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Abstract 
This paper considers two-level linear programming problems involving random variable coefficients both in objective 
functions and constraints. Using the concept of chance constraints, under some appropriate assumptions for distribution 
functions, the original stochastic two-level linear programming problems are transformed into deterministic ones. Taking 
into account vagueness of judgments of the decision makers, in order to derive a satisfactory solution considering 
satisfactory balance between both levels, an interactive fuzzy programming method is proposed. The proposed method has 
an advantage that candidates for a satisfactory solution can be easily obtained through the combined use of the bisection 
method and the phase one of the simplex method. An illustrative numerical example is provided to demonstrate the 
feasibility of the proposed method. 
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1 Introduction 
Decision making problems in decentralized organizations are often formulated as two-level programming problems with a 
decision maker (DM) at the upper level (DM1) and another DM at the lower level (DM2). Under the assumption that these 
DMs do not have motivation to cooperate mutually, the Stackelberg solution [1- 4] is adopted as a reasonable solution for the 
situation. However, the above assumption is not always reasonable when we deal with decision making problems in a 
decentralized firm where top management is DM1 and an operation division of the firm is DM2 because it is supposed that 
there exists cooperative relationship between them. Namely, top management or an executive board is interested in overall 
management policy such as long-term corporate growth or market share. In contrast, operation divisions of the firm are 
concerned with coordination of daily activities. After the top management chooses a strategy in accordance with the 
overall management policy, each division determines goals which are relevant to the strategy chosen by the top 
management, and it tries to achieve them. In this way, decision making problems in a decentralized firm are often 
formulated as two-level programming problems where there is essentially cooperative relationship between DM1 and 
DM2. 
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Lai [5] and Shih et al. [6] proposed solution concepts for two-level linear programming problems or multi-level ones such 
that decisions of DMs in all levels are sequential and all of the DMs essentially cooperate with each other. In their 
methods, the DMs identify membership functions of the fuzzy goals for their objective functions, and in particular, the DM 
at the upper level also specifies those of the fuzzy goals for the decision variables. The DM at the lower level solves a 
fuzzy programming problem with a constraint with respect to a satisfactory degree of the DM at the upper level. 
Unfortunately, there is a possibility that their method leads a final solution to an undesirable one because of inconsistency 
between the fuzzy goals of the objective function and those of the decision variables. In order to overcome the problem in 
their methods, by eliminating the fuzzy goals for the decision variables, Sakawa et al. have proposed interactive fuzzy 
programming for two-level or multi-level linear programming problems to obtain a satisfactory solution for DMs [7, 8]. The 
subsequent works on two-level or multi-level programming have been developing [9-18]. 

In actual decision making situations, however, we must often make a decision on the basis of vague information or 
uncertain data. For such decision making problems involving uncertainty, there exist two typical approaches: probability- 
theoretic approach and fuzzy-theoretic one. Stochastic programming, as an optimization method based on the probability 
theory, have been developing in various ways [19, 20], including two stage problems considered by Dantzig [21] and chance 
constrained programming proposed by Charnes et al. [22]. Especially, for multiobjective stochastic linear programming 
problems, Stancu-Minasian [23] considered the minimum risk approach, while Leclercq [24] and Teghem Jr. et al. [25] 
proposed interactive methods. 

Fuzzy mathematical programming representing the vagueness in decision making situations by fuzzy concepts have been 
studied by many researchers [26, 27]. Fuzzy multiobjective linear programming, first proposed by Zimmermann [28], have 
been also developed by numerous researchers, and an increasing number of successful applications has been app- 
earing [15, 27, 29- 36].  

As a hybrid of the stochastic approach and the fuzzy one, Wang et al. considered mathematical programming problems 
with fuzzy random variables [37], Liu et al. [38] discussed chance constrained programming involving fuzzy parameters. In 
particular, Hulsurkar et al. [39] applied fuzzy programming to multiobjective stochastic linear programming problems. 
Unfortunately, however, in their method, since membership functions for the objective functions are supposed to be 
aggregated by a minimum operator or a product operator, optimal solutions which sufficiently reflect the DM’s preference 
may not be obtained. To cope with the problem, after reformulating multiobjective stochastic linear programming 
problems using several models for chance constrained programming, Sakawa et al. [15, 40-42] presented an interactive fuzzy 
satisficing method to derive a satisficing solution for the DM as a generalization of their previous results [27, 33, 43-45]. 

