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Abstract 
Coordination is essential to achieving good performance in cooperative multiagent systems. To date, most work has 
focused on either implicit or explicit coordination mechanisms; while relatively little work has focused on the benefits of 
combining these two approaches. In this work we demonstrate that combining explicit and implicit mechanisms can 
significantly improve coordination and system performance over either approach individually. First, we use difference 
evaluations (which aim to compute an agent’s contribution to the team) and stigmergy to promote implicit coordination. 
Second, we introduce an explicit coordination mechanism dubbed intended Destination Enhanced Artificial State 
(IDEAS), where an agent incorporates other agents’ intended destinations directly into its state. The IDEAS approach does 
not require any formal negotiation between agents, and is based on passive information sharing. Finally, we combine these 
two approaches on a variant of a team-based multi-robot exploration domain, and show that agents using a both explicit 
and implicit coordination outperform other learning agents up to 25%. 
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1 Introduction 
Coordinating a team of agents such that they collectively achieve a common goal is a complex problem within the field of 
multiagent systems [13]. Improving coordination in multiagent systems will benefit many application domain including 
Unmanned Aerial Vehicles (UAV) swarms, search and rescue mission, exploration, and sensor networks [1, 2, 9]. In general, 
coordination mechanisms can be broken down into two main categories: implicit and explicit coordination mechanisms. 
Implicit coordination relies solely upon an agent’s observation of its environment to make decisions, while explicit 
coordination involves direct interaction and exchange of information between two or more agents. Implicit coordination 
mechanisms tend to be limited by observation restrictions and explicit methods are typically limited by communication 
restrictions. In many real-world domains agents have access to limited amounts of both observation and communication. 
In such cases, maximizing the benefit of both types of information by concurrently using implicit and explicit mechanisms 
is likely to be advantageous. We propose using a combination of explicit and implicit coordination mechanisms to improve 
coordination and performance over either method individually. 
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In this work we combine two well-known implicit coordination mechanisms (coupled policy evaluations and stigmergy) 
with our novel explicit coordination mechanism (communicating agents’ Intended Destination Enhanced Artificial State 
(IDEAS)) to improve coordination in the Cooperatively Coupled Rover Domain (CCRD). The CCRD is an extension of 
the Continuous Rover Domain [3], in which a set of rovers must coordinate their actions to collectively optimize coverage 
over a set of environmental points of interest (POIs) and individual rovers can observe any given POI. The CCRD 
increases the coordination complexity by requiring teams of agents to observe each POI. Here, agents must not only 
optimize coverage as a collective, but they must form teams and the teams must coordinate within themselves to optimize 
coverage of their POI as well. This is difficult because there are two different coordination problems going on 
concurrently. First, at a high level all agents within the system must coordinate to provide optimal coverage of POIs. 
Second, agents must co-ordinate amongst themselves to form teams and the agents comprising the teams must coordinate 
their actions to optimally select and cover a given POI (teams either observe a POI together or not at all). This tight 
coupling between agents both at a system level and at a team level presents a complex coordination problem. 

The key contributions of this paper are as follows: 

 Introduce a novel explicit coordination mechanism (IDEAS) in the Cooperatively Coupled Rover Domain. 

 Combine implicit (coupled policy evaluation and stigmergy) and explicit (IDEAS) coordination mechanisms to 
improve performance of multi-rover teams. 

The remainder of this paper is structured as follows. Section 2 provides background information on implicit coordination, 
explicit coordination, and multiagent coordination. Section 3 provides an introduction to the Continuous Rover Domain 
(CRD) used in this work. Section 4 provides an overview of the algorithms, evaluation functions, and methods used in this 
work. Section 5 contains the experimental results. Finally, Section 6 contains the discussion and conclusions of this work. 

