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ABSTRACT

Recently many types of robots have been playing an active part in various fields. The operation of these robots’ manipulators is an
important subject of research. The tasks of manipulation can be regarded as sequences of several motion primitives called “skills”.
Skills also have ability to compensate for errors both in modeling and in execution. Data may occur in the elements of the shapes,
positions and orientations of objects that can be dispensed with to make geometric models simpler. In order to achieve tasks
with high reliability, this paper proposes simplified geometric models based on skill techniques not only for industrial products
but also for objects used in the daily life of humans. As examples of simplified geometric models of objects used in daily life,
simplified models in a transfer task of plastic bottles and in a transfer task of a cup are explained.
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1. INTRODUCTION
In recent years many robots have been playing an active part
in various fields such as factories, gardens, as well as in
the daily living environments of humans. For manipulation
robots to be useful in many fields, it is necessary for them
to be able to achieve a lot of works without failure by use
of specialized methods. By investigating human behaviors
in actual typical tasks, such as grasping, assembling, pack-
ing and transferring, we detected that the behaviors were
composed of various important motion primitives. We call
these primitives “skills” and have explained that many works
of manipulators can be derived by sequences of skills.[1–4]

Although there are very many kinds of manipulation skills,
the skills in which changes of the states of touch happen
in the motion primitives that comprise the task performed

are particularly important. The three motion primitives of
“move-to-touch”, “rotate-to-level” and “rotate-to-insert” are
important skills in which the contact states vary.[1–7] Most
manipulation tasks in assembling and packing can be com-
posed of these principal skills.

It is very important that the manipulation skills are also use-
ful for error compensation both in visual sensing and model
matching and in task planning. For example, modeling errors
in the directions of transition can be cancelled in the move-
to-touch skill. Similarly, model errors in the directions of
rotation can be reduced in the rotate-to-level skill. Moreover,
geometric model simplification can be derived by taking into
account a maximum error or margin in the motions of the
skill primitives.[8, 9] In skill-based manipulation, the model-
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ing of an object can have margins for the shape, position and
orientation. Therefore, models can be constructed simply
using only the necessary data in model matching and motion
planning. Since less data on the objects is needed for the
shapes, positions and orientations, sensing and planning are
easier.

Manipulation systems in our method are derived based on
skill primitives composed of tasks. Similar techniques based
on components have been reported as a discrete-event sys-
tem.[10–12] However, the simplification of the geometric mod-
els was not taken into account in those studies. Furthermore,
a large number of studies on object modeling for manipula-
tion have been undertaken recently.[13, 14] For example, there
are studies on object modeling for grasping, object modeling
that takes into account environmental knowledge, and object
modeling for assemblies.[15–17] However, there are no studies
which deal at the same time with object modeling for both
planning and sensing in manipulation.[18]

Figure 1. Manipulators of industrial robots working in
factories

Simplified geometric models have been derived for industrial
products in factories[8, 9] (see Figure 1). In these cases, the
data for the models were obtained precisely. In recent years,
robots have begun to be active in human environments (see
Figure 2). However, precise models for objects used in the
daily life of humans are not always available in computer
software. Therefore, a process composed of sensing, mod-
eling, planning and execution is performed based on some
inaccurate models. However, there is the possibility of can-
celing some model errors when using skill techniques like
those mentioned above. In other words, when also using skill
techniques for operations involving objects used in daily life,
it becomes possible to perform manipulation with confidence
that the operation will be achieved successfully. In this paper,
in order to achieve tasks with high reliability, we propose
simplified geometric models based on skill techniques for
objects used in daily life.

Figure 2. Manipulators of robots working in daily life

Manipulation skills are explained in the next section. The
definition of a skill is given, and skill sequences are explained
based on the process flow composed of sensing, modeling,
planning, execution and so on. We show that skill techniques
bring about model simplification in sensing and planning. A
simplified model applied for an industrial product is shown
in Section 4. A simplified model based on skills for an object
used in daily life is proposed in Section 5.

