b j e c t
p roc O b j e c t : : i n i t ( ) { a = 0 ; } ;
/ / i n i t i s an a p p l i c a t i o n o f t h e c l a s s O b j e c t
p roc o b j : : i n i t ( i n t pa ) ( a = pa ; } ;
/ / i n i t i s an a p p l i c a t i o n o f t h e i n s t a n c e o b j

o b j : : i n i t ( ) ; / / o c c u r r e n c e o f O b j e c t : : i n i t ( )
o b j : : i n i t ( 7 ) ; / / o c c u r r e n c e o f o b j : : i n i t ( )

The elementary events are represented in the form of changes,
which are alterations of a result produced by the same com-
parison routine. Thus, the phrase “the apple grows” assures
that the size of the apple in the moment of producing this
phrase is bigger than before. The following code represents
the growth of an apple during some time. Let’s assume that
the size is given in millimeters.

c l a s s Apple
{

i n t s i z e ;
. . .

}
Apple a p p l e ;
Apple : : { s i z e = 2 0 ; s i z e = 2 5 ; }
/ / assume t h e s i z e i s g i v e n i n mm.

In T, this change can be represented as follows:

p roc a p p l e : : grow ( ) { s i z e ( 2 0 ) ; s i z e ( 2 5 ) ;
/ / t h e d e c l a r a t i o n
a p p l e : : grow ( ) ;
/ / an o c c u r r e n c e o f t h i s change

Simple events are essentially series of changes. Thus, a
clenched fist is a series of changes of this fist, a turn of a fan
is a series of changes of a fan, the working of a motor is a
series of changes in a motor.

Verbs can be used in active and passive forms Thus, the sen-
tence “Peter puts the cup on the table” can be expressed in T
as follows:

P e t e : : p u t ( t a b l e , cup ) ;

The passive form of this sentence “the cup is put on the table
by Pete” has the following syntax:

cup , P e t e : : p u t ( t a b l e , \ _noun ) ;
/ / \ _noun i s t h e p r e d e f i n e d r e f e r e n c e t o
t h e s e n t e n c e ’ s noun

The syntax of a sentence can be found in Ref.[5]

4.7.4 Pronouns (References)
Pronouns are represented as references (temporary names)
used to refer to an object. A name is an identifier perma-
nently assigned to an entity while a reference is its temporary
identifier. C++ allows definition of references as:

i n t num = 0 ; / / num i s an i n s t a n c e o f i n t
i n t &rnum = num ; / / rnum i s a r e f e r e n c e t o num

Differing from C++, T allows multiple assignments to the
same reference. An assignment occurs with the help of the
operator “:=” or “()”. In the code below, the reference bref
first designates first and then second

i n t f i r s t ;
i n t second ;

i n t &b r e f := f i r s t ;
b r e f := second ;
b r e f ( second ) ; / / t h e same as b e f o r e

The reference assignment also has a mirrored variant “=:”
which references the left side object.

second =: b r e f ; / / t h e same as b e f o r e

When a reference is initialized in the declaration point, it
can be defined implicitly without the character “&”. Refer-
ences defined in this way cannot be reassigned again. The
following definition introduces the reference which cannot
be changed

i n t c o n s t R r e f := second ;
c o n s t R f e f := f i r s t ; / / Wrong

Parameters are references by default. A number of prede-
fined references have special meanings. The references I and
you, are set implicitly. They designate the text creator and
the current text reader. References _write, _read designate
events of writing and reading the current text. A reference
that(type) designates the last event/instance of type. For
example:

c l a s s Man : Human ;
c l a s s Woman : Human ;
Man Alex ;
Woman Ann ;
Man P e t e r ;

t h a t (Woman) / / d e s i g n a t e s Ann ;
t h a t (Man ) / / d e s i g n a t e s P e t e r ;
t h a t ( Human ) / / d e s i g n a t e s P e t e r ;

Ann : : work ( ) ;
Alex : : work ( ) ;
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t h a t ( Human : : work ) ; / / d e s i g n a t e s Alex ;
t h a t (Man ) / / d e s i g n a t e s Alex ;

Such nouns as neighbor, patient, chief etc. are also refer-
ences to real objects.