2 Background and related work 
Implicit coordination relies solely upon an agent’s observation of its environment to make decisions. One example used in 
this work is stigmergy, by which agents coordinate by communicating with each other through the environment [8, 11]. 
Another example used in this work is coupled policy evaluations (both global and difference policy evaluations), which 
allow agents to implicitly coordinate their actions based upon the policy evolutionary received [1]. Here, agents have a 
policy evaluation that is reflective of how the agents collectively performed at achieving a particular objective. 

In this work, we focus primarily upon difference evaluations, which are shaped policy evaluations designed to promote 
coordination in large multiagent systems [2, 17]. Difference evaluations evaluate each agent’s impact on the system by 
comparing the systems performance both with and without the agent. If the agent made a positive contribution to the 
system, its policy evaluation is positive, if it harmed the system, its policy evaluation is negative. 

Explicit coordination involves direct interaction and exchange of information between two or more agents. Examples of 
explicit coordination are auctions, bidding, and other forms of negotiations [10, 12, 14, 16]. However, these methods are 
frequently complex and require a back-and-forth dialogue between agents before reaching agreement and taking any 
action, thus slow system response time [6]. Also, in many real world problems communication is limited in bandwidth and 
availability. In this work, we propose to utilize a novel explicit coordination mechanism called IDEA that only requires 
passive information sharing between agents. In particular, agents passively communicate the action that they currently 
intend to take based upon their perceived system state. This information provides agents with an effective “look ahead” at 
what other agents intend to do during the next time step, allowing them to adjust their actions to compensate accordingly. 
A similar approach was taken [4], however they only took into account actions already taken by agents. 
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5.1 Policy evaluations 
The first set of experiments observes the performance of agents using implicit coordination via coupled evaluation 
functions as well as agents using combined coupled evaluations, stigmergy, and IDEAS information under varying 
observation restrictions (see Figure 2). Intuitively, as the observation radius of agents increases, the overall system 
performance should increase (agents have access to more information). Initially, this performance increase is observed 
(see Figure 2), where agents using only G and D respectively, improve performance as observability increases. However, 
as the observability continues to increase, agents using global evaluations begin to struggle due to too much information. 
Agents using global evaluations receiving too much information cannot distinguish the impact of their own actions on 
their evaluations versus the impact of other agents, making it difficult to learn. Agents using difference evaluations (D) on 
the other hand continue to perform well (outperforming other methods (R and G) by as much as 200%). This is because 
agents using D are able to effectively determine their own impact on the learning signal they received.  

Although agents using implicit coordination via coupled policy evaluations were able to achieve good performance, we 
also tested the performance of agents using a combination of coordination mechanisms in the static CCRD (see Figure 2). 
Here, agents used coupled policy evaluations (G and D, respectively), stigmergy, and the IDEAS coordination mechanism. 
In this case stigmergy introduces a change in the environment, the values of POIs decrease by 3% each time a team of 
rovers observes them. Experiments were also conducted to test the performance of coupled policy evaluations with 
stigmergy as well as they behaved statistically similar to agents using only coupled policy evaluations. 

The results in Figure 2 show that combining implicit (coupled policy evaluations and stigmergy) and explicit (IDEAS) 
coordination mechanisms in the CCRD outperform other methods by as much as 25%. The reason that this combination 
works is because 1) agents’ using difference policy evaluations receive a quality learning signal that promotes 
system-centric coordination; 2) stigmergy provides an environmental cue to agents that emphasizes under observed POIs, 
and 3) IDEAS provide rovers with an effective “look ahead” of other rovers actins allowing them to act accordingly 
(agents may decide to pursue areas that are less heavily trafficked, or to attempt to form a team with another agents). 