Realizing the importance of considering not only the fuzziness but also the randomness of coefficients of objective 
functions and/or constraints in mathematical programming problems, some researchers developed two-stage or multi- 
stage fuzzy stochastic programming [46-48]. Unfortunately, however, no study has focused on the simultaneous 
consideration of two-level decision making situations and fuzzy stochastic programming approaches. 

Under these circumstances, in this paper, we deal with two-level linear programming problems with random variable 
coefficients in both objective functions and constraints. Using the concept of chance constraints, stochastic constraints are 
transformed into deterministic ones. Following the probability maximization model, the minimization of each stochastic 
objective function is replaced with the maximization of the probability that each objective function is less than or equal to 
a certain value. Under some appropriate assumptions for distribution functions, the formulated stochastic two-level linear 
programming problems are transformed into deterministic ones. By considering the fuzziness of human judgments, we 
present an interactive fuzzy programming method for deriving a satisfactory solution for the DMs by updating the 
satisfactory degree of the DM at the upper level with considerations of overall satisfactory balance among both levels. 
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2 Stochastic two-level linear programming problems 
Consider two-level linear programming problems with random variable coefficients formulated as: minimizefor	DM1 ̅ ,minimizefor	DM2 ̅ ,subject	to ,

    (1) 

where  is an  dimensional decision variable column vector for the DM at the upper level (DM1),  is an  

dimensional decision variable column vector for the DM at the lower level (DM2),  , l = 1, 2, j = 1, 2 are  dimensional 

random variable row vectors. Here, we assume that  is expressed as ̅  where ̅ , l = 1, 2 are mutually 

independent random variables with mean  and their distribution functions ∙ , l = 1, 2 are continuous and strictly 

increasing, and that , l = 1, 2 are random variables expressed as ̅ . This definition of random variables is 
one of the simplest randomization modeling of coefficients using dilation and translation of random variables, as discussed 

by Stancu-Minasian [23] and Katagiri et al. [49, 50]. In addition, , i = 1, 2, …, m are mutually independent random variables 
whose distribution functions are also assumed to be continuous and strictly increasing. 

Stochastic two-level linear programming problems formulated as (1) are often seen in actual decision making situations, 
e.g., a supply chain planning [11] where the distribution center (DM1) and the production part (DM2) hope to minimize the 
distribution cost and the production cost respectively under constraints about inventory levels and production levels. Since 
coefficients of these objective functions and those of the right-hand side of constraints like product demands are often 
affected by the economic conditions varying at random, they can be regarded as random variables and the supply chain 
planning is formulated as (1). 

Since (1) contains random variable coefficients, solution methods for ordinary deterministic two-level linear programming 
problems cannot be directly applied. Consequently, in this paper, we consider the constraints involving random variable 
coefficients in (1) as chance constraints [22] which mean the probability that each constraint is fulfilled must be greater than 
or equal to a certain probability (satisficing level). Namely, replacing constraints in (1) by chance constraints with 

satisficing levels ∈ 0, 1 , i = 1, 2, …, m problem (1) can be transformed as: minimizefor	DM1 ̅ ,minimizefor	DM2 ̅ ,subject	to Pr , 1, 2, … ,,
   (2) 

where  and  is the ith row vector of  and , and  is the ith element of . 

Since the distribution function Pr 	  of each random variable   is nondecreasing, the ith constraint in (2) 

can be rewritten as: Pr ⟺ 1 Pr⟺ 1⟺⟺ 11  
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where  ∙  is an inverse function of ∙ . 

Letting 1 , problem (2) can be rewritten as: minimizefor	DM1 ̅ ,minimizefor	DM2 ̅ ,subject	to ,
    (3) 

where , , … , . 

It should be noted here that the constraint of (3) is no longer stochastic but becomes deterministic through the idea of 
chance constraint. 