2. MANIPULATION SKILLS AND CONSTRUC-
TION OF TASKS

In this section, we explain our concept of skills in work-
ing robots and the processes to perform tasks composed of
manipulation skills. A detailed explanation is available in
References.[1–4]

2.1 Skill primitives
In manipulation tasks such as grasping, assembling, pack-
ing and removing, there are skill primitives in which the
states of contact vary. These skills are particularly impor-
tant. In References,[5–7] we considered the motion primitives
of “move-to-touch”, “rotate-to-level” and “rotate-to-insert”,
as principal skills, and many assembly tasks can be com-
posed of these skills. After this, to simplify the explanation,
we assume that the shapes of the grasped objects, the other
objects and the holes are rectangular parallelepipeds, and
view these skills as occurring in a two-dimensional environ-
ment. However, the same skills can also be defined in a
three-dimensional environment.

2.1.1 Move-to-touch skill
The move-to-touch skill is the transition motion in which a
grasped object continues moving in a constant direction until
it contacts another object (see Figure 3a). This skill includes
sliding transition while maintaining touch in a different di-
rection of movement. The skill is performed using a velocity
control mode. The achievement of this skill can be judged
by a sharp increase of resistance during the task.
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Figure 3. Three important skill primitives

2.1.2 Rotate-to-level skill
The rotate-to-level skill is a rotary motion in which a grasped
object continues revolving until it matches another object
(see Figure 3b). The pushing force is maintained to keep the
revolving object in contact with the other object while this
skill is being performed. The attainment of the skill can be
sensed by a slight moving of the instantaneous center.

2.1.3 Rotate-to-insert skill
The rotate-to-insert skill is a rotation of a grasped object
slantingly into a dent in another object and the sequential
transition while the grasped object is being pressed against
the other object to achieve the goal (see Figure 3c). In a peg-
in-hole task, the grasped object can not easily be inserted
directly into the hole since the clearance between the object
and the hole is small in most cases. Therefore, the initial
state in Figure 3c is derived by using other motions such
as move-to-touch skills, and the centering state in Figure
3c is achieved by gradually raising the grasped object. The
pushing force in the direction of the hole is maintained until
the final state in Figure 3c is accomplished.

We will illustrate two other skills used in the loosening tasks
of screws to be described later.

2.1.4 Rotate-to-bite skill
The rotate-to-bite skill is a rotation of a screwdriver which
continues until a fit between the grooves of the screw head
and the sharp point of the screwdriver succeeds (see Figure
4a). The pushing force is continued during this skill.

Figure 4. Two skill primitives in a screw loosening task
using a screwdriver

2.1.5 Rotate-to-loosen skill
The rotate-to-loosen skill is a rotary motion of a screwdriver
in order to loosen a screw (see Figure 4b). In this rotation
motion, it is necessary to keep unifying the axes of rotation
of the screw and the screwdriver. If the matching does not
succeed, the screwdriver must be transferred to the correct
position before the execution of the rotary motion begins.
In this skill, the pushing force is continued, similarly to the
above skills.

2.2 Composition of skill sequence
Most manipulation tasks consist of sequences of motion
primitives such as move-to-touch, rotate-to-level and rotate-
to-insert skills. The sequences of the motion primitives can
be derived by various methods. We have previously demon-
strated a method which uses changes in the number of contact
points in the skill primitive.[5] Many other researchers have
derived sequences of motion primitives by using geometric
constraints[19–21] and Petri nets.[22, 23]

We explained the derivation of skill primitives by decompos-
ing manipulation tasks. On the other hand, when the task
which should be performed was designated, it’s almost pos-
sible to compose a task by connecting skill primitives. Pro-
grams of the fundamental skill primitives are always saved as
software in the computer. If an execution task is appointed,
the task is resolved into sequence of motion primitives, and
programs of the basic skill primitives prepared in the com-
puter are applied. If necessary, softwares of skill primitives
must be made newly. The ordered task is composed of ap-
plied skill primitives, and the task is carried out. Therefore,
it is important in practical use that many fundamental skill
primitives which become common in various tasks are de-
rived. Moreover, it is desirable that execution programs of
most skill primitives are prepared in the computer software.
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2.3 Process flow of skill-based manipulation
To perform a manipulation task which consists of skill primi-
tives, it is essential to clarify the processes of sensing, mod-
eling, planning and execution.[8, 9] If accurate geometric
models in the working environment have been constructed
by visual sensing, the overall planning of the manipulator
can be obtained only by the data of initial sensing. In real-
ity, however, it is impossible to ignore data errors in visual
sensing. Therefore, it is important to perform sensing and
modeling just before performing the planning of a task and
the skills constituting the task in order to restrain errors at
each step. The procedures composed of visual sensing, geo-
metric modeling, planning and execution are shown in Figure
5. In this scheme, the process flow consists of two layers: the
task level and the skill level. First, the sensing, modeling and
planning of the task level are carried out. Secondly, various
components of the skill level are carried out, similarly.