4.8 Associations
The common way of representing entities like a person con-
sists of defining the class “Person” whose components are a
person’s attributes like age, position, clothing size etc. While
this is very effective way of defining distinct entities, it is
incorrect from the viewpoint of actually existing relations
between persons and their attributes. The only parts of a real
person are the person’s body parts and internal organs while
all aforementioned attributes are external objects related to
this person in one way or another. T provides the concept of
association that allows referring to entities by their features
and affiliations as “his mood”, “the smoking pipe of Hem-
mingway”, “a house in London”. Associations are the most
fundamental kind of relationships. All other relationships
like relations between an object and its parts, between a class
and its method are based on this concept.

Associations are defined as relations between entities defined
on the same level. The objects name and shirtSize are
associated entities:

s t r i n g name ;
char s h i r t S i z e ;

The relations between these entities can be expressed using
the following two constructs:

• The horizontal qualifications between associated ele-
ments refer to the object shirtSize as name@shirt
Size.

• The association constraint is used for expressing de-
pendencies existing between association members.
Thus, the meaning of the phrase “Peter’s shirt size
is ‘M’” can be expressed as name(“Peter”)@[shir
tSize(M”)];

In most cases, associations are used for expressing depen-
dencies between objects participating in the same algorithm.
Consider the following example:

c l a s s Pe r s on { . . . }
c l a s s C l o t h { . . . } ;
p roc m e a s u r e C l o t h S i z e ( Pe r s on &person ,
C l o t h &c l o t h , o u t char s i z e ) ;
. . .
Pe r s on P e t e r ;

There are several ways to express it. One is to define a
respective info statement.

m e a s u r e C l o t h S i z e ( P e t e r , S h i r t , M) ;

Another way consists of redefining measureClothSize as
an unnamed procedure.

p roc ( Pe r s on &person , C l o t h &measuredClo th ,
o u t char s i z e ) ; / / t h e unnamed p r o c e d u r e i s
d e f i n e d as a synonym of m e a s u r e C l o t h S i z e

Peter@ [ c l o t h ( S h i r t ) , s i z e (M) ] ;
/ / f i r s t s p e c i f i c a t i o n v a r i a n t
P e t e r @ c l o t h ( S h i r t ) @size (M) ;
/ / second s p e c i f i c a t i o n v a r i a n t

Associations can be defined in the form of attributes, which
reference the associated object only through the head en-
tity. The following is the association between name and
shirtSize expressed in the form of attributes.

s t r i n g name [ char s h i r t S i z e ; ] ;
name ; / / OK
name@shi r tS i ze ; / / OK
sh i r tS i ze@name ; / / Wrong . s h i r t S i z e i s n o t
d e f i n e d as a s o v e r e i g n e n t i t y .

The number of attributes is unlimited and many of them can
be referred to in the same sentence.

s t r i n g name [ char s h i r t S i z e ; Date b i r t h D a y ] ;
name ( Ro be r t )@[ s h i r t S i z e (M) ; b i r t h D a y
( 1 . 1 . 1 9 8 0 ) ; ]

5. EXAMPLE ONTOLOGIES
The presumption of this work is that the ontologies of event
and time defined on the base of other approaches (Refs.[18–22]

etc.) are expressible in terms of the commonsense ontologies
below.

5.1 Events
An event is an occurrence of a procedure. It consists of a
change or a sequence of changes and inclusive events.

p roc p r c ( ) ;
/ / d e c l a r a t i o n o f t h e p r o c e d u r e p r c
p r c ( ) ;
/ / unnamed e v e n t o f p r c

A change consisting of similar states represents a process of
perpetuation of something, e.g., “a cat on a mat” means the
place of the cat is not changed during observation time.

Representation of events essentially depends on the code
form. While the event implementation (algorithm) is im-
portant in the imperative code, it is normally not true for
the narrative representation. The general way of narratives
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consists of expressing relations between specified and related
events. For example, the phrase “he came home at the end of
the day” denotes a coincidental time between the process of
someone coming home and the day ending occurring at this
moment. The event (the day ending) is considered as being
the longer of both processes. So the exact semantics of this
phrase is that an event of coming home occurred somewhere
during the ending of the day.