In addition to the chance constraints, it is now appropriate to consider objective functions with randomness on the basis of 
some decision making model. As such decision making models, expectation optimization, variance minimization, 
probability maximization and fractile criterion optimization are typical. For instance, let the objective function represent a 
profit. If the DM wishes to simply maximize the expected profit without caring about the fluctuation of the profit, the 
expectation optimization model [51] to optimize the expectation of the objective function is appropriate. On the other hand, 
if the DM hopes to decrease the fluctuation of the profit as little as possible from the viewpoint of the stability of the profit, 
the variance minimization model [51] to minimize the variance of the objective function is useful. In contrast to these two 
types of optimizing approaches, as satisficing approaches, the probability maximization model [51] and the fractile criterion 
optimization model or Kataoka’s model [52] have been proposed. When the DM wants to maximize the probability that the 
profit is greater than or equal to a certain permissible level, probability maximization model [51] is recommended. In 
contrast, when the DM wishes to optimize such a permissible level under a given threshold probability with respect to the 
achieved profit, the fractile criterion optimization model will be appropriate. In this paper, assuming that the DM wants to 
maximize the probability that the profit is greater than or equal to a certain permissible level for safe management, we 
adopt the probability maximization model as a decision making model. 

In the probability maximization model, the minimization of each objective function ̅ ,  in (3) is substituted with the 

maximization of the probability that  ̅ ,  is less than or equal to a certain permissible level  under the chance 
constraints. Through probability maximization, problem (3) can be rewritten as: maximizefor	DM1 Pr ̅ ,maximizefor	DM2 Pr ̅ ,subject	to ,

     (4) 

Supposing that 0, l = 1, 2, …, k for any feasible solution ,  to (4), from the assumption on the 

distribution function ∙  of each random variable ̅ , we can rewrite objective functions in (4) as follows. 
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Pr ̅ ,Pr ̅ ̅ ̅Pr ̅Pr ̅  

Hence, (4) can be equivalently transformed into the following deterministic two-level programming problem.  maximizefor	DM1 ,maximizefor	DM2 ,subject	to ,
     (5) 

In this way, through the ideas of chance constraint and probability maximization model, the original stochastic two-level 
programming problem is transformed into the deterministic two-level programming problem. 

3 Interactive fuzzy programming 
Considering imprecise natures inherent in human judgments, it is quite natural to assume that the DMs may have fuzzy 
goals for each of the objective functions in the deterministic two-level linear programming problem (5). To be more 

specific, in order to consider the imprecise nature of the DMs’ judgments for the probabilities , , l = 1, 2 in (5), it 

seems natural to assume that the DMs have fuzzy goals such as “ ,  should be substantially greater than or equal to 
some specific value.” Then, (5) can be rewritten as: maximizefor	DM1 ,maximizefor	DM2 ,subject	to ,

     (6) 

where ∙  is a membership function to quantify a fuzzy goal for the lth objective function in (5) and it is assumed to be 
nondecreasing. Although the membership function does not always need to be linear, for the sake of simplicity, we adopt 

a linear membership function. To be more specific, if the DM feels that ,  should be greater than or equal to at 

least ,  and , ,  (>	 , ) is satisfactory, the linear membership function ,  is defined as:  

 

, 0 , , ,, ,, , , , ,1 , , , ,    (7) 

and it is depicted in Figure 1. 
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Figure 1. Linear membership function. 

Zimmermann [28] suggested a method for assessing the parameter values of the linear membership function. In his method, 

the parameter values , , l = 1, 2 are determined as  

, , , , , max, ∈ 	 ,  

, , , , , max, ∈ 	 ,  

and the parameter values , , l = 1, 2 are specified as  

, , , ,  

, , , ,  

where , , ,  is an optimal solution to the following problem 

maximize ,subject	to , .    (8) 

From the monotonicity of the distribution function ∙ , problem (8) is equivalent to: 

 

maximizesubject	to , .     (9) 

Using the variable transformation method by Charnes and Cooper [54]: 1/ , ∙ ,  > 0, l 

= 1, 2, j = 1, 2, problem (9) is equivalently transformed as: maximize ∙subject	to ∙ 0∙ 1,    (10) 
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Since (10) is a linear programming problem, it can be easily solved by the simplex method of linear programming. 

To derive an overall satisfactory solution to the membership function maximization problem (6), we first find the 
maximizing decision of the fuzzy decision proposed by Bellman and Zadeh [53]. Namely, the following problem is solved 
for obtaining a solution which maximizes the smaller degree of satisfaction between those of the two DMs: 

maximize min1,2 ,subject	to ,     (11) 

or equivalently, maximizesubject	to ,,,                                                           (12) 

Since ∙ , l = 1, 2 are nondecreasing, (12) can be converted as:  maximizesubject	to , ∗, ∗
,      (13) 

where μ∗ ∙  is a pseudo-inverse function of μ ∙  defined by ∗ inf | . Since  

,  

and distribution functions ∙  are assumed to be continuous and strictly increasing, problem (13) is equivalently 
transformed as:  maximizesubject	to ∗

∗
,

    (14) 

where ∙  is an inverse function of ∙ . 