Figure 5. Process flow

Step 1: Task level

First, visual sensing is performed for the working environ-
ment of the manipulator and geometric modeling is done
using the sensing data. Next, motion planning follows, and
the sequences of the skill commands and the first position
and orientation of the object clasped by the manipulator are
decided.

The global object arrangement in the operating environment
of the manipulator is fixed in the visual sensing and model-
ing of the task level. Some uncertainty often exists in the
models of the working environment since the used data are
global and rough. Therefore, there is the possibility that the
planning may also have some uncertainty at the task level.

Step 2: Skill level

At the skill level, each motion primitive in the skill sequence
is {Skill1, Skill2, · · · } which means the command sequence
for the manipulator is performed in sequence. Before the

practice of this sequence, the gripped object is transitioned
to the first state and this is indicated by PreSkill1.

PreSkill1 (= Skill0)

First, visual sensing is performed for the object possessing
the goal as near as possible from the course of the transition
of the gripped object that was planned in Skill1. Next, geo-
metric modeling and planning are carried out in succession.
Planning can be done more accurately since the used data
are local and precise. Therefore, the planning in PreSkill1 is
re-planning, and a more accurate start state can be derived.
Then, the transference of the grasped object to the first state
is performed.

Skilli {i = 1, 2, · · · }

At Skilli {i = 1, 2, · · · } in the skill level, the visual sensing,
modeling and execution commands of each skill primitive
for the manipulator are carried out. Next, the same processes
are performed for each Skilli {i = 2, 3, · · · }. After sensing
and modeling are done, confirmation is performed. In this
step, the initial state of execution of Skilli {i = 1, 2, · · · } is
checked to confirm whether it corresponds to the scenario.
The steps of sensing, modeling and confirmation in Skilli can
be left out if the gripped object definitely exists in the first
state of Skilli {i = 2, 3, · · · } when Skilli is accomplished.

3. CONCEPT OF SIMPLIFIED MODELS BASED
ON SKILLS

In this section, let us show the simplified models to be used
in the step of planning and the simplified models to be used
in the step of visual sensing.

By taking into account the concept of skills, compensation
for margins of errors or failures both in modeling and in
planning is possible. For example, in the move-to-touch skill,
the margin of error occurring in the course of the transition
can be canceled. Similarly, errors in the rotating direction
can be minimized both in the rotate-to-level skill and in the
rotate-to-insert skill. Furthermore, simplified geometric mod-
els can be derived by permitting the largest values of errors
or margins in most skill motions.

It is not indispensable to form geometric models which per-
fectly agree with actual objects, both in the planning used
for manipulator execution and in the visual sensing used for
model matching. By composing geometric models only us-
ing the data required for sensing and planning, the process
can be facilitated. We have shown how to simplify the pro-
cesses of planning and visual sensing by using simplified
models (SM).[8, 9] The regulation of simplified models for
visual sensing and for planning is explained in the following
items.
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3.1 Simplified models for planning

First, we will explain simplified models for planning (SMP).
The models are geometric models that consist only of the
requisite and minimum data with respect to the form, posi-
tion and orientation for practice of planning in skill-based
manipulation.

3.2 Simplified models for visual sensing and model
matching

Secondly, we will explain simplified models for visual sens-
ing and model matching (SMV). The models are geomet-
ric models that consist only of the required and minimum
data for the form, position and orientation needed to exe-
cute model matching. SMP are derived from the several
elements composing the simplified models for visual sensing
and model matching (SMV).