The phrase “I was at home” implies a connection in time
of the event of me being at home relative to the event of
producing this phrase.

The phrase “the train leaves at 15.00” means that the train
departure occurs simultaneously with the clocks showing
15.00.

The phrase “Bill drove 15 hours” in turn means that the dura-
tion of Bill’s drive lasted the same amount of time as a clock
needs to count 15 hours.

The declaration below introduces essential attributes of an
event, which relate to the designated event in this or an-
other way. The type event is a basic type, its definition is
impossible without a recursion, so it is essentially a pseudo-
declaration. The predefined reference it is used in the brack-
ets for referring to the master object. The reference it.it
allows referencing the master object of the encircling level
and so on. The master object is the default first parameter.

p roc e v e n t
[

/ / A s s o c i a t e d e v e n t s s t a r t and f i n i s h a r e
p a r t s o f t h e main e v e n t .

e v e n t &s t a r t ; / / s t a r t o f t h e main e v e n t
e v e n t &f i n i s h ; / / f i n i s h o f t h e main e v e n t
e v e n t &o c c u r ; / / synonym of t h e main e v e n t
/ / An e v e n t ev i s an i n d e p e n d e n t e v e n t

o c c u r r i n g s i m u l t a n e o u s l y wi th t h e main e v e n t
i n f o { du r ing , b e f o r e , a f t e r }{ e v e n t ev2 ) ;
i n f o ( was , i s , w i l l } { ) ;
i n f o ( a t , f a l s e }{ e v e n t ev1 ) ;
i n f o { l a s t s , f a l s e } ( e v e n t ev1 ) ; } ;
i n f o { b e f o r e , du r ing , a f t e r } ( e v e n t ev ) ;
/ / e v e n t e n c l o s i n g i n c l u d e s t h e main e v e n t
i n f o { in , f a l s e ] { e v e n t e n c l o s i n g )
[

/ / t h e f o l l o w i n g code d e f i n e
r e l a t i o n s between r e s p e c t i v e e v e n t s

( e n c l o s i n g @ s t a r t b e f o r e i t . i t @ s t a r t
| | e n c l o s i n g @ s t a r t d u r i n g

i t . i t @ s t a r t )
&&
( e n c l o s i n g @ f i n i s h a f t e r
i t . i t @ f i n i s h | | e n c l o s i n g @ f i n i s h
d u r i n g i t . i t @ f i n i s h ) ;

]
/ / f o l l o w i n g p r o c e d u r e compares t h e

main e v e n t t h i s w i th t h e t ime of t h e t e x t
p r o d u c t i o n

P l a c e p l a c e [ i t . i t on i t ; ] ;
/ / t h e p l a c e o f e v e n t s o c c u r r e n c e

]

Grammar tenses establish a relationship between the time
of producing the sentence by a code writer and a time of
an event. The assertion registering the event’s tense can be
defined as:

i n f o ( was , i s , w i l l }{ e v e n t ev )
{

e x t er n e v e n t _ w r i t e ;
i f ( _ w r i t e d u r i n g ev )

re turn be ;
e l s i f ( _ w r i t e a f t e r ev )

re turn was ;
e l s e re turn w i l l ;

}
Bob : : goto ( c inema ) , _v was ;
/ / means Bob went t o a cinema
Bob : : walk@ [ be ] ( ) ;
/ / means Bob walks

5.2 Time
A time (date-time) is a state of a clock. A clock is a de-
vice implementing four general procedures: count, stay,
reset, stop. The procedure count refers to the counting
procedures Second,Minute,Hour,Day,Month,Year,Er
a. The value stored in seconds,minutes,hours,days,m
onths,years represents the current clock’s time.