Obtaining the optimal value of v to (14) is equivalent to finding the maximum of v so that the set of feasible solutions to 
(14) is not empty. Noting that the constraints of (14) are linear when v is fixed, we can easily find the maximum of v 
through the combined use of the bisection method and the phase one of the simplex method. 
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The combined use of the bisection method and the phase one of the 
simplex method 
Step 1: Set r := 0 and v := 0. Test whether the set of feasible solutions to (14) for v = 0 is empty or not using the phase one 
of the simplex method. Let vfeasible := v and go to step 2. 

Step 2: Set v := 1. Test whether the set of feasible solutions to (14) for v = 1 is empty or not using the phase one of the 

simplex method. If it is not empty, v = 1 is the optimal value ∗ to (14) and the algorithm is terminated. Otherwise, the 
maximum of v so that the set of feasible solutions to (14) is not empty exists between 0 and 1. Let vinfeasible := v and go to 
step 3. 

Step 3: Set v := (vfeasible + vinfeasible)/2, r := r + 1 and go to step 4. 

Step 4: Test whether the set of feasible solutions to (14) for v determined in step 3 is empty or not, using the phase one of 

the simplex method. If it is not empty and (1/2)r ≤ ϵ, the current value of v is regarded as the optimal value ∗ to (14) and 

the algorithm is terminated. If it is not empty and (1/2)r > ϵ, let vfeasible := v and go to step 3. On the other hand, if it is empty, 
let vinfeasible := v and go to step 3. 

For the optimal value v* obtained in this way, we can determine the corresponding optimal solution x* by solving the 
following linear programming problem. 

maximizesubject	to ∗
,

   (15) 

Letting τ ∗ ∗  and using the variable transformation method by Charnes and Cooper [54], problem (15) can be 

transformed into the following linear programming problem: maximize ∙subject	to ∙ ∙ ∙ 0∙ 0∙ 1,  (16) 

From the optimal solution ∗ , ∗ , ∗  to (16), we can obtain the optimal solution ∗ , ∗  to (11) which maximizes the 
smaller satisfactory degree between those of both DMs. 

If DM1 is satisfied with the optimal solution ∗ , ∗  to (11), it follows that the optimal solution ∗ , ∗  becomes a 

satisfactory solution; however, DM1 is not always satisfied with the solution ∗ , ∗ . It is quite natural to assume that 

DM1 specifies the minimal satisfactory level δ ∈ (0, 1) for the membership function μ ,  subjectively. 

Consequently, if DM1 is not satisfied with the solution ∗ , ∗  to problem (11), the following problem is formulated: maximize ,subject	to ,,      (17) 
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equivalently,  

maximizesubject	to ∗
,

   (18) 

where DM2’s membership function μ ,  is maximized under the condition that DM1’s membership function μ ,  is larger than or equal to the minimal satisfactory level δ specified by DM1. 

Using the variable transformation method by Charnes and Cooper [54], problem (18) can be easily reduced to the following 
linear programming problem: maximize ∙subject	to ∙ ∙ ∙ 0∙ 0∙ 1,  (19) 

where λ ∗ δ . 

If there exists an optimal solution ∗ , ∗  to problem (17), it follows that DM1 obtains a satisfactory solution having a 
satisfactory degree larger than or equal to the minimal satisfactory level specified by DM1’s self. However, the larger the 

minimal satisfactory level δ is assessed, the smaller the DM2’s satisfactory degree becomes when the membership 
functions of DM1 and DM2 conflict with each other. Consequently, a relative difference between the satisfactory degrees 
of DM1 and DM2 becomes larger, and it follows that the overall satisfactory balance between both DMs is not appropriate. 

In order to take account of the overall satisfactory balance between both DMs, DM1 needs to compromise with DM2 on 
DM1’s own minimal satisfactory level. To do so, the following ratio of the satisfactory degree of DM2 to that of DM1 is 
helpful:  

Δ ,,  

which is originally introduced by Lai [5]. 