SMP are geometric models including the restrictions on the
trajectories of objects. For example, there are SMP which
represent permissible trajectory errors to the shapes of ob-
jects. Furthermore, for planning in consideration of obstacle
avoidance, there are SMP including conditions not to contact
other objects when moving. As for SMV, equivalence of
the positions and orientations between the simplified model
SMV and the real object is the most important. The simplified
models SMV include the lines or the surfaces used to decide
the positions and orientations. Therefore, it is necessary to
be able to acquire the data of the lines or the surfaces from
the real objects in visual sensing. Furthermore, a simplified
model isn’t always only one with respect to SMP and SMV.
More than one model may exist for a kind of the real object.

Simplified models SMP, SMV can be obtained in each skill
primitive Skilli {i = 0, 1, 2, · · · }. We will often express SMP
and SMV in Skilli using SMPi and SMVi , respectively.

4. SIMPLIFIED MODELS BASED ON SKILLS
FOR INDUSTRIAL PRODUCTS

For objects produced in factories, geometric models that are
the same as the real objects are available in computer soft-
ware. In this section, we will show SMP and SMV when
precise geometric models such as CAD models are available.

To make this explanation easier to understand, we show sim-
plified models of screws in the task of loosening a screw
using a screwdriver as examples.[8, 9] Although there are
various types of screws and screwdrivers as shown in the
left columns of Table 1,[24] we consider the screw-loosening
task by uniting the following sequences of skills as shown in
Figure 6 and Figure 7.

Figure 6. Skill sequence of screw-loosening task using a
cross-head screwdriver

Figure 7. Skill sequence of loosening using a slotted
screwdriver

Skill1: Move-to-touch skill

Skill2: Rotate-to-bite skill

Skill3: Rotate-to-loosen skill

Next, we will show the simplified models of screws used in
each skill primitive Skilli {i = 0, 1, 2, 3}, for several types
of screws.

First, we consider the task for a crosshead screw (see Table 1,
a and b) as shown in Figure 6. Skill1 is accomplished if the tip
of the screwdriver enters a gutter near the center of the screw
head. The simplified model for planning SMP1 in Skill1 is
created according to the shape of the gutter (see Table 1, a
and b). The shape is shown as a circle to exclude any de-
pendency on the relative orientations of the screwdriver and
the screw. The radius in a rare Reed and Prince screw which
has little clearance (see Table 1b) is smaller than that in a
typical Phillips screw (see Table 1a). The region allowed as
the initial state of the move-to-touch skill of Skill1 is derived
from a set of trajectories back-projected from the circle. The
simplified model SMV1 in Skill1 is depicted by the outside
circle of the screw head (see Table 1, a and b). The position
and orientation of the circle of SMP1 is derived from data
of the circle of SMV1 obtained by visual sensing. Simpli-
fied models SMPi, SMVi in Skilli {i = 2, 3} are not required
since these skills are performed continuously (see Table 1,
a and b). Additionally, simplified models SMP0, SMV0 in
PreSkill1 (Skill0) are similar to the simplified models SMP1,
SMV1 in Skill1 since Skill0 is the motion of transition to the
initial region of Skill1.
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Table 1. Simplified models in screw-loosening task using a screwdriver
 

 

Type of screw RO 
Type of 
screwdriver 
used 

PreSkill1 
(Skill0) 

 
 

Skill1  Skill2  Skill3 

SMP0  SMV0   SMP1 SMV1   SMP2 SMV2   SMP3 SMV3  

Ⅰ 
(a) Phillips 

        
Not 
needed 

Not 
needed 

Not 
needed 

Not 
needed 

(b) Reed and Prince 
        

Not 
needed 

Not 
needed 

Not 
needed 

Not 
needed 

Ⅱ (c) Slotted 
        

Not 
needed 

Not 
needed    

Ⅲ 

(d) Robertson 
        

Not 
needed 

Not 
needed 

Not 
needed 

Not 
needed 

(e) Hex-drive 
        

Not 
needed 

Not 
needed 

Not 
needed 

Not 
needed 

(f) Two-Hole 
        

Not 
needed 

Not 
needed 

Not 
needed 

Not 
needed 

Ⅳ (g) Cross & slotted 
 

 
or 

      
Not 
needed 

Not 
needed 

Not 
needed 

Not 
needed 

      
Not 
needed 

Not 
needed    

Note. RO: Real objects; SMPi: Simplified models for planning in Skilli; SMVi: Simplified models for visual sensing and model matching in Skilli. 