A state of a clock is an event of persisting a current state.
The event finishes with the change of the smallest compo-
nent (e.g., the state 1.1.2008 13:30:31 ends when a number
of seconds changes to 32).

c l a s s Time
{
p u b l i c :

/ / t y p e i n t e g e r i s t h e l a n g u a g e number c o n s i s t i n g o f d i g i t s
i n t e g e r y e a r s ,
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months ,
days ,
hours ,
minu tes ,
s e c o n d s ;

t ime ( ) { y e a r s = months = days = h o u r s = m i n u t e s = s e c o n d s = 0 ; }
t ime ( i n t e g e r s e c o n d s = 0 , i n t e g e r m i n u t e s = 0 , i n t e g e r h o u r s = 0 ,
i n t e g e r days = 0 , i n t e g e r months = 0 , i n t e g e r y e a r s = 0 ) ;

}
c l a s s Clock ;
/ / t h e f o l l o w i n g p r o c e d u r e s a r e a p p l i c a t i o n s o f a Clock
Clock : : {
p u b l i c :

Time <<>>; / / e l e m e n t s o f unnamed o b j e c t can be r e f e r e n c e d d i r e c t l y

p roc Second ( ) ;
p roc Minute ( ) { f o r ( s e c o n d s = 0 ; s e c o n d s < 6 0 ; s e c o n d s ++) Second ( ) ; }
p roc Hour ( ) { f o r ( m i n u t e s = 0 ; m i n u t e s < 6 0 ; m i n u t e s ++) Minute ( ) ) ; }
p roc Day ( ) { f o r ( h o u r s = 0 ; h o u r s < 2 4 ; h o u r s ++) Hour ( ) ; }
p roc Month ( i n t e g e r ndays ) { f o r ( days =0; days < ndays ; days ++) Day ( ) ; } ;
p roc Year ( bool l e a p _ y e a r = f a l s e ) ;
p roc Era ( ) { f o r ( y e a r s = 0 ; ; y e a r s ++) Year ( y e a r s / 4 * 4 == y e a r s ) }
p roc c o u n t ( ) { Era ( ) ; } / / t h e c o u n t i n g p r o c e d u r e
p roc s t a y ( ) ; / / t h e s t a y i n g ( non−c o u n t i n g ) p r o c e d u r e
p roc r e s e t ( ) / / r e s e t s t ime t o n u l l
p roc s t o p ( ) ; / / t h e s t o p p i n g p r o c e d u r e

}

p roc Clock : : Year ( bool l e a p _ y e a r = f a l s e )
{

months = 1 ; Month J a n u a r y ( 3 1 ) ;
months = 2 ; Month F e b r u a r y ( l e a p _ y e a r ? 29 : 2 8 ) ;
months = 3 ; Month March ( 3 1 ) ;
months = 4 ; Month A p r i l ( 3 0 ) ;
months = 5 ; Month May ( 3 1 ) ;
months = 6 ; Month June ( 3 0 ) ;
months = 7 ; Month J u l y ( 3 1 ) ;
months = 8 ; Month August ( 3 1 ) ;
months = 9 ; Month September ( 3 0 ) ;
months = 1 0 ; Month Oc tobe r ( 3 1 ) ;
months = 1 1 ; Month November ( 3 0 ) ;
months = 1 2 ; Month December ( 3 1 ) ;

} ;

The event Ptime represents the passing time, which lasts the
same time span as the attribute occurred.

c l a s s Pt ime
{
p u b l i i c :

Time p t ime ;
e x t er n Clock c l k ;
P t ime ( e v e n t ev_begin , e v e n t ev_end )
{

Time t 1 = c l k . c o u n t ( )@[ i t a t

e v _ b e g i n ) ;
Time t 2 = c l k . c o u n t ( )@[ i t a t
ev_end ; ] ;
p t ime = t2−t 1 ;

}
Pt ime ( e v e n t o c c u r r e d )
{

Time t 1 = c l k . c o u n t ( )@[ i t a t
o c c u r r e d @ s t a r t ) ;
Time t 2 = c l k . c o u n t ( )@[ i t a t
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o c c u r r e d @ f i n i s h ; ] ;
p t ime = t2−t 1 ;

}
}

The class Ctime represents the current date-time, which has
passed since the start of A.D.

e v e n t f i r s t _ d a y _ o f _ A _ D ;
/ / t h e f i r s t day of A.D.
c l a s s Ctime
{

p u b l i c :
Time c t i m e ;