DM1 is guaranteed to have a satisfactory degree larger than or equal to the minimal satisfactory level for the fuzzy goal 
because the corresponding constraint is involved in problem (17). To take into account the overall satisfactory balance 
between both DMs, DM1 specifies the lower bound Δmin and the upper bound Δmax of the ratio Δ, and Δ is evaluated by 
verifying whether or not it is in the interval [Δmin, Δmax]. The condition that the overall satisfactory balance is appropriate is 
represented by  Δ ∈ Δ , Δ  

At the iteration k, let , , , ,  and Δk = /  denote the current solution, DMl’s 

objective function value, DMl’s satisfactory degree and the ratio of satisfactory degrees of the two DMs, respectively. The 
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interactive process terminates if the following two conditions are satisfied and DM1 concludes the solution as an overall 
satisfactory solution. 

[Termination conditions of the interactive process] 

Condition 1 DM1’s satisfactory degree is larger than or equal to the minimal satisfactory level δ specified by DM1’s self, 

i.e., δ. 

Condition 2 The ratio Δk of satisfactory degrees lies in the closed interval between the lower and the upper bounds 

specified by DM1, i.e., Δk ∈ [Δmin, Δmax]. 

Condition 1 ensures the minimal satisfaction to DM1 in the sense of the attainment of the fuzzy goal, and condition 2 is 
provided in order to keep overall satisfactory balance between both DMs. If these two conditions are not satisfied 

simultaneously, DM1 needs to update the minimal satisfactory level δ. 

The updating procedures are summarized as follows. 

[Procedure for updating the minimal satisfactory level δ ] 

Case 1 If condition 1 is not satisfied, then DM1 decreases the minimal satisfactory level δ. 

Case 2 If the ratio Δk exceeds its upper bound, then DM1 increases the minimal satisfactory level δ. Conversely, if the 

ratio Δk is below its lower bound, then DM1 decreases the minimal satisfactory level δ. 

Case 3 Although conditions 1 and 2 are satisfied, if DM1 is not satisfied with the obtained solution and judges that it is 
desirable to increase the satisfactory degree of DM1 at the expense of the satisfactory degree of DM2, then DM1 increases 

the minimal satisfactory level δ. Conversely, if DM1 judges that it is desirable to increase the satisfactory degree of DM2 

at the expense of the satisfactory degree of DM1, then DM1 decreases the minimal satisfactory level δ. 

In particular, if condition 1 is not satisfied, there does not exist any feasible solution for problem (17), and therefore DM1 
has to moderate the minimal satisfactory level. 

Now we are ready to propose interactive fuzzy programming for deriving a satisfactory solution by updating the 
satisfactory degree of the DM at the upper level with considerations of overall satisfactory balance among all the levels. 

Computational procedure of interactive fuzzy programming 
Step 1: Ask the DM at the upper level, DM1, to subjectively determine satisficing levels  ∈ (0, 1), i = 1, 2, …, m for 

constraints in (2). Go to step 2. 

Step 2: In order to determine permissible levels , l = 1, 2, the following problems are solved to find the minimum and 

maximum of E ̅ , 	for each objective function under the 

chance constraints with satisficing levels β , i = 1, 2, …, m. minimizesubject	to ,   (20) 
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minimizesubject	to ,   (21) 

If the set of feasible solutions to these problems is empty, the satisficing levels , i = 1, 2, …, m must be reassessed and 

return to step 1. Otherwise, let ,  and ,  be optimal objective function values to (20) and (21). Since (20) and (21) 

are linear programming problems, they can be easily solved by the simplex method. Ask DM1 to determine permissible 

levels , l = 1, 2 for objective functions in consideration of ,  and , . Go to step 3. 

Step 3: Solve (8) for obtaining optimal solutions , , , , l = 1, 2 and calculate , . Then, identify the linear 

membership function μ ,  of the fuzzy goal for the corresponding objective function. Go to step 4. 

Step 4: Set k := 1. Solve the maximin problem (11) for obtaining an optimal solution which maximizes the smaller degree 

of satisfaction between those of the two DMs. For the optimal solution ,   to (11), calculate , , 

, l = 1, 2 and Δk =  / . If DM1 is satisfied with the optimal solution to (11), the optimal solution 

becomes a satisfactory solution and the interaction procedure is terminated. Otherwise, ask DM1 to subjectively set the 

minimal satisfactory level δ ∈ (0, 1) for the membership function , . Furthermore, ask DM1 to set the upper 

bound Δmax and the lower bound Δmin for Δ. Go to step 5. 