 

Furthermore, we consider a slotted screw, a Robertson screw,
a hex-drive screw, a spanner screw, and a cross and slotted
screw. Simplified models SMPi and SMVi can be derived as
shown in Table 1 for each type of screw. Details are available
in the references.[8, 9]

5. SIMPLIFIED MODELS BASED ON SKILLS
FOR OBJECTS USED IN DAILY LIFES

For products made in factories, CAD models exist in most
cases. Therefore the robots working in factories can perform
their tasks with high reliability. Using simplification models
facilitates the processes of sensing, modeling and planning
for the execution of tasks, and simplified models SMPi and
SMVi are derived for each object and for each skill primitive
comprising the tasks.

However, unlike factory products, few precise models such
as CAD models are presently available for objects used in
daily life. For robots working in human daily life environ-
ments, general models used in general object recognition can
be applied to sensing, modeling and planning in many cases.
When a general model closely resembles a real object, highly
reliable tasks become possible by using the ability of the
manipulation skills to cancel errors. Conversely, when the
difference between the real object and general model is large,
the operational reliability is lost, and the task often fails.

5.1 Process of a task for daily life
The reliability of the achievement of a task greatly varies
depending on the difference in the size of the real object
and general model as mentioned above. In this section, we
consider the process of a task by classifying it in two cases

by the difference in size.

Case 1

This is a case in which the size difference is zero or small. In
this case, highly precise geometric models can be constructed
since the shape of the real object has been obtained correctly.

The ordered tasks can be performed similarly by using sim-
plified models based on skills for industrial products as men-
tioned in Section 4 in each section of sensing, modeling and
planning.

Case 2

This is a case in which the size difference is relatively large.
In this case, it is difficult to construct precise geometric mod-
els since there are not enough data to create an exact model.

The reliability of the achievement of the task is low when
planning and execution are performed directly using models
generated only using known data. In this case, two steps of
planning are performed as follows.

(1) First, planning is performed for general models often
used in object recognition. This part is the same as the
planning section in Case 1.

(2) Second, planning for extended models for general
models is performed. This planning is performed for a
large extended size to increase reliability.

5.2 Simplified models of objects used in daily life
Here we consider a plastic bottle and a cup as objects used in
daily life. Both objects are now commonplace in human life.
We will consider the tasks involved in repacking a plastic bot-
tle from a large box into a small box, and the tasks involved
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in transferring a cup from a cupboard to a table. In these
examples, we assume that there are no precise models such
as CAD models available in computer software for these
plastic bottles and cups. Therefore, the procedure in Case 2
in Section 5.1 is taken into account.

Figure 8. Pick-and-place task using a gripper for plastic
bottles

5.2.1 Simplified models in the transfer task for plastic bot-
tles

This task involves the transfer of plastic bottles in which the
bottles are picked and placed using a gripper as shown in
Figure 8. Figure 9 shows command sequences of the transfer
and manipulation tasks composed of 12 skill primitives. A
plastic bottle containing a beverage is repacked from a large
case into a small case through the execution of this task. It is
assumed that cross sections of the cap and the body of a real
bottle consist of n-polygonal (n(cap) = 10, n(body) = 10 in
Table 2a).

First, simplified models SMPi , SMVi of the plastic bottle in
step (1) in Case 2 are derived as shown in Table 2a. M(k) and
m(k) (k = II, III, IV, V) in the SMPi are the radii of a circum-
scribed circle and inscribed circle, respectively. Twelve skill
primitives are summarized in six sections I to VI to facilitate
planning by using the same models as shown in Table 2a.
In sections II and V, the radii M(k) and m(k) (k = II, V) of
the model for the cap are the indexes used for the opening
width between the fingers of the gripper when grasping and
opening. The opening width between the fingers is controlled

so that the value of the width becomes larger than M(k) at
Skill2 and Skill10 and becomes smaller than m(k) at Skill4. In
sections III and IV, the radius M(k) (k = III, IV) of the model
for the body of the bottle is the index used to derive the path
of the transfer, check for obstacle avoidance, etc. The sim-
plified models SMVi are drawn by a circle whose radius is
rv(k) = (n(l)/π) ln {tan(π/(2n(l)) + π/4)} m(k) (k = II,
III, IV, V) ( l = cap, boby), which is derived by the LMS
technique.[9]