/ / Ctime i s t h e c u r r e n t da t e −t ime shown
by some c l o c k

Ctime ( e v e n t ev )
{

c t i m e = $Clock$ . c o u n t ( )@[ i t
a t e v @ s t a r t ]−

$Clock$ . c o u n t ( )@[ i t a t f i r s t _ d a y
_of_ A_D@start ] ;

}
}

The class age represents the age of an object at a query-point.

c l a s s age Time . y e a r s
[

O b j e c t aged ;
/ / t h e o b j e c t whose age i s q u e r i e d

Ctime q u e r y p o i n t ;
/ / t h e t ime of t h e que ry

Pt ime p t ( a g e d @ c r e a t i o n ) , q u e r y p o i n t ) ;
i t == pt@years ;

]

I walk ( ) , d u r i n g ( Pt ime ( . hour ( 3 ) ) ) ;
/ / I am walk ing d u r i n g t h r e e h o u r s
I walk@ [ d u r i n g ( Pt ime ( . h o u r s = 3 ) ) ] ;
/ / t h e same
I walk ( ) @s ta r t , a t ( Ctime ( 1 3 , 1 5 , 1 5 , 1 1 , 2 0 0 3 ) ) ;
/ / I s t a r t e d t o work a t 13 :15 1 5 / 1 1 / 2 0 0 3
I walk ( ) , f i n i sh@ [ a t ( Ctime ( 1 3 , 1 5 ) ) ] ;
/ / t h e same as b e f o r e

6. THE WAY OF T
The representation of elementary constructs does not nec-
essarily mean that a KR language is also able to represent
really complex knowledge structures like complex events,
dynamic and temporal systems, behaviors, general situations
concerning crisis management, terrorism, heritage etc. All
KR languages developed up to now have failed in complex
representations, but T has the potential to avoid the same fate

due to the superior combination of a C++-like notation and
narrative specifications similar to narrative texts in human
languages.

The limited size of this article does not provide the ultimate
proof of the expression power of T. Hence the emphasis of
this section will be on those characteristics of T and C++,
which are decisive for producing complex representations.

6.1 The real expression power of C++
C++ (actually C/C++) is not just another programming
language. In reality, it is a universal programming lan-
guage, which has already expunged all other compiled lan-
guages, leaving space only for those interpreted as Java, C#,
JavaScript, PHP, Perl, Basic. The most expressive of the lat-
ter are also based on its conceptual system, thereby providing
more proof of its universality. The language constitutes the
base of virtually all sophisticated software such as operat-
ing systems, programming software (compilers, interpreters,
linkers, debuggers) as well as complex application software
for various purposes. So far, no programming tasks have
been discovered that were impossible (or nearly impossible)
to compose in C++ due to the latter’s restrictions.

The huge expression power of C++ is by no means accidental.
It has been long since forgotten that software systems with
a single compiled language were absolutely unimaginable
in the first decades of high-level programming. C++ is the
ultimate result of a three-decade-long process, in which more
than two thousand programming languages have been cre-
ated. More on this theme can be found at Ref.[5] Chapter
2.

The root of the expression power of C/C++ lays in the unlim-
ited scalability of its applications. The language can be used
to produce a simple program implementing simple graphical
operations like drawing a line on a screen. This program can
be subsequently extended into the set of graphical classes of
arbitrary complexity. The same is also possible for applica-
tions of any kind and purpose.

In contrast to developers of other programming languages,
developers in C++ do not have to worry about competing
with these or other language restrictions limiting the size and
complexity of their developments. The real limits to C/C++
programmers are those of a particular solution. Once a cer-
tain solution fails to work because of (e.g.) too much input
data, it can be replaced by another solution, which can do the
job. Thanks to the superior expression power of C++, such a
change will never require moving it to another programming
language.

The complete knowledge representing the behavior of a com-
plex programmed system is pretty close to knowledge already

70 ISSN 1927-6974 E-ISSN 1927-6982

Ctime


http://air.sciedupress.com Artificial Intelligence Research 2018, Vol. 7, No. 2

represented by its software. Just consider a dogfight between
automated flying drones, both requiring and implementing
extensive software packages that control every aspect of the
drone’s behavior such as maneuvering, monitoring its cur-
rent status, tasks to be achieved and so on. Since a drone has
a lot of sensors, the software must be able to evaluate the
drone’s environment including not only wind speed and air
temperature but also the functionality of other drones, the
terrain below, the distance it can fly with its current supply
of fuel and so on.