 

Figure 2. CCRD with 40 rovers in a static environment, where teams of 3 agents are required to observe each POI. Agents 
using D S  IDEASoutperform all other methods once the observation distance is above 60 units. Policy evaluations 
coupled with stigmergy ( G  S, D S) and IDEAS (G  IDEAS, D IDEAS) were excluded from this figure because they 
were statistically similar to G and D (respectively). 
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5.2 Dynamic environment 
Now that we have demonstrated the benefits of combining implicit and explicit coordination mechanisms, we want to 
extend this one step further by demonstrating the robustness of such an approach. In these experiments, agents in the 
CCRD (with 3 rover teams) have a dynamic environment, where the location and values of POIs change every episode. 
Dynamically changing the environment each learning episode increases learning difficulty and makes it harder for rovers 
to coordinate their policies. As seen in Figure 3, agents using global policy evaluations  (both with and without additional 
coordination mechanisms such as stigmergy and IDEAS) perform approximately 50% better than they did in the static 
CCRD. This is because the agents are effectively learning policies that randomly wander and when the POIs are randomly 
placed throughout the environment every episode, so over a number of episodes they end up running across more POIs on 
average. However, they still perform poorly compared to agents using difference policy evaluations. This is because 
difference policy evaluations are able to account for the “randomness” of the environment and design agent policies that 
compensate for dynamic environmental factors. Agents using difference policy evaluations coupled with stigmergy and 
IDEAS perform agents using only difference policy evaluations by approximately 25% under different observation 
restrictions, and they outperform all other methods by as much as 60%. 

 

Figure 3. CCRD with 40 rovers in a dynamic environment, where teams of 3 agents are needed to observe each POI. As 

seen, agents using D S IDEAS  outperform all other methods once the observation distance is above 60 units.  

6 Discussion 
Coordinating the actions of disparate agents such that they collectively complete a complex task is a key problem that must 
be addressed in order to advance the field of multiagent systems. Although it may implicit and explicit mechanism for 
solving such coordination problems exist, they are frequently unable to fully address the coordination issues involved due 
to limited observation and communication restrictions. In order to improve performance of these methods, we selected 
implicit and explicit coordination mechanisms whose benefits were complementary under limited observation and 
communication restrictions. In particular, we utilized a combination of two implicit coordination mechanisms (coupled 
policy evaluations and stigmergy) and one novel explicit coordination mechanism (IDEAS) in the Cooperatively Coupled 
Rover Domain (CCRD) under limited observability. Overall, combining coupled evaluations, stigmergy, and IDEAS 
coordination mechanisms resulted in up to 25% improved performance over other approaches. 

Combining the benefits of these coordination mechanisms enabled improved performance under varying observation 
restrictions because the mechanisms were complementary. Coupling policy evaluation enables agents to attempt to work 
together as a collective unit, what is good for an individual is good for the team. However, under limited observability, 
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agents receive limited information and their policy evaluations become less reflective of the overall team performance and 
instead emphasizes the performance in their local region. This is addressed by allowing agents to passively communicate 
their IDEAS (explicit coordination), which allows agents in different areas to implicitly “skip” information across the 
system to each other, improving their ability to globally coordinate their actions (agents may effectively coordinate 
through interacting with other agents, though they may never interact directly). Finally, stigmergy provides an 
environmental cue that impacts agents locally in a way that has global repercussions. As POI’s were observed, their values 
decreased. This means that if a POI has been heavily observed in the past, although there are currently no rovers near it, as 
a new rover comes across it they will know to look elsewhere for a higher value POI, effectively encouraging the rovers to 
disperse and search other areas of the domain.  

Although we used specific coordination mechanism, there are undoubtedly more combinations of implicit and explicit 
coordination mechanisms that will improve performance in many multiagent system domains. In general, implicit 
coordination mechanisms rely heavily upon agents’ observation of the environment and tend to be limited by observation 
restrictions, while explicit coordination mechanisms rely heavily upon direct agent-to-agent information sharing and 
negotiation and are typically limited by communication restrictions. In most real-world multiagent system domains both 
observation and communication restrictions exist and when they do, a combination of implicit and explicit coordination 
mechanisms will likely be advantageous over either method individually.  
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