Figure 9. Command sequence of task

Secondly, simplified models SMPi, SMVi of the plastic bot-
tle in step (2) in Case 2 are derived as shown in Table 2b.
M’(k) and m’(k) (k = II, III, IV, V) are the radii of the circles
where M’(k) > M(k) > m(k) > m’(k) in sections II, III, IV and
V. The values of M’(k) and m’(k) are decided as values that
can avoid the failure of the task. The fingers of the gripper
are controlled so that the opening width between the fingers
becomes larger than the value of M’(k) at Skill2 and Skill10
and becomes smaller than the value of m’(k) at Skill4.
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Table 2. Simplified models of plastic bottles in pick-and-place task using a gripper

 

 

(a) With use of a CAD model 
Section Skilli RO SMPi  SMVi  

I Skill1  Not needed Not needed 

II 
Skill2 
Skill3 
Skill4 

   

III 

Skill5 
Skill6 
Skill7 
Skill8 

   

IV Skill9 

   

V Skill10 Same as section II Same as section II Same as section II 

VI Skill11 
Skill12  Not needed Not needed 

(b) Without use of a CAD model 

Section Skilli RO SMPi  SMVi  

I Skill1  Not needed Not needed 

II 
Skill2 
Skill3 
Skill4 

   

III 

Skill5 
Skill6 
Skill7 
Skill8 

 

 
 

IV Skill9 

   

V Skill10 Same as section II Same as section II Same as section II 

VI Skill11 
Skill12  Not needed Not needed 

Note. RO:  Real objects; SMPi: Simplified models for planning in Skilli; SMVi: Simplified models for visual sensing and model matching in Skilli. 

 

Cross 
section of cap

Cross 
section of bottle

Cross 
section of bottle

Cross 
section of cap

M(II) m(II)

Cross 
section of bottle

M(III) m(III)

Cross 
section of bottle

Using a precise 
model if possible

M(IV)
m(IV)

Cross 
section of cap

rv (II)

Cross 
section of bottle

rv (III)

Cross 
section of bottle

Using a precise 
model if possible

rv (IV)

Cross 
section of cap

Cross 
section of bottle

Cross 
section of bottle

Cross 
section of cap

M(II) m(II)

M’(II)
m’(II)

Cross 
section of bottle

M(III) m(III)

m’ (III)M’(III)

Cross 
section of bottle

M(IV) m(IV)

m’ (IV)M’(IV)

Cross 
section of cap

rv’(II)

Cross 
section of bottle

rv’(III)

Cross 
section of bottle

rv’(IV)

Although sections III and IV are performed in succession,
the reason for dividing these sections is to restrain flexibility
and treat the object precisely in the lowering skill of section
IV.

Simplified models are derived for only the necessary parts
in the objects in each section, and highly reliable task execu-

tion becomes possible by performing sensing, modeling and
planning for the simplified models.

5.2.2 Simplified models in the transfer task for a cup
This task involves the transfer of a cup such as a coffee cup
or teacup in which the cup is picked and placed using a grip-
per as shown in Figure 10. The command sequences are the
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same as in Figure 9 which is composed of 12 skill primitives.
A cup is moved from a cupboard to a table through the exe-

cution of this task. It is assumed that the cross section of a
real cup is an ellipse approximating a circle.