The non-executable specification of the drone’s fight scenario
will once again define all of the aforementioned entities, most
of them with more detailed specifications. It will also add
some other entities such as maintenance schedules, its stor-
age, prelaunch preparation, transportation and so on. For
such cases, T also can be used as a specification language
depicting the complete set of involved entities. A part of
these entities could be used later directly by the software.

6.2 Expressing non-executable code in T
The general procedure for expressing knowledge in T is sim-
ilar to that of expressing knowledge in a human language. A
complex specification (e.g., a crisis management scenario)
can be translated sentence after sentence into T with sub-
sequent optimization consisting of removing duplicate and
superfluous references, repeated specifications and so on.
Because T uses commonsense ontologies of time, event and
space such a translation is always possible.

A sentence constructed in a human language can be translated
into one or several T constructs. Below is the translation of
the sentence “Pete came from the training at three o’clock,
he looked exhausted”. Please note that the translation to T
converts the previously implicit context into explicit repre-
sentations. Thus the phrase “he looked exhausted” means
that there is someone (e.g., the author of this sentence) who
has seen Pete. Another explicated entity is the place where
Pete arrived.

Human Pete ,
t h i r d P e r s o n ;

P l a c e a r r i v a l _ p l a c e ;
i n f o Human : : e v a l u a t e { e x h a u s t , f r e s h ,
normal } ( Human e s t i m a t e d )
A c t i v i t y t r a i n i n g ; / / A c t i v i t y has t h e
a t t r i b u t e P l a c e r e f e r r e d below
O b j e c t way ( P l a c e from , P l a c e t o ) ;
p roc Human : : come ( P l a c e ap ) ;

P e t e : : come ( a r r i v a l _ p l a c e ) ;
_v a t 1 5 . 0 0 ;
_v was ;
_v . ap@from ( t r a i n i n g @ p l a c e ) ;

t h i r d P e r s o n : : e v a l u a t e . e x h a u s t ( P e t e ) ;

Last five lines can be expressed in a single T sentence.

P e t e : : come ( a r r i v a l _ p l a c e ) , a t 1 5 . 0 0 ,
was ,
from ( t r a i n i n g @ P l a c e ) ,
t h i r d P e r s o n : : e v a l u a t e . e x h a u s t ( _n ) ;

When a knowledge system uses alternative paradigms of ba-
sic notions (e.g., its own time paradigm), such a paradigm
can be defined with the help of conventional classes and at-
tributes. T completely supports the classical C++ freedom in
extending and changing the designed code.

6.3 The lexical content of T
In order to specify some notion, e.g. “terrorism” one has to
express it in T in the same way in which the same notion is
expressed by conventional human languages. For developed
human languages equipped with huge vocabularies all one
needs to do is to search for the word in a dictionary. An
Englishman striving to convey the word “terrorism” to its
German interlocutor can find its German equivalent - “Ter-
rorismus” in a bilingual dictionary. A person wanting to
understand the meaning of this term looks through a standard
language-appropriate dictionary for a definition and finds
something like “systematic use of violence and intimidation
to achieve some goal”.

Because T currently possesses no dictionary, a notion has
to be defined from scratch. This is a tremendous amount of
work since it means many other notions, like “human”, “so-
ciety”, “behavior”, “fight” also have to be defined. Defining
these notions in T will probably require producing a dictio-
nary with several thousand entries. The work, however, only
needs to be done once; all subsequent definitions will reuse
this initial content.

6.4 Implementations
Theoretically, T can be used in the same way as a human
language for communicating between people for any reason
but this hardly makes any sense. The purpose of T con-
sists of implementing different KR-related tasks. The most
obvious implementation of T consists in creating the knowl-
edge database, which can be filled by various specifications
produced either automatically or manually.