Step 5: Set k := k +1. Solve problem (17) for finding an optimal solution to maximize DM2’s membership function ,  under the condition that DM1’s membership function ,  is larger than or equal to the minimal 

satisfactory level δ. For the optimal solution ,   to (17), calculate , , μ , l =1, 2, and  Δk = /  and go to step 6. 

Step 6: If the current solution ,  satisfies the termination conditions and DM1 accepts it, then the procedure stops 

and the current solution becomes a satisfactory solution. Otherwise, ask DM1 to update the minimal satisfactory level δ, 
and go to step 5. 

It should be noted that all problems (8), (11), (17), (20) and (21) in the interactive fuzzy programming algorithm can be 
solved by either the simplex method of linear programming or the combined use of the bisection method and the phase one 
of the simplex method. 

4 Numerical example 
To demonstrate the feasibility and efficiency of the proposed method, consider the stochastic two-level linear 
programming problem formulated as: minimizefor	DM1 ̅ , ̅ ̅ ̅minimizefor	DM2 ̅ , ̅ ̅ ̅subject	to , 1,2, … ,7, , , , ,, , , , ,

                    (22) 

where ̅  and ̅  are Gaussian random variables N(4, 22) and N(3, 32), and right side coefficients , i = 1, 2, …, 7 are also 
Gaussian random variables N(164, 302), N(−190, 202), N(−184, 152), N(99, 222), N(−150, 172), N(154, 352), N(142, 
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422). Here N(p, q2) stands for a Gaussian random variable with mean p and variance q2. Coefficient values of objective 
functions and constraints are respectively shown in Table 1 and 2. 

Table 1. Coefficient values of objective functions. 
( , ) 19 48 21 10 18 35 46 11 24 33  -18 

( , ) 3 2 2 1 4 3 1 2 4 2  5 

( , ) 12 -46 -23 -38 -33 -48 12 8 19 20  -27 

( , ) 1 2 4 2 2 1 2 1 2 1  6 

Table 2. Coefficient values of constraints. 
( , ) 12 -2 4 -7 13 -1 -6 6 11 -8 

( , ) -2 5 3 16 6 -12 12 4 -7 -10 

( , ) 3 -16 -4 -8 -8 2 -12 -12 4 -3 

( , ) -11 6 -5 9 -1 8 -4 6 -9 6 

( , ) -4 7 -6 -5 13 6 -2 -5 14 -6 

( , ) 5 -3 14 -3 -9 -7 4 -4 -5 9 

( , ) -3 -4 -6 9 6 18 11 -9 -4 7 

In step 1 of the interactive fuzzy programming, DM1 specifies satisficing levels , i = 1, 2, …, 7 as:  

( , , , , , , )T = (0.85, 0.95, 0.80, 0.90, 0.85, 0.80, 0.90)T. 

For the specified satisficing levels β , i = 1, 2, …, 7, in step 2, minimal values ,  and maximal values  ,  of 

objective functions E ̅ ,  under the chance constraints are calculated as  ,  = 1819.513, ,  = 286.583, ,  = 2307.626 and  ,  = 758.279. By considering these values, the DMs subjectively specifies permissible levels 

as  = 2150.0 and  = 450.0. 

In step 3, maximal values ,  of ,  are calculated as:  

,  = , , ,  = 0.880, ,   =	 , , ,  = 0.783. 

Assume that the DMs identify the linear membership function (7) whose parameter values are determined by the 

Zimmermann method [54]. Then, the parameter values ,  and , , l = 1, 2 characterizing membership functions ∙  are 

becomes:  

,  = , , ,  = 0.880, 

,  = , , ,  = 0.598, 

,  = , , ,  = 0.783, 

,  = , , ,  = 0.060. 

In step 4, let k := 1 and the maximin problem is solved. The obtained result is shown at the column labeled “1st” in Table 

3. For the obtained optimal solution ,  to the maximin problem, corresponding membership function values are 

calculated as ,  = 0.551 and ,  = 0.551. Then, the ratio of satisfactory degrees Δ1 is equal to 

1.000. Since DM1 is not satisfied with this solution, DM1 sets the minimal satisfactory level δ ∈ (0, 1) for ,  
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to 0.600 so that ,  will be improved from its current value 0.551. Furthermore, the upper bound and the lower 

bound of the ratio of satisfactory degrees Δ are set as Δmax = 0.700 and Δmin = 0.600. 