Table 3. Simplified models of cups in pick-and-place task using a gripper
 

 

(a) With use of a CAD model 

Section Skilli RO SMPi  SMVi  

I Skill1  Not needed Not needed 

II 
Skill2 
Skill3 
Skill4 

   

III 

Skill5 
Skill6 
Skill7 
Skill8 
Skill9 

   

IV Skill10 Same as section II Same as section II Same as section II 

V 
Skill11 
Skill12 

 Not needed Not needed 

(b) Without use of a CAD model  

Section Skilli RO SMPi  SMVi  

I Skill1  Not needed Not needed 

II 
Skill2 
Skill3 
Skill4 

   

III 

Skill5 
Skill6 
Skill7 
Skill8 
Skill9 

   

IV Skill10 Same as section II Same as section II Same as section II 

V 
Skill11 
Skill12 

 Not needed Not needed 

Note. RO:  Real objects; SMPi: Simplified models for planning in Skilli; SMVi: Simplified models for visual sensing and model matching in Skilli. 

Cross 
section of cup

Cross 
section of cup

Cross 
section of cup

zM(II) m(II)

Cross 
section of cup

rjust

zM(III) m(III)

Cross 
section of cup

rv (II)

Cross 
section of cup
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First, simplified models SMPi, SMVi of the cup in step (1)
in Case 2 are derived as shown in Table 3a. M(k) and m(k) (k
= II, III, IV) in the SMPi are the radii of the circumscribed
circle and inscribed circle of the ellipse, respectively. Twelve

skill primitives are summarized in sections I to V to facilitate
the planning. Five skills Skill5 to Skill9 are summarized in
one section since it is not necessary to place the cup in a nar-
row space in Skill9, unlike that in Section 5.2.1. In sections
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II and IV, the radii M(k) and m(k) (k = II, IV) of the model for
the cup are the indexes used for the opening width between
the fingers of the gripper. In section III, the radius M of the
model for the cup is the index used for planning the transfer
in order to avoid obstacles.

Figure 10. Pick-and-place task using a gripper for cups

Secondly, simplified models SMPi , SMVi of the cup in step
(2) in Case 2 are derived as shown in Table 3b. M’(k) and
m’(k) (k = II, III, IV) are the radii of circles where M’(k)
> M(k) > m(k) > m’(k) in sections II and IV. The values
of M’(k) and m’(k) are decided as values that can avoid the
failure of the task. The opening width between the fingers of
the gripper should be larger than the value of M’(k) at Skill2
and Skill10 and should be smaller than the value of m’(k) at
Skill4.

When approaching (Skill3) and grasping a cup (Skill4) are
performed, the cup handle often becomes an obstacle. For
simplification, we do not take into account the cup handle in
this paper. If the cup handle were to be considered as an ob-
stacle, additional tasks such as rotating the cup or transferring
another cup often occur.

Simplified models for the two tasks are shown in Sections
5.2.1 and 5.2.2. Task planning using manipulation skills has

the ability to cancel an error occurring from modeling errors.
Reliable planning can be performed by using skill-derived
simplified models. However, still there is a possibility that an
error might occur. When an error occurs, a return operation
should be performed using the error recovery techniques we
have studied.[25, 26]

6. CONCLUSIONS

We have described a method to derive highly reliable plan-
ning of tasks by using manipulation skill-based simplified
models for objects used in the daily life of humans. While
there are precise models for products made at factories in
many cases, precise models for objects used in daily life are
not always available in computer software. In such cases,
failures often occur since models in the working environment
become indistinct. Nevertheless, it is necessary to perform
ordered tasks with high reliability. The derivation method of
simplified models based on skills for objects used in daily
lifes which we proposed greatly contributes to it.

We have been researching error recovery techniques.[25, 26] It
is important to apply error recovery techniques for manipula-
tion tasks in daily life to increase their reliability. Moreover,
it is essential to achieve stable, error-free manipulation tasks
for high reliability. In this paper, simplified models derived
for objects produced in factories were applied to objects
used in daily life. These simplified models were obtained by
extending general models used in object recognition. Sens-
ing, modeling and planning are performed based on these
simplified models.

In the future, we will further study how to derive skill-based
simplified models for many objects used in daily life and how
to summarize skill sequences into several sections to execute
tasks effectively. It is also important to execute tasks with
high reliability in crowded environments and when obsta-
cles exist. In this paper, we showed only geometric models
definition about simplified geometric models in skill-based
manipulation for objects used in daily life. In the future, it
is necessary to apply our technique to a real robot system or
the simulator.
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