Another implementation could be a translator from a hu-
man language (English) to T. T can be used for the formal
documenting of arbitrary systems. T allows existing pro-
gramming languages to be converted into T subsets, which
are functionally equivalent to executable subsets of English
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(German, French, etc.) applied in particular imperative com-
munications. The first step of such a conversion requires
the explicit expression of the communication context, which
in the case of a programming language is its innate proces-
sor. The second step consists of replacing the original set
of linguistic items of a programming language, with its T
counterparts built on the basis of the previously produced
specification in T.

Changing the grammar does not influence the semantics of
a programming language. It is like creating an interface
for a library of functions implemented in one programming
language but intended for use in another (e.g., a library imple-
mented in C needs COBOL’s interface for use in COBOL).
Applying such a conversion to all languages used on any
computer system allows for the creation of a monolingual
communication environment in which T can be used as the
only language applied in all communication occurring in this
system. Monolingual systems make a computing environ-
ment friendlier, allowing a user to control all system features
with only a set of browse and development tools. Such a
system is easy to use and very easy to extend. Also, it has no
semantic gaps characteristic of the traditional specifications
of programming languages. The example for the specifica-
tion of the innate processor of C++ can be found in Ref.[5]

Chapter 5.

6.5 The current state of T
The language was originally defined in Ref.[23] Currently,
it is in a stable form but still without a dictionary. More
language examples can be found in Ref.[5] Chapter 7.

As a formal equivalent of a natural language, T has no prede-
fined computer implementation. Hence, the current develop-
ment is concentrated on the thorough definition of its syntax
and semantics, which requires composing various examples
in T code. Any viable software implementations can only be
done after finishing the current development stage.

7. CONCLUSION
1) There are two completely different KRs – one grounded
in scientifically proven principles but failing in practical
application and one based on the concepts of mainstream
programming and demonstrating efficiency unachievable by
the former. The semantic gap between these KRs was caused
by the historical failure of computer science to produce the
adequate definition of a programming language. While it is
impossible to conceptualize an undefined thing, the main-
stream programming languages were practically excluded
from the conceptual world of computer science.

2) The failure in defining a programming language was the

result of ideological preferences established in the early years
of computer science. All non-mathematical views of a pro-
gramming language were routinely rejected and the adequate
definition was among them. Historically, it was one of the
first programming language definitions ever. According to
it, a programming language was viewed as a conglomeration
consisting of a genuine language (a system of lexical items)
and an execution unit controlled by commands formulated in
this language.

3) An adequate definition opens the way to building a uni-
versal representation language, because it allows a direct
comparison between the natural languages representing the
genuine knowledge structures and the programming language
being very effective in producing the binary models thereof.
According to the definition presented in this article, the lan-
guage part of a programming language relates to a universal
representation language in the same way in which a jargon
(a subset of a natural language restricted to particular com-
municators and a topic) relates to its full-fledged superset.
Henceforth the task of building a universal representation
language is tantamount to the task of extending some jargon
to a full-fledged natural language.

4) A universal representation language is a full-fledged for-
mal language, which is not restricted by whatever predefined
communicators or communicated themes and can be used for
expressing any information ever formulated in any human or
computer language. Theoretically, there is no restriction on
the number of full-fledged formal languages exactly as there
is no restriction on the number of natural languages. How-
ever, since each of them will ultimately possess the exact
same expression power, one full-fledged formal language is
completely sufficient. Taking into account different expres-
sion abilities of distinct programming languages, the best
match as the extension basis makes the most powerful of all
programming languages – C++.

5) The universal representation language T, built on the basis
of C++ is the set of linguistic items employed in the man-
ner of a natural language with the purpose of information
exchange between various communicators. The language is
not confined to any particular representation domain, imple-
mentation, communicator or discourse type. Assuming there
is sufficient vocabulary, each text composed in any of the hu-
man languages can be adequately translated to T in the same
way as it can be translated to another human language. T
allows the creation of a monolingual communication environ-
ment in which it could be used for expressing miscellaneous
imperative and indicative code.

6) The semantics transmitted by T code consist of conven-
tional knowledge regarding objects, actions, properties, states
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and so on. According to the presented approach, notions
based on common knowledge constitute the fundament of

all philosophical and scientific conceptual systems allowing
the representation of all these systems in the form of class
hierarchies.
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