Table 3. Interaction process. 

Interaction 1st 2nd 3rd 4th δ  0.600 0.700 0.650 

11 15.368 15.066 14.423 14.749 

12 2.162 1.960 1.532 1.750 

13 0.000 0.000 0.000 0.000 

14 0.000 0.000 0.000 0.000 

15 0.000 0.000 0.000 0.000 

21 6.033 5.784 5.255 5.524 

22 0.118 0.108 0.086 0.097 

23 14.276 14.489 14.953 14.707 

24 1.516 1.775 2.325 2.046 

25 17.848 17.997 18.315 18.153 

1 1, 2  0.734 0.767 0.796 0.781 

2 1, 2  0.458 0.406 0.301 0.353 

1 1 1, 2  0.551 0.600 0.700 0.650 

2 2 1, 2  0.551 0.478 0.333 0.405 

Δk 1.000 0.797 0.475 0.623 

In step 5, let k := 2 and (17) for δ = 0.600 is solved. For the obtained optimal solution ,  to (17), , = 

0.600 and ,  = 0.478, and Δ2 = 0.797, shown at the column labeled “2nd” in Table 3. 

In step 6, DM1 is asked whether he is satisfied with the obtained solution. Since the ratio of satisfactory degrees Δ2 
exceeds Δmax = 0.700, the second condition of termination of the interactive process is not fulfilled. Suppose that DM1 

feels that ,  should be considerably better than , , and DM1 updates the minimal satisfactory 

level δ from 0.600 to 0.700 in order to improve , . Consequently, in step 5, let k := 3 and (17) for δ = 0.700 is 

solved. The obtained result is shown at the column labeled “3rd” in Table 3. For the obtained optimal solution ,  to 

(17), ,  = 0.700, ,  = 0.333 and Δ3 = 0.475. 

In step 6, since the ratio of satisfactory degrees Δ3 is less than Δmin = 0.600, the second condition of termination of the 

interactive process is not fulfilled. Hence, he updates the minimal satisfactory level δ̂ from 0.700 to 0.650 for improving ,  at the sacrifice of , . As a result, in step 5, let k := 4 and (17) for δ̂ = 0.650 is solved. For the 

obtained optimal solution ,  to (17), corresponding membership function values are calculated as ,  = 

0.650, ,  = 0.405 as shown at the column labeled “4th” in Table 3. Then, the ratio of satisfactory degrees Δ4 

is equal to 0.623. 

In step 6, since the current solution satisfies all termination conditions of the interactive process and DM1 is satisfied with 
the current solution, the satisfactory solution is obtained and the interaction procedure is terminated. 

It must be observed here that the DMs may become possible to specify permissible levels for the objective functions and 
change the minimal satisfactory level interactively due to learning or improved understanding during the solution process. 
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5 Conclusions 
In this paper, we focused on stochastic two-level linear programming problems with random variable coefficients in both 
objective functions and constraints. Through the use of the probability maximization model in chance constrained 
programming, the stochastic two-level linear programming problems are transformed into deterministic linear 
programming ones under some appropriate assumptions for distribution functions. Taking into account vagueness of 
judgments of the DMs, interactive fuzzy programming has been proposed. In the proposed interactive method, after 
determining the fuzzy goals of the DMs at both levels, a satisfactory solution is derived efficiently by updating the 
satisfactory degree of the DM at the upper level with considerations of overall satisfactory balance among both levels. It is 
significant to note here that the transformed deterministic problems to derive an overall satisfactory solution can be easily 
solved through the combined use of the bisection method and the phase one of the simplex method. An illustrative 
numerical example was provided to demonstrate the feasibility of the proposed method. Although the DMs are required to 
specify permissible levels for the objective functions and change the minimal satisfactory level interactively, such a task 
seems to become possible for the DMs due to learning or improved understanding during the solution process. 

However, applications must be carried out in corporation with a person actually involved in decision making. From such 
experiences the proposed method must be revised. Extensions to other stochastic programming models will be considered 
elsewhere. Especially, it would be interesting to construct models optimizing not only the probability levels but also other 
parameters such as aspiration levels.  

Also extensions to two-level linear programming problems involving not only random variable coefficients but also fuzzy 
random or random fuzzy variable coefficients will be required in the near future. 
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